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Abstract
The main protease  (Mpro) of SARS-Cov-2 is the essential enzyme for maturation of functional proteins implicated in viral 
replication and transcription. The peculiarity of its specific cleavage site joint with its high degree of conservation among all 
coronaviruses promote it as an attractive target to develop broad-spectrum inhibitors, with high selectivity and tolerable safety 
profile. Herein is reported a combination of three-dimensional quantitative structure–activity relationships (3-D QSAR) and 
comparative molecular binding energy (COMBINE) analysis to build robust and predictive ligand-based and structure-based 
statistical models, respectively. Models were trained on experimental binding poses of co-crystallized  Mpro-inhibitors and 
validated on available literature data. By means of deep optimization both models’ goodness and robustness reached final 
statistical values of r2/q2 values of 0.97/0.79 and 0.93/0.79 for the 3-D QSAR and COMBINE approaches respectively, and 
an overall predictiveness values of 0.68 and 0.57 for the  SDEPPRED and AAEP metrics after application to a test set of 60 
compounds covered by the training set applicability domain. Despite the different nature (ligand-based and structure-based) 
of the employed methods, their outcome fully converged. Furthermore, joint ligand- and structure-based structure–activity 
relationships were found in good agreement with nirmatrelvir chemical features properties, a novel oral  Mpro-inhibitor that 
has recently received U.S. FDA emergency use authorization (EUA) for the oral treatment of mild-to-moderate COVID-19 
infected patients. The obtained results will guide future rational design and/or virtual screening campaigns with the aim 
of discovering new potential anti-coronavirus lead candidates, minimizing both time and financial resources. Moreover, as 
most of calculation were performed through the well-established web portal 3d-qsar.com the results confirm the portal as 
a useful tool for drug design.

 * Rino Ragno 
 rino.ragno@uniroma1.it

1  Department of Drug Chemistry and Technology, Rome 
Center for Molecular Design, Sapienza University of Rome, 
P.le Aldo Moro 5, 00185 Rome, Italy

2 Department of Computer, Control and Management 
Engineering “Antonio Ruberti”, Sapienza University 
of Rome, Rome, Italy

3 Department of Chemistry, Faculty of Science, Kragujevac 
Center for Computational Biochemistry, University 
of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 
34000 Kragujevac, Serbia

4 Sony AI, Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-022-00460-7&domain=pdf


484 Journal of Computer-Aided Molecular Design (2022) 36:483–505

1 3

Graphical abstract

Keywords 3-D QSAR · COMBINE · SARS-Cov-2 · Ligand-based drug design · Structure-based drug design · Structure-
activity relationships

Introduction

In December 2019, a previously unknown human coronavi-
rus was reported to be the etiological agent of a pneumonia 
that occurred in a cluster of patients in Wuhan, capital of the 
Hubei province in China; in a few months this coronavirus 
rapidly spread throughout the world [1, 2]. The World Health 
Organization (WHO) named the infectious disease corona-
virus disease (COVID-19) [3] and declared the outbreak a 
global pandemic on 11 March 2020 as the first pandemic 
caused by a coronavirus [4]. Coronaviruses (CoVs) are a 
large group of enveloped, positive-sense, single-stranded 
RNA viruses that cause a wide variety of diseases in humans 
and other animals. The International Committee on Tax-
onomy of Viruses designated the responsible etiological 
agent of COVID-19 as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). It taxonomically clusters 
with SARS-related CoVs, within the Betacoronavirus genus, 
Coronaviridiae family [5].

At present, seven coronaviruses are known to cause 
human diseases [6], the low-pathogenicity members (HCoV-
NL63, HCoV-229E, HCoV-OC43 and HKU1) generally 
lead to mild to moderate upper respiratory illness, such 
as common cold or pneumonia, whereas the highly patho-
genic members (SARS-CoV, MERS-CoV, SARS-CoV-2) 
are known to cause severe respiratory diseases with high 

morbidity and lethality. Outbreaks of new human highly 
pathogenic coronavirus infections have periodically emerged 
from animal reservoirs, including severe acute respiratory 
syndrome (SARS) in 2003 [7] and Middle East respira-
tory syndrome (MERS) in 2012 [8]: SARS-CoV-2 marks 
the third introduction of a highly pathogenic CoV into the 
human population within the last two decades. Furthermore, 
it is readily transmitted from human to human and it has 
spread at an alarming speed, posing a significant threat to 
public global health.

Genetic sequence analysis revealed that SARS-CoV-2 
shares respectively 79.6% and about 50% of genome 
sequence identity with the other zoonotic SARS-CoV and 
MERS-CoV [9]; exceptionally comparison with bat corona-
virus, SL-CoV-RaTG13, showed a whole-genome sequence 
identity of 96.2% [10]. This phylogenetic relationship pro-
vided evidence SARS-CoV-2 may have originated from bats 
and emerged in humans by an intermediate host, similarly 
to both SARS and MERS outbreaks [1, 11]. SARS-CoV-2 
genome contains at least six open reading frames (ORFs) 
[10]; the first two overlapping ORF 1a/b at the 5′ end termi-
nal, encode for polyproteins pp1a and pp1ab. The well-char-
acterized main protease  (Mpro), also known as the 3C-like 
protease  (3CLpro), cleaves an extensive part of the precursor 
polyproteins into individual and functional proteins, which 
form the replicase/transcriptase complex (RTC).  Mpro is a 
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three-domain (domains I to III) cysteine protease, and its 
active form is a dimer where each protomer features a non-
canonical Cys145-His41 catalytic dyad located in a wide 
cleft between domain I and II. It operates at no less than 11 
conserved cleavage sites that share the Leu-Gln↓Ser(Ala, 
Gly) (↓ indicates the cleavage site) as preferred recognition 
sequence, including its own autolytic cleavage from pp1a. 
Moreover,  Mpro has a unique substrate preference for glu-
tamine in P1 site, an absent feature in closely related host 
proteases, suggesting it is feasible to achieve high selectivity 
and acceptable safety profile on this target [12, 13].  Mpro 
has a pivotal role in the life cycle of CoVs: its highly con-
served catalytic domain among all CoVs promotes it as an 
attractive drug target for broad-spectrum anti-coronavirus 
therapy. In order to discover effective drugs against the novel 
coronavirus, two main approaches have been pursued: drug 
repurposing of already existing drugs and rational design 
of new selective compounds [13, 14]. The repurposing 
approach allows for rapid identification of potential drug 
leads through massive screening of libraries of approved and 
investigational drugs, often automated by means of fragment 
screenings and high throughput screening (HTS). It allowed 
to quickly start clinical trials with safe-in-man compounds 
that exhibits only modest experimental antiviral evidence. 
Through this route, several inhibitors have been reported 
from HTS [13, 15], libraries of proteases [16] and bioac-
tive components of traditional Chinese medicine [17–19]. 
In addition, repurposing offers the advantage to exploit the 
considerable amount of data reported on other human patho-
genic CoVs over the past decade and hopefully accelerate 
drug discovery process [13, 20–26].

However, the scientific community agrees that the most 
favored strategy to obtain safe and efficacious drugs is 
the coherent design of ad-hoc chemical entities. Such an 
approach requires the knowledge of the target and the sub-
strates. Several covalent reversible inhibitors, that efficiently 
compete with the natural substrates, have already been 
reported. The compounds included α-ketoamide analogs 
[22, 27, 28], peptidomimetic aldehydes [21, 25, 29–31] and 
various ketones derivatives [20, 32].

Notwithstanding the accelerated COVID-19 vaccines 
[33] development pipeline, the recurrent emergence of new 
coronaviruses able to jeopardize public health highlights the 
urgent need for developing effective drugs against patho-
genic coronaviruses. In fact, while preparing this report, 
only three drugs have been authorized by the U.S. Food and 
Drug Administration (FDA) for the treatment of COVID-
19 in patients at high risk for progression to severe disease. 
Veklury (remdesivir) (Fig. 1, panel A) and Lagevrio (mol-
nupiravir) (Fig. 1, panel B) are nucleoside analogues tar-
geting the viral RNA-dependent RNA polymerase (RdRp). 
Remdevisivir, despite some initial conflicting opinions and 
contrasting trials [34–36], has been recently approved [37] 

for intravenous (IV) use, while molnupiravir received an 
emergency use authorization (EUA) [38] for oral use. More 
recently, FDA issued an EUA [39] for Paxlovid (nirmatrel-
vir co-packaged with ritonavir, Fig. 1, panels C and D) for 
oral use, a combination of a pan-coronaviruses  Mpro inhibi-
tor [40] with an HIV protease inhibitor exerting inhibitory 
activity against CYP3A4 boosting nirmatrelvir serum levels.

Due to the urgent need to develop COVID-19 drugs, 
computational methods to rationally design new anti-cor-
onavirus agents have been largely applied also in combi-
nation with crystallographic experimental data, but few of 
them exploited any combination of ligand-based (LB) and 
structure-based (SB) approaches.

Herein, are reported LB and SB computational 
approaches applied to a series of SARS-CoV-2  Mpro inhibi-
tors. Through the Py-CoMFA and Py-ComBinE applications 
available on the 3d-qsar.com portal [41], robust and predic-
tive comparative molecular field analysis (CoMFA) [42] and 
comparative molecular binding energy analysis (COMBINE) 
[43–47] as LB and SB three-dimensional quantitative struc-
ture–activity relationships (3-D QSAR) [48] models were 
built to shed light on structural molecular determinant and 
inhibitor/protein residues interactions mainly responsible for 
the  Mpro inhibitory potency. As most of the calculations were 
run on 3d-qsar.com portal [41] this report demonstrates the 
potentiality of the available web apps as tools to develop 
predictive models.

Computational methods

Dataset preparation

The web portal 3d-qsar.com [41] freely allows to build 
CoMFA and COMBINE models readily handling the clas-
sical steps that need to be accomplished up to the final opti-
mization and validation of robust models. The flowchart 
consists of a careful selection and alignment of training 
and test set molecules, calculation of molecular interaction 
fields (MIFs), statistical analysis, interpretation of results 
and graphical plots. Once these steps have been assessed, 
the model can be applied to predict the activity of untested 
molecules or to design new chemical entities with either LB 
or SB approaches.

Training set and test set compilation

Despite the huge amount of data generated for COVID-19 
at the time this investigation was started, the lack of homo-
geneity of condition assays, protocols and experimental bio-
activities units of measurement prevented the developing 
of wide and computationally applicable medicinal chemis-
try models. Therefore, the dataset assembling was focused 
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on small molecule compounds with associated biological 
activity data as much as possible consistent with each other. 
For this purpose, only data of  Mpro inhibitors whose activ-
ity was mainly expressed in terms of  IC50 were collected 
from literature [13, 15–29, 31, 32] (Supporting Information 
Table SI1 and Table SI2). Among them, 21 were available as 
experimentally co-crystallized in ligand–protein complexes 
from the Protein Data Bank (PDB) [49] and were therefore 
selected to compile a training set (TR, Table 1, Supporting 

Information Table SI1). All TR compounds were reported 
as covalent inhibitors characterized by either a peptide or 
a peptidomimetic scaffold. Non-complexed inhibitors were 
selected (see dataset compilation section in Supporting 
Information) to compile a modeled test set  (TSMOD, Sup-
porting Information Table SI2) that comprised 67 molecules 
with different molecular scaffolds (peptidomimetic, isatin, 
flavonoid and others) and different putative mechanisms of 
action (covalent/non-covalent). Moreover, during modeling, 
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Fig. 1  Currently FDA-approved or authorized antivirals used for the treatment of mild-to-moderate COVID-19: remdesivir (A), molnupiravir 
(B), nirmatrelvir (C) and ritonavir (D)
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Table 1  The 21 Mpro inhibitors 2-D structures included in the training set and associated  IC50 and PDB entry codes

Mol  IDa PDB  IDb Structure IC50 (μM)

1 6XA4

 

0.97 [16]

2 6WTT 

 

0.03 ± 0.008 [16]

0.62 ± 0.08 [21]
0.15 ± 0.03 [23]

3 6XHM

 

0.01 [20]

4 6XMK

 

0.48 [21]

5 6XBG

 

0.05 [28]
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Table 1  (continued)

Mol  IDa PDB  IDb Structure IC50 (μM)

6 6XBI

 

0.45 [28]

7 7JPZ

 

0.10 [25]

8 7JQ0

 

0.09 [25]

9 7JQ1

 

0.02 [25]

10 7JQ2

 

0.03 [25]
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Table 1  (continued)

Mol  IDa PDB  IDb Structure IC50 (μM)

11 7JQ3

 

0.06 [25]

12 7JQ4

 

0.05 [25]

13 7JQ5

 

0.11 [25]

14 6Y2F

 

0.67 [27]

15 6LZE

 

0.05 [29]
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Table 1  (continued)

Mol  IDa PDB  IDb Structure IC50 (μM)

16 6M0K

 

0.04 [29]

17 7JKV

 

0.02 [32]

18 7BRP

 

3.1 ± 0.4 [22]

4.13 ± 0.61 [16]
8.0 ± 1.5 [23]

19 7D1O

 

5.1 ± 0.9 [22]

5.73 ± 0.67 [16]
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a crystal test set  (TSCRY , Supporting Information Table SI3) 
was compiled with 47 recently published [50–57] co-crys-
tallized complexes, selected in order to maintain consistency 
with the bioactivity assay and measurement  (IC50). The final 
TR and  TSMOD, constituted of 21 (1–21) and 67 (22–88) 
molecules, were respectively used to build and validate 3-D 
QSAR and COMBINE models, while the  TSCRY  47 com-
plexes (89–135) were used to assess models predictiveness 
with experimental data.

Training set preparation

The 21  Mpro-inhibitor associated complexes (Supporting 
Information Table SI1) were retrieved from the PDB and 
SB superimposed by means of PyMOL [58], using 6LZE 
as arbitrarily selected reference complex. The complexes 
were subjected to a cleaning procedure including removal 
of water molecules, ions and crystallization co-solutes and 
saved separated into ligand (key) and protein (lock). As all 
TR inhibitors were covalently bonded to Cys145, similarly 
as previously reported [59, 60] they were converted to the 
corresponding pre-covalent complexes by rebuilding the 
non-reacted species by means of Chimera Build Structure 
plugin. Reconstituted inhibitors were merged in the corre-
sponding proteins and the resulting complexes were energy 
minimized to relax steric clashes. Residue protonation states 
were determined with PropKa [61] at a pH of 7.4. For the 

minimization, ligands’ parameters were calculated with 
Antechamber [62] using the last version of the general amber 
force field (GAFF2) [63] by means of the AM1-BCC method 
[64], while the ff14SB force field [65] was used for the pro-
teins. The complexes were solvated using the four-point opti-
mum point charge (OPC) water model [66] in an orthorhom-
bic box adding  Na+ or  Cl− ions to neutrality and setting to 
12 Å the box boundaries distance from the protein using the 
tLeaP program included in Ambertools suite (version 18) 
[67]. The prepared topology and parameter files were used 
to run a 500 gradient descent minimization steps through 
the OpenMM [68] python library. As in agreement with the 
original COMBINE protocol [43], the Py-ComBinE web app 
requires an equal number of residue number for each protein, 
therefore all extra residues were removed by means of UCSF 
Chimera [69] from longer sequence proteins to match the 
shortest one (6XMK). The minimized and adjusted com-
plexes, separated into keys and locks were uploaded to the 
web portal 3d-qsar.com through the Py-MolEdit web app to 
generate Py-CoMFA and Py-ComBinE [41] models as LB 
and SB 3-D QSAR applications, respectively.

Modeled test set preparation

The experimental reversibly reconstituted bound 21 TR 
ligands conformations were used as templates in a flexible 
alignment procedure by means of fkcombu [70]. According 

Table 1  (continued)

Mol  IDa PDB  IDb Structure IC50 (μM)

20 7K6E

 

18.00 [22]

21 6XCH

 

92.00 [22]

a Molecule number used in the manuscript
b PDB code associated to the ligand
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to the Tanimoto similarity index (Supporting Information 
Table SI4), each  TSMOD molecule was superimposed on the 
most similar reference molecule listed in the training set and 
merged with the associated protein (Supporting Information 
Table SI4). The resulting modeled  TSMOD complexes were 
geometry optimized with the same procedure described for 
the TR preparation. The  TSMOD minimized modeled com-
plexes, separated into keys (the ligands) and locks (the pro-
teins), were then uploaded to the web portal 3d-qsar.com 
in the same dataset containing the TR and marking them as 
test set molecules/complexes to evaluate the predictive abil-
ity of the under developing Py-CoMFA and Py-ComBinE 
models. SB alignment through molecular docking was also 
investigated using either Smina [71] or Plants [72] programs 
with all the available scoring functions. A preliminary dock-
ing assessment protocol proved any of the program/scoring 
function pair not suitable as the TR experimental poses were 
not reproduced with acceptable RMSD errors (Supporting 
Information Table SI6-SI9).

Crystal test set preparation

TSCRY  complexes were treated analogously to TR complexes 
and then uploaded to the web portal 3d-qsar.com to assess 
the developed Py-CoMFA and Py-ComBinE models.

Py‑CoMFA and Py‑ComBinE models generation

By means of the above described TR,  TSMOD and  TSCRY , a 
series of partial least square (PLS) [73] regression models 
were generated and validated through the Py-CoMFA and 
Py-ComBinE web applications (3d-qsar.com).

Py‑CoMFA

To build 3-D QSAR models, the 3d-qsar.com Py-CoMFA 
web app builds-up three models each run with different com-
bination of MIFs: electrostatic (ELE), steric (STE) and both 
ELE and STE (BOTH).

Models’ robustness was evaluated by means of cross-
validation (CV) using either leave-one-out  (CVLOO) or 
leave-some-out  (CVLSO, with 5 random groups and 100 
iterations) methods. ELE and STE MIFs were calculated 
using the TRIPOS force field to reproduce the original 
CoMFA methodology [41, 74]. To check for models 
endowed with acceptable statistical coefficients, prelimi-
nary models were built using the default data pre-treatment 
settings (Supporting Information Table SI10). The models 
were then subjected to a variable pre-treatment optimiza-
tion (VPO), as implemented in Py-CoMFA, varying all 
the data pre-treatment settings (probe types, grid spacing, 
grid extension, dielectric constant, min/max cut-off energy 
value and minimum sigma, Supporting Information Table 

SI10). As the number of settings combinations was in the 
range of about ten billion, random combinations were run 
till no substantial increment of q2 value was reached. The 
best model was checked for any lack of chance correla-
tion using Y-scrambling [75] in conjunction with CV. Still 
within the Py-CoMFA web app, results were analyzed and 
visually inspected as positive and negative contour plots, 
derived from either steric or electrostatic fields in the 
shape of colored polyhedrons as in the original CoMFA. 
Finally, the model predictive ability was assessed with 
the prepared external test sets  (TSMOD and  TSCRY ). As the 
3d-qsar.com allows to build full LB models from scratch 
using SMILES structures and associated bioactivities, Py-
CoMFA models were also tentatively built (see Supporting 
Information), but low statistically endowed models were 
obtained (data not shown) and therefore were not further 
investigated.

Py‑ComBinE

Four type of ligand/protein interactions are implemented 
in the Py-ComBinE app, steric (STE), electrostatic (ELE), 
desolvation (DRY) and hydrogen bond (HB), therefore 
with the key/lock pairs dataset, all the possible 15 com-
binations of ligand/per-residues energetic interactions 
were considered: STE, ELE, DRY, HB and all their pos-
sible combinations (STE + ELE, STE + DRY, STE + HB, 
ELE + DRY, ELE + HB, DRY + HB, STE + ELE + DRY, 
STE + ELE + HB, STE + DRY + HB, ELE + DRY + HB, 
STE + ELE + DRY + HB). Differently from the original 
COMBINE method, the STE, ELE, DRY and HB inter-
action energies were calculated by means of a the using 
the AutoDockTools python utilities using the AutoDock 
4.2 force field [76] directly on the Mpro-inhibitor com-
plexes [43]. The combined interactions were block scaled 
similarly as described by Ortiz et al. [77] The combination 
that led to the model endowed with the highest statistical 
coefficients was then optimized by means of a simulated 
annealing feature selection (SAFS) algorithm as imple-
mented in the Py-ComBinE web app. During all calcula-
tions cross-validation  (CVLOO and  CVLSO) and Y-scram-
bling were used to evaluate model’s robustness and the 
lack of chance correlation, respectively, while the test sets 
were used to evaluate the predictive ability. Py-ComBinE 
model analysis was carried out by means of histogram 
plots and graphical outputs to visually characterize the 
most involved protein residues in modulating biological 
activities.

A final analysis was graphically conducted in UCSF Chi-
mera:  Mpro most involved residues revealed by Py-ComBinE 
analysis were overlapped on Py-CoMFA contour plots for a 
final results’ interpretation.
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Data and software availability

All computation for the 3-D QSAR and COMBINE model 
generation were run on the 3d-qsar.com portal (https:// www. 
3d- qsar. com/) freely available to anyone for not profit usage, 
designed and maintained by the authors. All other used stand 
alone or command line software was free and publicly avail-
able: UCSF Chimera (https:// www. cgl. ucsf. edu/ chime ra/ 
downl oad. html), KCOMBU (https:// pdbj. org/ kcombu/), 
anaconda was used as python environment (https:// www. 
anaco nda. com/ produ cts/ distr ibuti on) with the free and open 
source available libraries (RDKit – https:// www. rdkit. org/; 
OpenMM—https:// openmm. org/ and sci-kit learn—https:// 
scikit- learn. org/ stable/).

The used proteins structure data were available from PDB 
(see Table 1 and Supporting Information Table SI3 for the 
for TR and  TSCRY  PDB IDs). All TSMOD were computed 
starting from SMILES structures and are available in the 
Supporting Information Table SI2.

Results and discussion

Py‑CoMFA model definition

Preliminary models built with the  CVLOO and the default 
settings showed satisfying statistical coefficients (r2 = 0.92, 
q2 = 0.63 for the BOTH-based Py-CoMFA model, Sup-
porting Information Table SI11) with 2 principal compo-
nents (PCs). Through the VPO protocol, more than 1300 
3-D QSAR models were built to reach the optimized model 
characterized by r2 and q2 values up to 0.99 and 0.79, respec-
tively. Among the VPO generated models, those obtained 
with a  sp2 oxygen (O.2, model LB1, Fig. 2) and amidic nitro-
gen (N.am, model LB2) atom probes showed the highest 
statistical results (Table 2). Nevertheless, lower endowed 
statistical coefficients models LB3 and LB4, obtained 
with hydrogen and methyl probes, respectively, were also 
inspected as source of useful data for the subsequent graphi-
cal analysis. In general, the application of the VPO allowed 
to increase the q2 values in the range of 14–25%.

Models LB1 to LB4 were validated for both robustness 
and lack of chance correlation. In particular, cross-valida-
tion by either  CVLOO or  CVLSO methods showed a good 
level of model stability at different degrees of perturbation; 

Fig. 2  Model LB1 recalcu-
lated (blue dots) and internally 
predicted (orange dots,  CVLOO) 
 pIC50s versus experimental val-
ues (Table 2). pAct in the plot 
indicates the  pIC50 as the plot 
was generated within 3d-qsar.
com

https://www.3d-qsar.com/
https://www.3d-qsar.com/
https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
https://pdbj.org/kcombu/
https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
https://www.rdkit.org/
https://openmm.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Y-scrambling (YS) procedure verified the absence of mod-
els’ associated chance correlation, showing always lower 
r2

YS and q2
YS values than those obtained with unscrambled 

data (Table 2).

Py‑CoMFA model graphical interpretation

Evidence of the soundness of LB1 (Table 2) was proved 
by the analysis of the average activity contribution (AAC) 
contour plots, obtained via scalar product among average 
MIFs values and PLS coefficients (Coeffs). More detailed 
information was gained through the inspection of molecules’ 
activity contribution (AC) plots generated by the product of 
individual molecules’ MIFs values by Coeffs. AAC (Fig. 3, 
Supporting Information Figure SI1) and AC plots (Support-
ing Information Figure SI2) indicate either steric or electro-
static areas (in the shape of polyhedrons) around the mol-
ecules that are directly related to the associated biological 
response in a general or specific way, respectively. In order 
to better interpret the models, it is relevant to consider that 
TR compounds were SB aligned and consequently the 3-D 
QSAR grid box virtually embraced the substrate/inhibitor 
binding pocket. Therefore, the 3-D QSAR could be useful 
to correlate inhibitor molecular portions with the P1, P2, 
P3, P4 and P1’ corresponding substrate’s residues (Fig. 3) 
[78, 79].

Previous studies determined substrate specificity pro-
file of SARS-CoV-2  Mpro and revealed it predominantly 
requiring a Gln in P1 position [80–82]. In this regards, a 
γ-lactam portion mimicking substrate’s Gln is recurrent in 
rationally designed compounds [27, 28, 31, 32]. Overlapped 
green and blue polyhedrons (panel A in Fig. 3 and panel 
B in Fig. 3, respectively) encompass P1 most potent com-
pounds γ-lactam methylenes and amidic NH group (panel A 
and B of Supporting Information Figure SI1), suggesting a 
ligand should implement both a similar steric hindrance and 
the hydrogen bond donors (HD) properties. Similarly, red 
polyhedrons (C in Fig. 3 B) around the oxygen of the cyclic 
amide and the associated positive Coeffs indicated to further 
insert at least a hydrogen bond acceptor (HA) feature. At 

the P2 position, leucine is known to be the preferred residue 
[82], thus it is usually retained in designed inhibitors [25, 
28, 31, 32]. However, other hydrophobic residues have been 
reported to influence the inhibitory potency [25, 29, 82]. In 
this region, the 3-D QSAR AAC plots indicate two different 
polyhedrons: a green polyhedron also slightly overlapping 
P1’ (D in Fig. 3 A) and a yellow one that expands towards P4 
position (E in Fig. 3-A). AC plots (Supporting Information 
Figure SI2) were examined to evaluate the activity contribu-
tion of different ring systems in place of the leucine’s isobu-
tyl moiety. In fact, in the modified peptide inhibitors, leucine 
replacement with a cyclohexylalanine (10, 13, 15—Sup-
porting Information Figure SI2) or a phenylalanine (7, 9, 
12—Supporting information Figure SI2) were observed to 
be related to larger green polyhedrons, indicating those resi-
dues to likely produce and extend the positive contribution 
of van der Waals favorable interactions with the  Mpro S2 
pocket (see below the SB results). The insertion of a benzo-
thiazolyl ketone warhead in P1’ as in 17, results in the ori-
entation of the aromatic moiety towards P2 and likely boosts 
steric interactions within S2 (see below at the SB study) as 
correctly predicted by a larger green polyhedron (Supporting 
Information Figure SI2). Furthermore, AC plots (Supporting 
Information Figure SI2) reveal that the size of steric posi-
tive (green) or negative (yellow) polyhedrons (D and E in 
Fig. 3A) correlate with the P2 sidechain orientation (e.g. 4 
and 5—Supporting Information Figure SI2). The insertion 
of a rigid group as a saturated ring system or an unsaturated 
moiety could orientate the sidechain in such a way as to 
avoid E negative contribution but to exploit D positive one.

Regarding electrostatic contributions, around P2 position 
two polyhedrons with opposite contributions overlapped the 
steric D and E ones. Respectively, a blue polyhedron (F in 
Fig. 3B) suggested to favor HA substituents while, on the 
contrary, a red polyhedron that extended towards P4 (G in 
Fig. 3B) indicated to increase HD groups in that area to favor 
biological activity.

In P3, AAC plots and AC plots show a yellow poly-
hedron (F in Fig. 3A) associated with the side chains of 
valine, leucine and O-tert-butyl-threonine (1, 6, 8–13, 

Table 2  VPO optimized 
Py-CoMFA models’ statistical 
results

PC the optimal number of principal components, Probe atom probe used to calculate the MIFs, r2 conven-
tional square correlation coefficient, SDEC standard deviation error of calculation, q2

LOO LOO cross-val-
idation correlation coefficient, q2

LSO LSO cross-validation correlation coefficient—with 5 random groups 
and 100 iterations, SDEPLOO LOO cross-validated standard error of prediction, SDEPLSO LSO cross-
validated standard error of prediction, r2

YS Y-scrambled conventional square correlation coefficient, q.2YS 
Y-scrambled LOO cross-validation correlation coefficient

Model PC Probe r2 SDEC q2
LOO SDEP LOO q2 LSO SDEP LSO r2 YS q2 YS

LB1 2 O.2 0.92 0.30 0.79 0.50 0.76 0.52 0.70 − 0.05
LB2 3 N.am 0.96 0.22 0.74 0.55 0.71 0.58 0.87 − 0.01
LB3 2 H.P 0.92 0.30 0.72 0.57 0.67 0.60 0.81 0.18
LB4 3 C.3.H3 0.97 0.20 0.72 0.57 0.67 0.60 0.89 − 0.21
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18–21—Supporting Information Figure SI2) as well as a 
red electrostatic polyhedron (H in Fig. 3B) around the bulk-
ier groups, labeling steric and HD features as undesirable 
for the potency. P3-P4 capping moieties can exhibit a wide 
variety of functional groups which could magnify binding 
affinity and modulate selectivity and potency of the inhibi-
tors. Unfortunately, these regions were not covered by the 
TR molecules, which predominantly displayed an indole 
group (3, 15, 16, 17) and benzyloxycarbonyl (CBZ) group 
(2, 5–13). These groups were related to a green polyhedron 
(I in Fig. 3B) and many blue polyhedrons (L in Fig. 3A) 
that emphasized the importance to focus on this portion to 
capture additional hydrophobic and hydrogen bond contri-
butions and to improve drug-like properties. Regarding P4 

position, yellow polyhedrons (M in Fig. 3A) covered the 
cyclohexylglycine residue of lesser potent compounds 19 
and 20: larger yellow polyhedrons in the corresponding AC 
plots (Supporting Information Figure SI2) indicated that 
steric hindrance in that area should be avoided and clarified 
the low potency associated to these compounds. Red poly-
hedrons overlapping M (N in Fig. 3B) suggest avoiding HD 
features and eventually prefer HA ones to enhance bioactiv-
ity, while maintaining a reduced steric hindrance. In P1’, 
the explored chemical warheads are α-ketoamides, ketones 
and aldehydes. AAC plots and more specifically AC plots 
associate negative contributions to α-ketoamide warheads 
(yellow polyhedron O in Fig. 3A) and characterized them as 
penalizing for the activity (5, 6 14, 18, 19, 20—Supporting 

Fig. 3  AAC steric (A) and 
electrostatic (B) plots of model 
LB1. The most potent com-
pound 3 is shown (light gray). 
Green and yellow polyhedrons 
depict areas were increased or 
decreased steric bulk may favor 
biological activity, respectively. 
Red and blue polyhedrons 
indicate regions where elec-
tronically involved groups are 
predicted to positively or nega-
tively contribute to the activity, 
respectively. Hydrogen atoms 
are omitted for the sake of clar-
ity. These plots are generated by 
means of USCF Chimera
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Information Figure SI2). Nonetheless, the lack of training 
set chemical warheads diversity could elucidate the poor 
performance of the α-ketoamides warheads instead of alde-
hydes, that were designed at the early stages of lead optimi-
zation, to retain the aldehyde in P1’ and to slightly replace 
other positions (P1—P4) [25, 29]. For these reasons, prefer-
ring an aldehyde instead of any other warhead would be a 
workaround choice, due to practical-synthetic requirements. 
An ideal warhead should be designed to better mimic the 
scissile moiety of the peptidyl substrate or the tetrahedral 
intermediate, it should ensure a proper orientation within 
the subsite and be stabilized by the interactions with oxy-
anion hole residues of the protease (Cys145 and Gly143). A 
noteworthy suitable warhead, the benzothiazolyl ketone unit 
of compound 17, showed a different orientation compared 
to the others and appears to establish favorable steric inter-
actions towards P2 (Supporting Information Figure SI2). 
Regarding electrostatic contributions, a blue polyhedron that 
encounters O (P in Fig. 3-B) associated with negative Coeffs 
suggests to avoid HD groups to enhance potency.

Py‑ComBinE model definition

15 preliminary models were built (SB1-SB15, Table SI12) 
and among them model SB7 (STE.HB) was endowed with 
the highest statistical results (r2 = 0.91, q2 = 0.69). Nonethe-
less, in order to investigate the whole variety of key/lock 
interactions type (STE, ELE, DRY and HB), it was decided 
to focus on the STE.HB.ELE.DRY model that by means 
of the SAFS algorithm was optimized into a Py-ComBinE 
model endowed of r2 and q2 statistical values of 0.90 and 
0.77, respectively (model  SB1SAFS, Table 3, Fig. 4). For 
completeness, the SAFS algorithm was also applied to 
other combinations interactions leading to worse or compa-
rable results  (SB2SAFS-SB3SAFS, Table 3). Thus, to disclose 
as much as possible data and reduce redundancy, model 
 SB1SAFS was herein inspected and discussed.

To assess model’s internal predictive power and robust-
ness, LOO and LSO methods were chosen for cross-vali-
dation, obtaining q2 values of 0.77 and 0.74 respectively, 

with only 2 principal components. These results suggested a 
good internal predictability of the model. Y-scrambling (YS) 
results guaranteed that the correlation between the biologi-
cal data and the independent variable did not result from a 
chance correlation.

Py‑ComBinE model graphical interpretation

Similarly to the above-reported 3-D QSAR analysis, the 
COMBINE models were visually inspected by means of 
two types of plots: the molecule-residue average activity 
contribution (MRAAC), obtained by multiplying the aver-
age molecule-residue interaction values by PLS coefficients 
(Fig.  5) and the molecule-residue activity contribution 
(MRAC) plot, representing the scalar product between the 
individual molecule-residue interaction values multiplied 
and PLS coefficients (Fig. 6). These plots correlate training 
set molecules with biological activity and can aid to indi-
viduate the protein fragments which are more involved in 
modulating the overall ligand/protein interaction. The global 
importance of the interactions can be understood similarly 
to the aforementioned 3-D QSAR models: the positive val-
ues are directly correlated with a favorable interaction and 
consequently enhanced bioactivity; conversely, the negative 
values correlate with decreased biological affinities.

Inspection of the steric MRAAC plots indicated His41, 
Phe140, Leu141 and Gln189 as those residues playing a 
major role in modulating the overall inhibitory potency, 
therefore the interaction with these residues should be 
retained, while low negative values were associated with 
Asn142, Glu166 and Leu167 residues, specifying that the 
ligands’ interaction with them should be lowered to increase 
the potency (Fig. 5).

Regarding the residues mainly involved in hydrogen 
bonds, only His163 turned out to be responsible for a posi-
tive ligand–protein interaction, in fact, a hydrogen bond 
is established for the two most active molecules 3 and 9, 
while the least potent molecules lack of any hydrogen bond 
(Fig. 6). A favorable desolvation interaction was found 
associated to His41, Phe140, Leu141, Ser144, Met165 and 

Table 3  SAFS optimized 
Py-ComBinE models’ statistical 
results

PC: optimal number of principal components; Fields: field or combination of fields used to calculate the 
interactions; r2: conventional square correlation coefficient; SDEC: standard deviation error of calculation; 
q2

LOO: LOO cross-validation correlation coefficient; q2
LSO: LSO cross-validation correlation coefficient—

with 5 random groups and 100 iterations;  SDEPLOO: LOO cross-validated standard error of prediction; 
 SDEPLSO: LSO cross-validated standard error of prediction; r2

YS: Y-scrambled conventional square cor-
relation coefficient; q2

YS: Y-scrambled LOO cross-validation correlation coefficient

Model Interactions LOO LSO YS

r2(PC) SDEC q2 SDEP r2(PC) SDEC q2 SDEP r2 q2

SB1SAFS STE.ELE.DRY.HB 0.90 (2) 0.33 0.77 0.51 0.91 (2) 0.33 0.74 0.54 0.07 0.54
SB2SAFS STE.DRY.HB 0.93 (3) 0.28 0.79 0.48 0.91 (3) 0.31 0.78 0.50 0.16 0.25
SB3SAFS STE.HB 0.92 (3) 0.30 0.78 0.50 0.91 (3) 0.31 0.75 0.52 0.39 -0.68
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Fig. 4  Recalculated (blue dots) 
and  CVLOO predicted (orange 
dots)  pIC50 values versus the 
experimental activities by 
model  SB1SAFS (Table 3). pAct 
in the plot indicates the  pIC50 as 
directly generated by 3d-qsar.
com. The plot was generated 
within 3d-qsar.com

Fig. 5  MRAAC plot of model  SB1SAFS. The most relevant ligand/per-
residue positive or negative energetic interactions are reported: steric 
(STE), electrostatic (ELE), desolvation (DRY) and hydrogen bond 

(HB). Aside the residue numbers in bracket are reported the indica-
tion of the enzyme’ pocket to which each residue belongs
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Thr190 residues, whereas a negative value was only related 
to Asn142 (Fig. 5). Electrostatic interactions were the less 
represented by the model, which identified only a tiny nega-
tive contribution associated with Gln189.

Combination of 3‑D QSAR and COMBINE

Residues associated with the most relevant activity contri-
butions from COMBINE analysis (Fig. 5) were highlighted 
in  Mpro binding site and overlapped with the 3-D QSAR 
maps (Fig. 3) to have a straightforward graphical view of 
the results of each technique (Fig. 7). Despite the different 
approaches of the employed methods (LB and SB), their 
results and indications were in good agreement and syner-
gistically strong supported each other. P1 moiety is deeply 
embedded and stabilized in S1 sub-pocket and according to 
the above discussed results (Fig. 5, panel A and B of Fig. 6), 

the strongest hydrogen-bonding interaction was due to the 
bond between the Gln mimetic group carbonyl oxygen in 
P1 and His163 as part of S1 sub-pocket. The positive green 
polyhedron (A in Fig. 3 A) supported the favorable steric 
contributions of Leu141 and Phe140 (Fig. 5), located at the 
bottom of the cleft (Fig. 7). As a matter of fact, the low 
potent compounds (i.e. 20, 21) lacked of these crucial inter-
actions (panels C and D of Fig. 6). The buried S2 sub-pocket 
usually accommodated P2 substrate leucine side chain, but 
showed to be large enough to tolerate bulkier alkyl or aryl 
moieties to maximize van der Waals interactions [13, 82]. A 
green polyhedron in this area (D in Fig. 3-A) corroborates 
the high positive contribution associated with His41 (Fig. 5). 
The less structured S3 and S4 sub-pockets defined by flex-
ible loops can rearrange upon ligand binding and accommo-
date groups of various size and nature [13, 15, 82]. The yel-
low polyhedron around P3 (F in Fig. 3 A) matched with the 

Fig. 6  MRAC plots of the two most active TR compounds 3 (A) 
and 9 (B) and the two least active TR compounds 20 (C) and 21 (D) 
derived by model  SB1SAFS. The most relevant ligand/per-residue posi-
tive or negative energetic interactions are reported: steric (STE), elec-

trostatic (ELE), desolvation (DRY) and hydrogen bond (HB). Aside 
the residue numbers in bracket are reported the indication of the 
enzyme’ pocket to which each residue belongs
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negative contribution associated with Glu166 in the shallow 
and solvent-exposed S3 pocket (Fig. 5). In S4 small hydro-
phobic pocket, steric green and yellow polyhedrons (I and 
M in Fig. 3 A) fitted well with the results of SB analysis as 
the interaction of ligands with Gln189 and Ala191 positively 
contribute to the activity while the interaction with Leu167, 
at the bottom of the pocket, should be avoided (Fig. 5).

In S1’, Asn142 negative activity contributions were con-
firmed by a yellow polyhedron around P1’ bulky warheads 
(O in panel A of Fig. 3), while a small green polyhedron (Q 
in panel A of Fig. 3) confirmed the favorable contribution 
of interactions with Ser144 (Fig. 5). The red polyhedron in 
the oxyanion hole (C in panel B of Fig. 3) was likely due to 
the hydrogen bonding interactions established anticipating 
the Cys145 nucleophilic attack and the consequent covalent 
adduct formation.

A deep analysis of MRAC plots (Fig. 6) led to the follow-
ing observations. His41 positive activity contribution was 
higher when interacting with electron-rich and bulky P2 side 
chains (panel B of Fig. 6) as compared to smaller moieties 
(panel D of Fig. 6): these data were in good agreement with 
the corresponding AC plots (Supporting Information Figure 
SI2). Gln189 positive contribution was increased by cyclic 
leucine mimetic moieties in P2 (panel C of Fig. 6). On the 
contrary, Leu167 negative contribution was bigger when 
interacting with some of the less potent compounds (panel 
C of Fig. 6) that fitted into S4 and were surrounded by big 
negative polyhedrons in the corresponding area in AC plots. 
About P1’, compounds with a bulky and flexible moiety also 

interacted with Thr25, which negatively contributed to the 
potency (panel C of Fig. 6).

3‑D structure–activity relationship

Given the good agreement among the 3-D QSAR and 
COMBINE models, comprehensive 3-D structure–activ-
ity relationship (SAR) rules could be derived (Fig. 8) by 
combining the above graphical analysis. This led to derive 
a unique SAR as a tool to drive the design of potential new 
anti-coronavirus agents. Moreover, considering the covalent 
to reversible structures conversion the herein models could 
be used to design both types of inhibitors regardless of the 
warhead reactivity.

In P1’ position, neither flexible nor bulky substituents 
seemed to be the best choice to reduce negative contribu-
tions and interaction with Asn142. This could be avoided 
by using less bulky moieties than α-ketoamides, less reac-
tive than aldehydes or that eventually orientate towards S2 
sub-pocket, as for instance the benzothiazolyl ketone unit 
of compound 17. Moreover, as highlighted above, this moi-
ety should not bear an HD feature. In P1 position, the Gln 
mimetic γ-lactam moiety remains the preferred to ensure 
the steric interactions with Leu141 and Phe140 but, to 
further increase van der Waals interactions, the ethylene 
bridge could be properly branched while HA interactions 
(the hydrogen bond between the amide portion and His163) 
should be retained. Concerning P2 position, a bulky hydro-
phobic moiety like phenylalanine could be better tolerated 

Fig. 7  Graphical depiction of 
AAC and MRAAC plots in 
the binding site of compound 
3 (gray)—M.pro minimized 
complex (PDB code = 6XHM). 
Residues are colored depend-
ing on their higher activity 
contribution: green—STE 
positive, yellow—STE negative, 
red—HB positive, orange—
DRY positive (see legend in 
Fig. 5). The image was prepared 
through USCF Chimera
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than the substrate-like leucine since it establishes π-π stack-
ing interactions with His41, although constraining leucine 
in a cyclic unit could improve the interaction with Gln189. 
About P3-P4 capping groups, the indole group ensures the 
steric and electrostatic interactions highlighted by either 
AAC and MRAAC plots: positive interactions with the shal-
low residues Gln189 and Ala191 while avoiding the penal-
izing ones with residues Glu166 and Leu167. Alternatively, 
substitutions on indole or CBZ groups could intensify hydro-
phobic interactions and add up hydrogen bonding interac-
tions. In P3, small-sized groups are preferred over bulky 
ones and in P4 extensive steric and HD features should be 
avoided.

3‑D QSAR and COMBINE predictive ability and their 
combination

Py‑CoMFA model predictive ability evaluation

Considering the satisfactory models’ internal validation, 
the above described  TSMOD and  TSCRY  were used to evalu-
ate model LB1 predictive ability, which was promptly con-
firmed by low errors of prediction in the range 0.01–2.84, 
low absolute average error of prediction (AAEP) of 0.93 and 
a standard deviation error of prediction  (SDEPPRED) of 1.12 
(Table 4, Supporting Information Figure SI3 and SI4). Con-
cerning  TSMOD, LB1 overpredicted low potent compounds 
and underpredicted only a few high potent compounds 
(Supporting Information Figure SI3). Likely, overpredic-
tion was due to the intrinsic alignment assumption that less 
potent compounds adopt conformations that are compara-
ble to those of potent compounds. On the contrary,  TSCRY  

Fig. 8.  3-D SAR derived model for M.pro inhibitors. The most potent 
TR compound 3 is used as template. Circles are color-coded to rep-
resent the main associated steric (favorable green, unfavorable yel-

low) and HB (HD blue, HA red) features. Striped two-colored circles 
account for two features together

Table 4  LB1 and SB1SAFS 
models’ predictive ability. 
SDEPPRED, AAEP values are 
reported. Models’ consensus 
predictivity abilities are also 
included (see main text)

SDEPPRED standard deviation error of prediction, AAEP average absolute error of prediction, Min and 
Max indicate the range of absolute error of predictions

TEST SETS LB1 SB1SAFS CONSENSUS

Total TSMOD TSCRY Total TSMOD TSCRY Total TSMOD TSCRY 

SDEPPRED 1.12 1.16 1.06 1.11 0.87 1.40 0.93 0.85 1.05
AAEP 0.93 1.03 0.78 0.88 0.68 1.16 0.75 0.72 0.82
Min 0.01 0.07 0.01 0.02 0.05 0.02 0.01 0.01 0.01
Max 2.84 1.97 2.84 2.60 2.60 2.52 2.56 2.05 2.56
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predictions trend was better reproduced by LB1 (Supporting 
Information Figure SI4).

Py‑ComBinE model predictive ability evaluation

The external predictivity of  SB1SAFS was verified through 
the  TSMOD and  TSCRY  molecules and gave satisfying abso-
lute errors of prediction in range 0.02–2.60, AAEP of 0.88 
and  SDEPPRED of 1.11 (Table 4, Supporting Information 
Figure SI5 and SI6). SB1 model was more able than LB1 to 
reproduce  TSMOD correct activity trend and returned lower 
AAEP and  SDEPPRED values (Table 4, Supporting Infor-
mation Figure SI5). On the contrary, SB1 was more unre-
liable on  TSCRY  predictions, especially with non-covalent 
subgroup (Supporting Information Figure SI6). Neverthe-
less, the fact that  TSCRY , compiled with experimental poses, 
and  TSMOD, compiled with modeled poses, had comparable 
errors of predictions (Table 4) further supports the reliability 
of the models predictive ability.

3‑D QSAR and COMBINE predictive ability consensus

The good trend of fitting and internal validation results was 
confirmed by globally low absolute average error of pre-
dictions (AAEP) and standard deviation error of prediction 
 (SDEPPRED) of either LB and SB techniques for both  TSOD 
and  TSCRY  external sets (Table 4). To merge the LB1 and 
SB1 models’ predictive power, a linear regression model was 
derived using the predicted activities of  TSMOD and  TSCRY  of 
both models to weight each model importance. Interestingly 
and somehow expected, the consensus model returned lower 
 SDEPPRED and AAEP values of 0.93 and 0.75, respectively 
(Table 4, Fig. 9).

Setting to 1.0  pIC50 as the generically acceptable arbi-
trary threshold value of absolute error of prediction (AEP, 
Fig. 9), the percentage of low error predicted compounds by 
consensus model was 75% (79%  TSMOD and 68%  TSCRY ).

Among the underpredicted compounds, 68  (pIC50 = 7.33) 
and 108  (pIC50 = 7.60) showed the highest errors of predic-
tion (~ 1.7  pIC50). AC and MRAC plots were analyzed and 
revealed that compound 68 did not fill S1 pocket and conse-
quently the diminished van der Waals and HB interactions 
with Phe140, Leu141 and His163 residues led to underes-
timate its  pIC50. On the other hand, 108 had negative steric 
interactions with Asn142 in S1’, Glu166 in S3 and lacked 
favorable HB interaction with His163 in S1 and therefore a 
lower predicted  pIC50 returned (data not shown).

Among the overpredicted compounds, the two low potent 
inhibitors 90  (pIC50 = 4.27) and 111  (pIC50 = 3.86) showed 
the highest errors of prediction (> 2.0  pIC50). Compared 
to the TR molecules, 90 and 111 have different pose and 
chemical scaffolds and lack P1’ and P4 but largely occupy 
S1 and S2 pockets, thus leading to overcalculated van der 

Waals and HB interactions with Phe140, Leu141, His163 
and His41 (data not shown) accounting for their overpre-
dicted  pIC50 values.

In addition, applying a threshold value of 1 μM  IC50 (6.0 
 pIC50), the models classification performance, in terms of 
accuracy, precision and recall metrics [83] (Supporting 
Information Figure SI7), was also inspected (panel A of 
Fig. 10). In both test sets predictions, the consensus model 
showed balanced performances and was able to overcome 
some inaccurate results of the single LB1 and  SB1SAFS 
models.

Noteworthy, the consensus model successfully classified 
as true positive or true negative returning the highest accu-
racy value of 74% for all  TSMOD and  TSCRY  molecules, over-
coming the LB1 low accuracy (68%). Moreover, the consen-
sus model showed high precision (81%) and recall (79%), 
that respectively designate the correctly classified-experi-
mentally active compounds among all the active-labelled 
compounds (positive predicted value) and the correctly 
classified-experimentally active compounds among all the 
experimentally active ones (true positive rate). Regarding 
recall, the analysis of the false-negative molecules revealed 
most of them to have a considerably different scaffold from 
any of the TR compounds as evinced by low Tanimoto simi-
larity index values in the 0.15–0.35 range (Supporting Infor-
mation Table SI8 and Table SI9).

In order to provide more reliable predictions and define 
a model chemical space coverage, its applicability domain 
(AD) was defined by means of a k-nearest neighbors (k-NN) 
approach (see Applicability domain definition in Support-
ing Information) [84–86]. Application of the AD reduced 
the test set from 114 to 60 compounds leading to a definite 
improvement of both models’ predictive statistical param-
eters  (SDEPPRED = 0.68, AAEP = 0.57) and classification 
performances (panel B of Fig. 10) being 90% of them were 
predicted with an AEP < 1.0  pIC50.

Conclusion and perspectives

The ongoing COVID-19 pandemic sorely stretched global 
public health to the limit. Despite the rapidly-developed vac-
cines have been crucial for weakening the most severe impli-
cations of the disease and for reducing the probability of 
infection, emerging variants and the resulting increment of 
breakthrough infections demand the urgent need for specific 
medications against SARS-CoV-2. Since the first SARS-
CoV outbreak in the early 2000s, the  Mpro has been gaining 
more and more attention for its key role in viral replication 
and transcription, thence repurposed drugs and new ration-
ally designed compounds fulfilled  Mpro inhibition strategy.

In this study, consistently selected  Mpro inhibitors were 
used to develop robust and predictive 3-D QSAR and 
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COMBINE models that could greatly assist in rapid virtual 
screenings and in the discovery of new leads. Besides, the 
convergence of 3-D QSAR contour plots and COMBINE 

histograms analysis gave useful insights in characterizing 
relevant features to design new inhibitors by maximizing 
ligand/protein interactions.

Fig. 9  TSMOD (A) and TSCRY (B) consensus model’s errors of prediction, SDEPPRED and AAEP, divided by scaffolds
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Graphical inspection of results led to depict a three-
dimensional (3-D) structure analysis relationship (SAR) 
scheme that could be used as a guideline for the design and 
discovery of new potential  Mpro inhibitors, saving both time 
and financial resources to fight SARS-CoV-2.

As discussed, the predictive ability of the models gave 
convergent statistical values and confirmed models’ feasibil-
ity on either co-crystallized  (TSCRY ) and non-crystallized 
 (TSMOD) compounds. Moreover, once assessed the AD of 
the models, higher predictive performances metrics were 
obtained.

Upon this project completion, a new report disclosed to 
the discovery, characterization and FDA emergency use 
authorization (EUA) of nirmatrelvir, an orally bioavailable 
 Mpro peptidomimetic covalent inhibitor, and some relevant 
analogs. Remarkably, the 3-D SAR above-described were 
in good agreement with the strategy followed by Owen 
et al. [40] In fact, they opted for a benzothiazolyl ketone or 
nitrile unit in P1’ to remove HD; they maintained the native 
glutamine mimicking unit in P1; they broadened steric hin-
drance in P2 constraining the leucine native residue, con-
currently increasing steric interactions and removing the 
HD; finally, they chose small-medium sized units in P3 and 
increased HA in P4.

In conclusion, the LB and SB procedure herein described 
represent a useful tool to design potential new chemical enti-
ties as  Mpro inhibitors to study as broad anti-coronavirus 
agents.
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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