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Abstract
A set of conserved binding sites recognized by a transcription factor is called a motif, which

can be found by many applications of comparative genomics for identifying over-repre-

sented segments. Moreover, when numerous putative motifs are predicted from a collection

of genome-wide data, their similarity data can be represented as a large graph, where these

motifs are connected to one another. However, an efficient clustering algorithm is desired

for clustering the motifs that belong to the same groups and separating the motifs that

belong to different groups, or even deleting an amount of spurious ones. In this work, a new

motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by

parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set

of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from

a ChIP dataset are used to compare the performances of CLIMP and two other high-perfor-

mance algorithms, the results demonstrate that CLIMP mostly outperforms the two algo-

rithms on the three datasets for motif clustering, so that it can be a useful complement of the

clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available

at http://sqzhang.cn/climp.html.

Introduction
The rapid development of new technologies has led to the declining cost of genome sequenc-
ing, and as a result, thousands of genomes are being sequenced [1, 2]. Furthermore, numerous
comparative genomics-based algorithms have been developed in order to decipher the biologi-
cal functions of various sequenced genomes; this can be computed because these biological
functions are encoded and relatively conserved in a group of closely related genomes. More-
over, transcription regulation is usually triggered by the binding of proteins called transcription
factors (TFs) to specific DNA segments known as TF binding sites (TFBSs). Furthermore,
these TFBSs are for the most part predicted by comparing multiple non-coding sequences that
potentially contain the TFBSs. A set of TFBSs recognized by the same TF is called a motif,
which summarizes the commonalities among the binding sites of a TF [3]. Additionally,
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numerous motif-finding algorithms have been designed to identify overrepresented segments
of sequences as potential TFBSs from a set of regulatory regions of some co-regulated genes
with the advent of gene expression profiling technologies (e.g. DNA microarray, SAGE, Tiling
array, and the latest popular RNA-Seq technology [4]) [5–7]. Based on the observation that a
particular TF’s binding sites are relatively conserved in a set of closely related genomes, various
algorithms using the phylogenetic foot-printing technique have been proposed so as to identify
conserved DNA segments as potential TFBSs from the promoters of orthologous genes in a
group of related genomes.

In the last few years, with the development of the next-generation sequencing (NGS) tech-
nologies, more and more genome-wide profiling data of DNA binding proteins are provided
by the ChIP-chip and ChIP-Seq techniques [8–10]. In a TF ChIP dataset, its binding sites are
highly enriched. However, the sequenced segments in a ChIP dataset are much longer than the
ChIP-ed TF binding sites, so peak-calling tools can be employed to identify the binding peaks
in the potential binding regions to cut down each segment to hundreds or thousands of base
pairs (bp) [11]. Then for the constricted regions of the ChIP-ed TF, motif-finding tools are
used to identify its corresponding motifs [12]. Therefore, if all known TFs in a genome have
been ChIP-ed, a lot of motifs of these TFs and their co-factors can be predicted [13].

Frequently, after a certain amount of new putative motifs are obtained, the next step
becomes separating real motifs from spurious ones and clustering real ones into groups so that
grouped motifs belong to the same TF, and accordingly, different groups correspond to differ-
ent TFs. Therefore, two developments are desired: first, a novel metric for measuring the simi-
larity between two motifs and, second, an efficient clustering algorithm for merging motifs of
the same TF family. Many metrics have been proposed for motif comparison. For example, the
sum of squared distances [14, 15], the p-value of Chi-square [16], the average log-likelihood
ratio [17], the average Kullback-Leibler [18], Pearson’s correlation coefficient (PCC) [19],
Asymptotic Covariance [20], the k-mer frequency vector [21], and SPIC [22] have been used
for computing similarities between motifs. A web server STAMP has been built via integrating
the first five metrics and alignment algorithms after assessing them [23, 24]. Recently, all of the
eight metrics were assessed, and the metric SPIC was shown to outperform the others in sepa-
rating relevant motifs from spurious ones [22]. Now, an efficient clustering algorithm is
required for grouping motifs so as to separate real motifs from spurious ones.

Genome-wide motif similarity data are generally represented as a large network or graph,
where great quantities of motifs are joined to one another. In the graph, each node represents a
motif, and the weight of each edge that joins two nodes represents the similarity between the cor-
responding two motifs. A clustering procedure, which aims to identify densely connected sub-
graphs in the similarity graph, is commonly used to group such motifs. Many graph clustering
algorithms have been developed, and a select few have been applied to the motif clustering prob-
lem. Among these algorithms for motif clustering, the most successful one is the MCL (Markov
Clustering) algorithm [25], which was shown to outperform some other clustering algorithms
(i.e., Bayesian clustering [26], Monte Carlo sampling [27], and PhyloNet [15]) in the references
of GLECLUBS [28] and eGLECLUBS [29] as well as in some applications for partitioning protein
interaction graphs [30, 31]. About a year ago, Niu et al. [13] designed a tool called DePCRM to
predict binding sites and cis-regulatory modules of D.melanogaster through integrating a large
number of ChIP datasets; andMCL was expropriated to cluster motifs predicted by a motif find-
ing tool. The MCL algorithm simulates random walks and alternately runs expansion and infla-
tion operations on a node-similarity graph represented by a “Markov”matrix, each of whose
entries represents the transition probability between a pair of nodes. Moreover, AP (Affinity
Propagation) [32] is another famous clustering algorithm that has been used to cluster protein
interaction networks [31] and detect genes in microarray data [32].
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A survey on graph clustering summarized by Schaeffer [33] classified graph clustering
methods into three categories: density-based methods (e.g. k-means and k-center [34]), cut-
based methods (e.g. hierarchical clustering [35] and spectral clustering [36]), and random
walks methods (e.g. MCL). In fact, the main aims of density-based and cut-based methods are
to find maximum cliques and sparsest cuts, respectively, both of which are known to be NP-
hard [37, 38]. Methods, such as k-means, k-center, and expectation maximization (EM) clus-
tering [39] algorithms, keep a relatively small set of estimated cluster centers at each step.
Afterwards, AP improves these algorithms by simultaneously considering all data points as
candidate centers and then gradually merging them to identify clusters. It should also be noted
that both hierarchical clustering and spectral clustering are only capable of dealing with
another type of clustering problem of recursively comparing pairs of data points to partition
the data. However, hierarchical clustering and spectral clustering methods, are not well-suited
to group motifs because two motifs that should not be clustered together may, in fact, be clus-
tered together by a series of pairwise groupings [32]. These applications for both motif similar-
ity graphs and protein interaction graphs encounter the additional problem of not properly
managing a significant level of background noise (e.g. the high similarity score among spurious
motifs). Therefore, in this paper, AP and MCL, which are the best as we know among these
density-based and random walks methods respectively, are selected to make comparisons.

Due to the large-scale collection of similarity data among a large number of motifs produced
from genome-wide prediction as well as the additional problem of handling background noise,
a clustering algorithm that can tolerate mass data is required in order to produce more accurate
results in a short timespan than what is produced by other existing methods. Therefore, in this
paper, we propose a new clustering algorithm called CLIMP (Cluster Cliques of Motifs in Par-
allels with openMP) and demonstrate that it mostly outperforms two outstanding clustering
algorithms, MCL and AP, for large-scale motif similarity graph clustering.

Methods

Motivation and basic idea
The binding sites belonging to a TF may be identified by one or more motif finding tools in
one or more datasets. Motif finding tools are usually designed for finding well-conserved sites
in the upstream sequence set of either a group of co-regulated genes in a genome or a group of
orthologous genes in a set of closely related genomes (i.e., the phylogenetic foot-printing tech-
nique), or in a ChIP dataset of a TF. The binding sites of a TF are often degenerate in a genome
and divergent across related genomes [26, 40, 41]. Due to the degeneration and diversity of the
binding sites of a TF, multiple distinct sub-motifs of the TF may be found by one motif finding
tool through outputting multiple top results or by multiple motif finding tools. For example,
the experimentally verified motif of the TF CRP in E. coli K12 can be classified into at least
three well-conserved sub-motifs; i.e., a canonical palindromic sub-motif, an A-rich sub-motif,
and a T-rich sub-motif although both the latter ones share a certain number of elements with
the canonical one [28]. A report showed that roughly half of 104 distinct mouse DNA binding
proteins each recognized multiple distinctly different sequence motifs when the binding sites
were examined in the mouse ChIP-chip datasets [41]. Furthermore, the binding sites of some
TFs were reported to be always divergent in three different yeast species (S. cerevisae, S.mika-
tae, and S. bayanus) [40]. For example, of the 221 and 255 recognized sites bound in total by
two TFs Ste12 and Tec1, respectively, only 47 (Ste12, 21%) and 50 (Tec1, 20%) sites were con-
served across all three yeast species [40]. So a certain percentage of Ste12 and Tec1’s sites were
conserved across at most two yeast species. Suppose that the entire motifM of a TF can be
divided into k well-conserved sub-motifs {M1,M2, . . .,Mk}. If each well-conserved sub-motif
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Mi is partially or fully predicted many times by one or more motif-finding tools from multiple
sequence sets, a set P(Mi) of predicted motifs corresponding to each sub-motifMi will be
found. If each predicted motif of a sub-motif is treated as a node of a graph, and two predicted
motifs are connected by an edge if their similarity is above a cutoff value, the predicted motif
set P(Mi) of a sub-motifMi are likely to form a clique (i.e., a complete subgraph). Therefore, a
sub-motif can be modelled as a clique of its predicted motifs and a motif composed of k sub-
motifs can be modelled as the mergence of k cliques.

The CLIMP algorithm with parallel computing design
For a set of binding site motifs with their corresponding position frequency matrices and posi-
tion weight matrices, a motif similarity graph is constructed by using the SPIC metric to com-
pute the similarity score between each pair of motifs. In the graph, each node represents a
motif, and two nodes are connected by an edge, whose weight is the similarity score between
the corresponding two motifs, if and only if the similarity score is greater than a preset thresh-
old. More specifically, binding site motifs that belong to the same TF are more likely to form
highly connected sub-graphs with high edge weights in the motif similarity graph than are
those from different TFs or spurious motifs. However, due to the degenerate nature of the
binding sites from the same motif, the similarity between two subsets (called sub-motifs, here)
of a motif may not be significantly high. For this reason, motifs that are very similar to each
other are initially grouped together in order to generate a set of clusters, and then, each of the
remaining motifs is assigned into a cluster if the motif is similar to a large proportion of the
motifs present in a given cluster. Given a motif similarity graph G = (V, E) where V is the set of
nodes and E is the set of edges, the algorithm is separated into four steps as follows.

Step 1: For each node, find a maximal clique associated with it. For a node, a “greedy” strat-
egy is used to find a maximal clique associated with the node. The clique can be regarded as the
cohesion of the node.

The problems of enumerating all the maximal cliques and finding the maximum clique in a
graph are NP-hard [38]. Here, only |V| maximal cliques rather than all the maximal cliques
and the maximum clique in the graph G = (V, E) would be intended to be found, where |V| is
the number of nodes in G. That is, for each given node v, it is intended that a maximal clique
would be found, whose nodes have the closest relationship to v. For this purpose, the neighbor-
hood sub-graph N(v) of a node v is defined as the sub-graph induced by v and its neighbor
nodes. Definitely, all the maximal and maximum cliques containing the node v are in N(v).
Here, for each node v, the neighborhood sub-graph N(v) is extracted from the graph G and a
greedy strategy to find a maximal clique Cv in N(v) is designed as follows:

1. Set Cv = N(v). If Cv is a clique, stop; else the neighbor nodes of v are sorted in ascending
order by the weights of their edges incident to v to get an array U = {u1,u2,. . .,ut}. Go to (b).

2. For each node ui in the array U, ui and its incident edges are sequentially deleted until the
degrees of v and the remaining nodes are identical in Cv. The deleted nodes are labelled as
an array {u1,. . .,uk−1,uk}. Go to (c).

3. For each node uj from uk−1 to u1 in reverse order, if each of the nodes in Cv is joined with uj
by an edge in N(v), update Cv by adding uj and its incident edges {(uj,u):u 2 Cv} into Cv.
Stop.

The finally obtained Cv is called the clique associated with node v. An example of finding a
maximal clique associated with node v in sub-graph N(v) is illustrated in Fig 1. It should be
noted that the clique that is obtained in this step may not be the maximum clique associated
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with v in N(v). Even though the obtained maximal clique may not be a maximum clique, it
remains superior to the maximum clique because its nodes have the closer relationship (higher
similarity) to v than do the nodes in the maximum one.

For each node v, the procedure for finding its associated clique is identical, and the time
complexity is Oðd2

v Þ where dv is its degree. Fortunately, the motif similarity graph is generally
sparse, and the degree dv is usually small. In this step, the “for” loop for clique finding can be
easily parallelized. For example, if the openMP libraries (http://openmp.org) are included in
the program, the routine, “#pragma omp parallel for” is just called before the “for” loop. If k
processes are invoked simultaneously, the time complexity will be reduced to
OðjV j �maxv2Vfd2

vg=kÞ, where |V| is the number of nodes in graph G = (V, E).
Step 2:Merge cliques into clusters. Based on the law of gravity, for two substances, a third

has greater attraction with the heavier one of them if the third has the same distance from the
two substances. Similarly, for two cliques, a third clique has a greater affinity with the bigger
one of them if the third has the same extent of overlap with the two cliques. So a large clique is
more likely to be the core of a cluster than a small one is. In other words, the smaller a clique is,
the more likely it is that its nodes do not belong to the same cluster. Therefore, in this clique
merging step, both the sizes of cliques and the extent of overlapping among cliques are consid-
ered. Initially, all redundant cliques are merged to form unique ones, and then, all unique cli-
ques are sorted in descending order by the sum of edge weights in order to generate a ranked
queue {C1,C2,. . .,Cn}. Subsequently, as shown in Fig 2, the procedure begins from the first larg-
est clique, and for each current unassigned clique, it is set as an initial cluster. Then, any follow-
ing unassigned cliques are successively integrated into the cluster if an unassigned clique has a

Fig 1. An example of finding a maximal clique associated with node v inN(v). (a) Sort the neighbor nodes to get an array {C, D, E, B, A}. (b)
Successively delete the nodesC, D, and E as well as their incident edges from N(v) to getCv until v and the remaining nodes have the same degree. (c) For D
andC, determine if they can be expanded to Cv.

doi:10.1371/journal.pone.0160435.g001
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significant number of duplicated nodes with the current clique. The procedure is finished after
all of the cliques in the queue are assigned.

For two cliques Ci and Cj (i< j), what is the specific rule of merging Cj into Ci’s cluster? If
the (overlap) ratio of the nodes in Cj appearing in Ci is no less than α (i.e., |Ci\Cj|/|Cj|�α) and
in the graph G the ratio of nodes of Cj having adjacent nodes in Ci is no less than β, Cj is merged
into Ci’s cluster; otherwise, nothing is done. Such a process is labeled as ðCi �? CjÞ for a pair of
cliques Ci and Cj (i< j). The parameters α and β (α� β) can be set by users.

This step can also be parallelized by using a pipeline design. For each clique Ci from i = 1 to
n−1, a different processor can be called to run the merging processes ðCi �? CjÞ from j = i+1 to

n. As shown in Fig 3, after running a process ðCi �? CjÞ in processor Pi, if Cj cannot be merged

into Ci, the process ðCiþ1 �? CjÞ in processor Pi+1 and the process ðCi �? Cjþ1Þ in processor Pi
are run simultaneously. Clearly, if only one processor is called, the total number of processes is
no more than 1 + 2 + � � � + (n−1) = (n−1)n/2, but if n processors are simultaneously called, the
asynchronous processes are at most (n−1) + (n−2) = 2n−3, as illustrated in Fig 3.

Step 3: Delete redundant nodes. In the reduced sub-graph of a cluster, for each node the cor-
responding weight sum of edges incident to it in the sub-graph is first calculated. For all clus-
ters, because there is no interaction between each pair when the edge-weight sums of each
node is calculated, this step can be parallelized by separately dealing with the clusters in differ-
ent processors. After that, for each node that appears redundantly in more than one cluster,

Fig 2. An illustration of merging cliques.

doi:10.1371/journal.pone.0160435.g002

Fig 3. Pipeline of space-time diagram.

doi:10.1371/journal.pone.0160435.g003
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only that which has the maximum edge-weight sum is kept, and the redundancies are deleted
from these clusters.

Step 4: Sort clusters. All clusters are sorted in a descending order of edge-weight sums in
order to obtain the final set of ranked clusters. Note that the calculation of each cluster’s edge-
weight sum can also be parallelized.

Among the four steps described in the CLIMP algorithm, the largest computation involves
finding all maximal cliques in Step 1. Since motif similarity graphs are generally sparse and
there is no vector-vector or matrix-matrix multiplication in clique finding, an adjacency list is
used to store such a sparse graph instead of an adjacency matrix in order to reduce graph G’s
storage. In Step 1, for each node v, only a list of its neighbors is required to be reported in O(|
dv|) time, and the neighbors are represented as a sorted array according to edge weight. Finally,
the pseudo-code of the parallel clustering algorithm is shown in Table 1.

Performance assessment
Clearly, an ideal motif clustering algorithm can group two relevant motifs in a cluster in addi-
tion to separating two irrelevant motifs in different clusters. In a perfect motif clustering result,
each cluster should contain exactly one motif, and each motif should also only be located in
exactly one cluster. Form obtained clusters and n given motifs, the ability of a clustering algo-
rithm to recover motifs from a motif similarity graph is evaluated using the Adjusted Rand
Index (ARI) [42] derived from a contingency table (nij)n×m, where each nij represents the num-
ber of objects that are in both motif i and cluster j. Let N be the number of all objects. Let ni•
and n•j be the number of objects in motif i and cluster j, respectively. The formula of the

Table 1. The pseudo-code of CLIMP.

1. Input: Similarity graph G = (V,E);

2. Output: A set of clusters;

3. Parameters: α, β, γ (γ is the cutoff of motif similarity), and number of threads.

4. For (node i = 1. n with step i: = i+1)

5. Open a thread Pi to find a maximal clique Ci associated with i;

6. End for

7. Sort Cliques(C1, C2, . . ., Cn);

8. For each Ci (i = 1. n-1 with step i: = i+1) in a parallel pipeline

9. Open a thread Pi;

10. If Ci is not labeled “merged”, in the thread Pi

11. For each Cj (j = i+1. n with step j: = j+1)

12. If Cj is not labeled “merged”

13. If |Ci\Cj|/|Cj|�α and the ratio of nodes of Cj having adjacent nodes in Ci is no less than β

14. Merge Cj into Ci and label Cj “merged”; (i.e. the process Ci Cj)

15. Else if Ci+1 is not labeled “merged”

16. In the thread Pi+1 to do the process Ci+1 Cj;

17. End if

18. End if

19. End for

20. End if

21. End for

22. Delete redundant nodes;

23. Sort clusters.

doi:10.1371/journal.pone.0160435.t001
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Programs and parameter optimization
The MCL program used in the paper was released on May 17, 2014 (http://micans.org/mcl/src/
mcl-14-137.tar.gz). The AP program was downloaded from Frey Lab’s homepage (http://www.
psi.toronto.edu/affinitypropagation/software/apcluster_linux64.zip). All three clustering pro-
grams (MCL, AP, and CLIMP) were compiled and installed on 64-bit Linux (x86_64). To
ensure a comparison that is as fair as possible among the three clustering algorithms, the values
of the adjustable parameters in CLIMP, MCL, or AP were selected so as to maximize the
Adjusted Rand Index. For the MCL algorithm, we sampled the values of the Inflation parame-
ter from 1.5 to 4.0 in steps of 0.1. For AP, the values of the Reference parameter were sampled
from 0.1 to 1.0 in steps of 0.05. The number of iterations with no change in the clusters that
stop the convergence was set to 1500, the number of maximum iterations to 200,000, and the
damping factor to 0.99. For the CLIMP algorithm, the values of the parameters α and β were
sampled from 0.1 to 0.9 in steps of 0.1, respectively, to form all possible combinations that sat-
isfy α� β. Given the Position Weight Matrices (PWMs) and Position Frequency Matrices
(PFMs) of two motifsM1 andM2, the SPIC metric first usesM1’s column information contents
as a factor to compute the likelihood ofM1’s PWM generatingM2’s PFM and vice versa, then
averages the two likelihood values. The SPIC program including an example was downloaded
from Zhang’s homepage (http://bioinfo.uncc.edu/szhang/app/spic.zip) and the similarity cutoff
values were sampled from 0.4 to 0.7 in steps of 0.05.

Results and Discussion

Parameter selection and performance on motif retrievals
Currently, all motif-finding tools are limited as they can only find the partial binding sites of a
TF; consequently, all TF binding sites always appear as subsets of them. Furthermore, any two
subsets (sub-motifs) of binding sites recognized by the same TF are always highly conserved.
Therefore, a perfect motif clustering algorithm should be able to ensure that each cluster only
contains the binding site motifs of exactly one TF as well as locate each TF’s motifs in exactly
one cluster. Therefore, if the binding sites of a TF are shuffled to generate a series of sub-sets
(sub-motifs), a clustering algorithm is necessarily proposed to test whether these sub-motifs
can then be clustered together again. In order to estimate the parameters of CLIMP and evalu-
ate CLIMP’s performance on grouping sub-motifs from the same motifs together and separat-
ing sub-motifs from different motifs, all non-redundant transcription factor binding sites
(TFBSs), which belong to 593 motif profiles, were first downloaded from the JASPAR core
database Version 5.0 (http://jaspar.genereg.net/html/DOWNLOAD/sites.tar.gz), which is a
collection of experimentally defined TFBSs for eukaryotes [43]; and these motifs are then used
to generate numerous sub-motifs. We used the method described in the paper for evaluating
the SPIC metric [22] to produce artificial sub-motifs. For each motif consisting of n TFBSs, the
motif is randomly divided into two sub-sets (sub-motifs) of sizes k and n−k, respectively, for
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each k = 1,2,. . .,[n/2]. Therefore, 2×[n/2] sub-sets (sub-motifs) can be generated for a motif of
n TFBSs. Moreover, it is obvious that a motif with a greater number of binding sites would nec-
essarily result in a greater number of sub-motifs. In addition, since all motif-finding tools were
designed to find overrepresented segments as predicted binding sites in a set of DNA
sequences, an “overrepresented”motif (i.e., a motif that has more binding sites) is more easily
distinguished by motif-finding tools than a “non-overrepresented”motif (i.e., a motif that has
fewer binding sites). Therefore, a motif of n binding sites is divided into about n sub-motifs.
For the 593 motif profiles, 30,000 sub-motifs are finally obtained. For these sub-motifs, the
SPIC metric is employed to calculate the similarity between each pair.

In addition, two distributions (Fig 4) are plotted in order to determine whether the similar-
ity graph contains clustering properties. In Fig 4, the curve labeled as “all pairs” is the distribu-
tion of the similarity scores between each pair of the 30,000 sub-motifs, and the curve labeled
as “inner pairs” is the distribution of the similarity scores between each pair of sub-motifs
within the same profile. Clearly, the two curves have a small overlapping area. Based on Fig 4, a
similarity score cutoff can be chosen such that as many as possible nodes that represent the
sub-motifs of a particular motif profile are connected, while as many as possible nodes that rep-
resent sub-motifs of different motif profiles are disconnected. Therefore, the SPIC-constructed
similarity graph will have the sparsest edges, whereas the relevant sub-motifs are still likely to
be connected if the similarity score cutoff γ>0.4 as shown in Fig 4. For example, even if γ = 0.6,
83% of the sampled sub-motifs of a motif profile had an “inner pair” similarity score greater
than 0.6, and the graph constructed with 0.6 as the cutoff contained only 1.3% of “all pairs”
possible edges of the motif similarity graph.

After the construction of a motif similarity graph, the clusters produced by each of the three
clustering tools in sub-motif similarity graphs with different cutoff settings are evaluated.
Based on the observation of Fig 5, the optimal similarity score cutoff falls within the range [0.4,

Fig 4. The distributions of motif similarity scores as computed by SPICmetric.

doi:10.1371/journal.pone.0160435.g004
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0.7]. From γ = 0.4 to 0.7 with an interval of 0.05, sub-motif similarity graphs are successively
constructed by keeping all edges with weights of no less than γ. Each of the three tools are used
on each graph with their optimal parameters in order to acquire a set of clusters, and the corre-
sponding adjusted Rand index values are calculated. As shown in Fig 5, each of the three clus-
tering algorithms achieves the highest ARI values at the 0.6 cutoff, and of important notice,
CLIMP outperforms both MCL and AP in these graphs with different cutoffs for clustering
sub-motifs of the same motif and separating sub-motifs belonging to different motifs.

When the similarity score cutoff is 0.6, MCL, AP, and CLIMP are separately used to cluster
the similarity graph with their optimal parameters (i.e., the Inflation parameter value of MCL
is 2.6, the Reference parameter value of AP is 0.55, and (α, β) = (0.5, 0.5) for CLIMP), which
can maximize their adjusted Rand indices. Finally, 1647, 1423, and 1569 clusters are respec-
tively output by CLIMP, MCL, and AP. Clearly, a perfect clustering solution should result in
one cluster corresponding to one motif. To evaluate the correspondence of the motif profiles
and the clusters obtained by each tool, the number of motif profiles recovered by a cluster was
first counted. From which, the majority of them corresponded to exactly one motif profile. For
CLIMP, 62% of the clusters each contain only one motif profile, while the percentage is 56% in
the MCL’s clusters and 51% in the AP’s clusters. Conversely, the number of obtained clusters
that each motif profile’s sub-motifs are located in was also counted. The majority of the 593
known motif profiles were clustered into one cluster. For CLIMP, 45% of the motifs were
located in exactly one cluster, while the corresponding percentages are 47% and 48% for MCL
and AP, respectively.

Performance on identifying true motifs from putative motifs
A genome-wide phylogenetic foot-printing dataset of yeast was downloaded fromMotifClick’s
website (http://motifclick.uncc.edu/yeast_intergenic_seq_sets.tar.gz) [44]. The dataset is com-
posed of 5,137 intergenic sequence sets of orthologous genes from the target genome

Fig 5. ARI values. The adjusted Rand index values at different motif similarity cutoffs for the three clustering algorithms.

doi:10.1371/journal.pone.0160435.g005
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Saccharomyces (S.) cerevisiae and 6 reference genomes (S. castellii, S. bayanus, S. kluyveri, S.
mikatae, S. kudriavzevii, and S. paradoxus). More specifically, orthologous genes between two
genomes were predicted by the bidirectional best hits (BDBH) method using BLASTP with an
E-value cutoff of 10−20 for both searches. Then, for each group of orthologous genes in the
seven genomes, up to 1,000 bases upstream inter-genic region of each gene were extracted to
form an orthologous sequence set. Finally 5,137 orthologous sequence sets each containing at
least three sequences were obtained. As illustrated in the MotifClick paper [44], the motif
length is set as eight bases, and three performance-outstanding motif-finding tools, MotifClick
[44], MEME [45], and BioProspector [46], are separately run in the ‘anr’mode if available to
output the top 10 motifs on each of the 5,137 sequence sets. As a result, approximately 150,000
putative motifs, which contain 122 known TF motifs of S. cerevisiae in both the YEASTRACT
database (http://www.yeastract.com/download/TFConsensusList_20130918.Transfac.gz) [47]
and the Saccharomyces Genome Database (SGD) (http://downloads.yeastgenome.org/
published_datasets/MacIsaac_2006_PMID_16522208/) [48], are obtained. Based on the fact
that a TF can regulate multiple genes and a real motif is more likely to be predicted by multiple
motif-finding tools than any spurious one, a real motif belonging to the same TF could be gath-
ered in a set of similar putative predicted motifs. MCL, AP, and CLIMP are then tested to clus-
ter these putative motifs to see whether or not the clusters that contain a majority of the 122
known motifs rank high on the cluster list.

At first, the SPIC metric is utilized to compute the similarity between each pair of these
putative motifs, and the cutoff is chosen as 0.6 based on the analysis in the first experiment in
order to generate a motif similarity graph with 145,581 nodes and 34,413,340 edges. The three
clustering algorithms with their optimal parameters in the first experiment (i.e., the Inflation
parameter value of MCL is 2.6, the Reference parameter value of AP is 0.55, and (α, β) = (0.5,
0.5) for CLIMP) are successively run on the resulting motif similarity graph. We say a putative
motif recovering a true motif if the sites of the target genome in the putative motif are binding
sites of the true motif. As shown in Fig 6(A), the top 130 clusters of CLIMP recover 104
(85.2%) of the total 122 motifs, whereas the top 130 clusters of MCL and AP only recover 92
(75.4%) and 90 (73.8%) of the 122 motifs, respectively. After the 130th cluster, the motif recov-
ery rate of CLIMP’s clusters increases at a more gradual rate than do MCL’s and AP’s motif

Fig 6. Evaluation of the three clustering algorithms in a phylogenetic foot-printing dataset.Cumulative numbers of recovered known motifs (A) and
putative motifs (B) of the yeast phylogenetic foot-printing dataset in the top-ranked clusters produced by MCL, AP, and CLIMP, respectively.

doi:10.1371/journal.pone.0160435.g006
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recovery rates. In other words, compared to both MCL’s clusters and AP’s clusters, the motif
recovery rate of CLIMP’s clusters is becoming more highly saturated after the 130th cluster,
and the CLIMP’s clusters that contain known motifs rank higher on the sequence of the top
130 clusters than do MCL’s and AP’s. Clearly, the top ranked clusters contain more known
motifs than low ranked ones. Note that those clusters that do not contain any known motif
might be novel ones. Specially, CLIMP’s clusters essentially achieve the saturated condition in
the 200th cluster, which is consistent with the number of transcription-related proteins in the
DBD database [49] and two references [50, 51]. Furthermore, Fig 6(B) shows that CLIMP’s
clusters contain less cumulative putative motifs than AP’s and MCL’s; therefore, CLIMP can
filter out more spurious motifs than the other clustering algorithms.

Performance on clustering motifs for ChIP datasets
In DePCRM [13], which is a tool for de novo prediction of cis-regulatory elements (CREs) and
modules from ChIP datasets in an eukaryote, 168 ChIP datasets of 56 TFs from Drosophila
melanogaster were collected from the Berkeley drosophila transcription network project
(BDTNP) [52], the modENCODE project [53], and literature. The majority of the binding
peaks in these datasets have a length of around 1,000 bp. In the binding peaks of each ChIP
dataset, DREME [54] was selected in DePCRM to identify all possible motifs. Finally, a total of
17,890 putative motifs containing 35,359,819 putative CREs were identified in 162 datasets of
the 168 ChIP datasets (6 low-quality datasets were removed). Clearly, the vast majority of the
putative motifs found in the datasets are spurious predictions. The TOMTOMmotif compari-
son tool (http://mccb.umassmed.edu/meme/cgi-bin/tomtom.cgi) was used to compare putative
motifs with the known motifs of D.melanogaster in the Redfly v3.0 [55], FlyFactorSurvey [56]
and FlyReg [57] databases. For each of the 17,890 putative motifs, we say it is likely a true motif
if it is highly similar to known motifs in D.melanogaster at p<0.001. After doing the compari-
sons using TOMTOM, we found that the 17,890 putative motifs cover 144 known true motifs
of D.melanogaster with p<0.001.

Similar to the first experiment, MCL, AP, and CLIMP are tested to cluster the 17,890 puta-
tive motifs to see whether or not the clusters that hit known true motifs rank high on the cluster
list. At first, we construct a motif similarity graph using the putative motifs as nodes and link-
ing any two motifs by an edge if their SPIC metric score is no less than a preset cutoff γ. Based
on the analysis in the first experiment, the motif similarity score cutoff γ is set as 0.6, and the
three clustering algorithms with the parameters that are the same as in the first experiment
(i.e., the Inflation parameter value of MCL is 2.6, the Reference parameter value of AP is 0.55,
and (α, β) = (0.5, 0.5) for CLIMP) are successively run on the resulting motif similarity graph.
As shown in Fig 7(A), in most cases (up to the top 160 ranked clusters), CLIMP cumulatively
recovers more known motifs than AP and MCL. Furthermore, as shown in Fig 7(B), CLIMP’s
ranked clusters contain less cumulative putative motifs than AP’s and MCL’s. Consequently,
CLIMP can filter out more spurious motifs than the other two clustering algorithms.

Computational speeds
Without parallel computing design, MCL is the fastest program among the three evaluated
clustering algorithms. For sparse or small graphs, the running times of the three algorithms are
acceptable. Since there is not an available parallel version of AP, the computational speeds of
CLIMP are compared to MCL on a workstation with Intel Xeon E5 CPUs. When CLIMP and
MCL were run on the aforementioned graph with 145,581 nodes and 34,413,340 edges (the
similarity score cutoff was set as 0.6) in the section of evaluating the yeast phylogenetic foot-
printing dataset, MCL requires three hours wall-clock time with one thread; in contrast,

CLIMP: Clustering Cliques of Motifs in Parallels

PLOS ONE | DOI:10.1371/journal.pone.0160435 August 3, 2016 12 / 17

http://mccb.umassmed.edu/meme/cgi-bin/tomtom.cgi


CLIMP requires twelve hours wall-clock time with one thread, and its running time is reduced
to about three hours if ten processes are called. Therefore, it is necessary for CLIMP to speed
up by parallelizing its program.

For further comparison, 2,000 nodes are randomly selected from the 145,581 nodes (motifs)
in the section of the yeast dataset when different similarity score cutoffs were selected from
0.10 to 0.95 in steps of 0.05, so a series of motif similarity graphs are constructed with different
graph densities (the density of a graph is defined as the number of edges divided by the number
of nodes). Single process and four processes are called respectively by CLIMP and MCL on
these constructed graphs with different densities. The running times are plotted in Fig 8, which

Fig 7. Evaluation of the three clustering algorithms in a ChIP dataset. Cumulative numbers of recovered knownmotifs (A) and putative motifs (B) of the
ChIP datasets in the top-ranked clusters produced by MCL, AP, and CLIMP, respectively.

doi:10.1371/journal.pone.0160435.g007

Fig 8. Running time statistics. The running times of CLIMP and MCL on graphs with different densities with
either one or four threads.

doi:10.1371/journal.pone.0160435.g008
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shows that CLIMP’s running time is acceptable if enough processes (threads) are called; how-
ever, in most cases, CLIMP is slower than MCL because CLIMP is a heuristic enumeration
algorithm with time complexity OðjV j �maxv2Vfd2

vgÞ while MCL is a stochastic flow simulation
algorithm with time complexity O(|V|2). If a graph is very sparse, CLIMP runs faster than
MCL. But if the graph is dense, MCL runs faster than CLIMP, but the computational speed of
CLIMP can be improved by using more computer nodes.

Conclusions and Availability
In the paper, a new efficient clustering algorithm is proposed for large-scale motif clustering,
which can be a complement of MCL and AP in some genome-wide motif prediction pipelines
such as GLECLUBS [28], eGLECLUBS [29], and DePCRM [13]. The C++ source code paralle-
lized with openMP, the three datasets used in this article, and a web server of CLIMP are pub-
licly available at http://sqzhang.cn/climp.html.

Acknowledgments
We would like to thank Rui Zhang for setting up the web server and Kristina Ehrhardt for criti-
cal reading of the manuscript.

Author Contributions

Conceived and designed the experiments: SZ.

Performed the experiments: SZ.

Analyzed the data: SZ YC.

Contributed reagents/materials/analysis tools: SZ YC.

Wrote the paper: SZ YC.

Designed the web server: SZ.

References
1. Sundquist A, Ronaghi M, Tang H, Pevzner P, Batzoglou S. Whole-genome sequencing and assembly

with high-throughput, short-read technologies. PLoS One. 2007; 2(5):e484. PMID: 17534434.

2. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008; 24
(3):133–41. PMID: 18262675. doi: 10.1016/j.tig.2007.12.007

3. Stormo GD. DNA binding sites: representation and discovery. Bioinformatics. 2000; 16(1):16–23. doi:
10.1093/bioinformatics/16.1.16 PMID: 10812473

4. Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, et al. Annotating genomes with mas-
sive-scale RNA sequencing. Genome Biol. 2008; 9(12):R175. Epub 2008/12/18. doi: 10.1186/gb-2008-
9-12-r175 PMID: 19087247; PubMed Central PMCID: PMCPmc2646279.

5. Das MK, Dai HK. A survey of DNAmotif finding algorithms. BMC Bioinformatics. 2007; 8 Suppl 7:S21.
PMID: 18047721.

6. GuhaThakurta D. Computational identification of transcriptional regulatory elements in DNA sequence.
Nucleic Acids Res. 2006; 34(12):3585–98. PMID: 16855295.

7. Weirauch MT, Cote A, Norel R, Annala M, Zhao Y, Riley TR, et al. Evaluation of methods for modeling
transcription factor sequence specificity. Nat Biotech. 2013; 31(2):126–34. doi: 10.1038/nbt.2486 http://
www.nature.com/nbt/journal/v31/n2/abs/nbt.2486.html#supplementary-information.

8. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interac-
tions. Science. 2007; 316(5830):1497–502. PMID: 17540862

9. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, et al. Genome-wide profiles of STAT1
DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Meth-
ods. 2007; 4(8):651–7. Epub 2007/06/15. doi: 10.1038/nmeth1068 PMID: 17558387.

CLIMP: Clustering Cliques of Motifs in Parallels

PLOS ONE | DOI:10.1371/journal.pone.0160435 August 3, 2016 14 / 17

http://sqzhang.cn/climp.html
http://www.ncbi.nlm.nih.gov/pubmed/17534434
http://www.ncbi.nlm.nih.gov/pubmed/18262675
http://dx.doi.org/10.1016/j.tig.2007.12.007
http://dx.doi.org/10.1093/bioinformatics/16.1.16
http://www.ncbi.nlm.nih.gov/pubmed/10812473
http://dx.doi.org/10.1186/gb-2008-9-12-r175
http://dx.doi.org/10.1186/gb-2008-9-12-r175
http://www.ncbi.nlm.nih.gov/pubmed/19087247
http://www.ncbi.nlm.nih.gov/pubmed/18047721
http://www.ncbi.nlm.nih.gov/pubmed/16855295
http://dx.doi.org/10.1038/nbt.2486
http://www.nature.com/nbt/journal/v31/n2/abs/nbt.2486.html#supplementary-information
http://www.nature.com/nbt/journal/v31/n2/abs/nbt.2486.html#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/17540862
http://dx.doi.org/10.1038/nmeth1068
http://www.ncbi.nlm.nih.gov/pubmed/17558387


10. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with
the core transcriptional network in embryonic stem cells. Cell. 2008; 133(6):1106–17. Epub 2008/06/
17. doi: 10.1016/j.cell.2008.04.043 PMID: 18555785.

11. Elo LL, Kallio A, Laajala TD, Hawkins RD, Korpelainen E, Aittokallio T. Optimized detection of transcrip-
tion factor-binding sites in ChIP-seq experiments. Nucleic Acids Research. 2012; 40(1):e1–e. doi: 10.
1093/nar/gkr839 PMID: PMC3245948.

12. Kim H, Kim J, Selby H, Gao D, Tong T, Lip Phang T, et al. A short survey of computational analysis
methods in analysing ChIP-seq data. Human Genomics. 2011; 5(2):117–23. doi: 10.1186/1479-7364-
5-2-117 PMID: PMC3525234.

13. Niu M, Tabari ES, Su Z. De novo prediction of cis-regulatory elements and modules through integrative
analysis of a large number of ChIP datasets. BMCGenomics. 2014; 15:1047. Epub 2014/12/03. doi:
10.1186/1471-2164-15-1047 PMID: 25442502; PubMed Central PMCID: PMCPmc4265420.

14. Sandelin A, WassermanWW. Constrained binding site diversity within families of transcription factors
enhances pattern discovery bioinformatics. J Mol Biol. 2004; 338(2):207–15. PMID: 15066426.

15. Wang T, Stormo GD. Identifying the conserved network of cis-regulatory sites of a eukaryotic genome.
Proc Natl Acad Sci U S A. 2005; 102(48):17400–5. PMID: 16301543.

16. Schones DE, Sumazin P, Zhang MQ. Similarity of position frequency matrices for transcription factor
binding sites. Bioinformatics. 2005; 21(3):307–13. PMID: 15319260.

17. Wang T, Stormo GD. Combining phylogenetic data with co-regulated genes to identify regulatory
motifs. Bioinformatics. 2003; 19(18):2369–80. PMID: 14668220.

18. Kullback S, Leibler RA. On Information and Sufficiency. Ann Math Statist 1951; 22(1):79–86.

19. Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-align-
ments. Nucleic Acids Res. 1996; 24(19):3836–45. PMID: 8871566.

20. Pape UJ, Rahmann S, Vingron M. Natural similarity measures between position frequency matrices
with an application to clustering. Bioinformatics. 2008; 24(3):350–7. PMID: 18174183. doi: 10.1093/
bioinformatics/btm610

21. Xu M, Su Z. A novel alignment-free method for comparing transcription factor binding site motifs. PLoS
One. 2010; 5(1):e8797. PMID: 20098703. doi: 10.1371/journal.pone.0008797

22. Zhang S, Zhou X, Du C, Su Z. SPIC: A novel similarity metric for comparing transcription factor binding
site motifs based on information contents. BMC Syst Biol. 2013; 7 Suppl 2:S14. Epub 2014/02/26. doi:
10.1186/1752-0509-7-s2-s14 PMID: 24564945; PubMed Central PMCID: PMCPmc3866262.

23. Mahony S, Auron PE, Benos PV. DNA familial binding profiles made easy: comparison of various motif
alignment and clustering strategies. PLoS Comput Biol. 2007; 3(3):e61. PMID: 17397256.

24. Mahony S, Benos PV. STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids
Res. 2007; 35(Web Server issue):W253–8. PMID: 17478497.

25. van Dongen S. Graph clustering by flow simulation [PhD thesis]: University of Utrecht; 2000.

26. Qin ZS, McCue LA, ThompsonW, Mayerhofer L, Lawrence CE, Liu JS. Identification of co-regulated
genes through Bayesian clustering of predicted regulatory binding sites. 2003; 21:435–9. PMID:
12627170

27. van Nimwegen E, Zavolan M, Rajewsky N, Siggia ED. Probabilistic clustering of sequences: inferring
new bacterial regulons by comparative genomics. Proc Natl Acad Sci U S A. 2002; 99(11):7323–8.
PMID: 12032281.

28. Zhang S, Xu M, Li S, Su Z. Genome-wide de novo prediction of cis-regulatory binding sites in prokary-
otes. Nucleic Acids Res. 2009; 37(10):e72. PMID: 19383880. doi: 10.1093/nar/gkp248

29. Zhang S, Li S, Pham PT, Su Z. Simultaneous prediction of transcription factor binding sites in a group
of prokaryotic genomes. BMC Bioinformatics. 2010; 11:397. PMID: 20653963. doi: 10.1186/1471-
2105-11-397

30. Brohee S, van Helden J. Evaluation of clustering algorithms for protein-protein interaction networks.
BMC Bioinformatics. 2006; 7(488):488. PMID: 17087821.

31. Vlasblom J, Wodak SJ. Markov clustering versus affinity propagation for the partitioning of protein inter-
action graphs. BMC Bioinformatics. 2009; 10(99):99. PMID: 19331680.

32. Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007; 315
(5814):972–6. PMID: 17218491.

33. Schaeffer SE. Graph clustering. Computer Science Review. 2007; 1(1):27–64. http://dx.doi.org/10.
1016/j.cosrev.2007.05.001.

34. MacQueen J, editor Somemethods for classification and analysis of multivariate observations. the Fifth
Berkeley Symposium on Math, Statistics, and Probability; 1967.

CLIMP: Clustering Cliques of Motifs in Parallels

PLOS ONE | DOI:10.1371/journal.pone.0160435 August 3, 2016 15 / 17

http://dx.doi.org/10.1016/j.cell.2008.04.043
http://www.ncbi.nlm.nih.gov/pubmed/18555785
http://dx.doi.org/10.1093/nar/gkr839
http://dx.doi.org/10.1093/nar/gkr839
http://www.ncbi.nlm.nih.gov/pubmed/PMC3245948
http://dx.doi.org/10.1186/1479-7364-5-2-117
http://dx.doi.org/10.1186/1479-7364-5-2-117
http://www.ncbi.nlm.nih.gov/pubmed/PMC3525234
http://dx.doi.org/10.1186/1471-2164-15-1047
http://www.ncbi.nlm.nih.gov/pubmed/25442502
http://www.ncbi.nlm.nih.gov/pubmed/15066426
http://www.ncbi.nlm.nih.gov/pubmed/16301543
http://www.ncbi.nlm.nih.gov/pubmed/15319260
http://www.ncbi.nlm.nih.gov/pubmed/14668220
http://www.ncbi.nlm.nih.gov/pubmed/8871566
http://www.ncbi.nlm.nih.gov/pubmed/18174183
http://dx.doi.org/10.1093/bioinformatics/btm610
http://dx.doi.org/10.1093/bioinformatics/btm610
http://www.ncbi.nlm.nih.gov/pubmed/20098703
http://dx.doi.org/10.1371/journal.pone.0008797
http://dx.doi.org/10.1186/1752-0509-7-s2-s14
http://www.ncbi.nlm.nih.gov/pubmed/24564945
http://www.ncbi.nlm.nih.gov/pubmed/17397256
http://www.ncbi.nlm.nih.gov/pubmed/17478497
http://www.ncbi.nlm.nih.gov/pubmed/12627170
http://www.ncbi.nlm.nih.gov/pubmed/12032281
http://www.ncbi.nlm.nih.gov/pubmed/19383880
http://dx.doi.org/10.1093/nar/gkp248
http://www.ncbi.nlm.nih.gov/pubmed/20653963
http://dx.doi.org/10.1186/1471-2105-11-397
http://dx.doi.org/10.1186/1471-2105-11-397
http://www.ncbi.nlm.nih.gov/pubmed/17087821
http://www.ncbi.nlm.nih.gov/pubmed/19331680
http://www.ncbi.nlm.nih.gov/pubmed/17218491
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001


35. Sokal RR, Michener CD. A statistical method for evaluateing systematic relations. University of Kansas
Ccientific Bulletin. 1958; 28 1409–38.

36. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2000; 22(8):888–905.

37. Matula DW, Shahrokhi F. Sparsest cuts and bottlenecks in graphs. Discrete Applied Mathematics.
1990; 27(1–2):113–23.

38. Karp RM. Reducibility Among Combinatorial Problems. Complexity of Computer Computations. Miller
R. E. and Thatcher J. W. New York: Plenum; 1972. p. 85–103.

39. Muller RU, Kubie JL. The effects of changes in the environment on the spatial firing of hippocampal
complex-spike cells. Journal of Neuroscience. 1987; 7(7):1951–68. PMID: 3612226

40. Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus MR, et al. Divergence of tran-
scription factor binding sites across related yeast species. Science. 2007; 317(5839):815–9. Epub
2007/08/11. doi: 10.1126/science.1140748 PMID: 17690298.

41. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, et al. Diversity and Complexity
in DNA Recognition by Transcription Factors. Science (New York, NY). 2009; 324(5935):1720–3. doi:
10.1126/science.1162327 PMID: PMC2905877.

42. Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985; 2(1):193–218.

43. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, et al. JASPAR 2010: the
greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res.
2010; 38(Database issue):D105–10. PMID: 19906716. doi: 10.1093/nar/gkp950

44. Zhang S, Li S, Niu M, Pham PT, Su Z. MotifClick: prediction of cis-regulatory binding sites via merging
cliques. BMC Bioinformatics. 2011; 12:238. Epub 2011/06/18. doi: 10.1186/1471-2105-12-238 PMID:
21679436; PubMed Central PMCID: PMCPmc3225181.

45. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopoly-
mers. Proc Int Conf Intell Syst Mol Biol. 1994; 2:28–36. PMID: 7584402.

46. Liu X, Brutlag DL, Liu JS, editors. BioProspector: discovering conserved DNAmotifs in upstream regu-
latory regions of co-expressed genes. Pac Symp Biocomput; 2001.

47. Teixeira MC, Monteiro PT, Guerreiro JF, Goncalves JP, Mira NP, dos Santos SC, et al. The YEAS-
TRACT database: an upgraded information system for the analysis of gene and genomic transcription
regulation in Saccharomyces cerevisiae. Nucleic Acids Res. 2014; 42(Database issue):D161–6. Epub
2013/10/31. doi: 10.1093/nar/gkt1015 PMID: 24170807.

48. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces
Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2012; 40(Database
issue):D700–5. Epub 2011/11/24. doi: 10.1093/nar/gkr1029 PMID: 22110037; PubMed Central
PMCID: PMCPmc3245034.

49. Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA. DBD—taxonomically broad transcription
factor predictions: new content and functionality. Nucleic Acids Res. 2008; 36(Database issue):D88–
92. PMID: 18073188.

50. Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, et al. A comprehensive geno-
mic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell. 2011; 41
(4):480–92. Epub 2011/02/19. doi: 10.1016/j.molcel.2011.01.015 PMID: 21329885; PubMed Central
PMCID: PMCPmc3057419.

51. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E. An improvedmap of con-
served regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics. 2006; 7:113. Epub 2006/
03/09. doi: 10.1186/1471-2105-7-113 PMID: 16522208; PubMed Central PMCID: PMCPmc1435934.

52. Li X-y, MacArthur S, Bourgon R, Nix D, Pollard DA, Iyer VN, et al. Transcription Factors Bind Thou-
sands of Active and Inactive Regions in the Drosophila Blastoderm. PLoS Biology. 2008; 6(2):e27. doi:
10.1371/journal.pbio.0060027 PMID: PMC2235902.

53. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, et al. Identification of functional ele-
ments and regulatory circuits by Drosophila modENCODE. Science. 2010; 330(6012):1787–97. Epub
2010/12/24. doi: 10.1126/science.1198374 PMID: 21177974; PubMed Central PMCID:
PMCPmc3192495.

54. Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics. 2011; 27
(12):1653–9. doi: 10.1093/bioinformatics/btr261 PMID: PMC3106199.

55. Gallo SM, Gerrard DT, Miner D, Simich M, Des Soye B, Bergman CM, et al. REDfly v3.0: toward a com-
prehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res. 2011; 39
(Database issue):D118–23. Epub 2010/10/23. doi: 10.1093/nar/gkq999 PMID: 20965965; PubMed
Central PMCID: PMCPmc3013816.

CLIMP: Clustering Cliques of Motifs in Parallels

PLOS ONE | DOI:10.1371/journal.pone.0160435 August 3, 2016 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/3612226
http://dx.doi.org/10.1126/science.1140748
http://www.ncbi.nlm.nih.gov/pubmed/17690298
http://dx.doi.org/10.1126/science.1162327
http://www.ncbi.nlm.nih.gov/pubmed/PMC2905877
http://www.ncbi.nlm.nih.gov/pubmed/19906716
http://dx.doi.org/10.1093/nar/gkp950
http://dx.doi.org/10.1186/1471-2105-12-238
http://www.ncbi.nlm.nih.gov/pubmed/21679436
http://www.ncbi.nlm.nih.gov/pubmed/7584402
http://dx.doi.org/10.1093/nar/gkt1015
http://www.ncbi.nlm.nih.gov/pubmed/24170807
http://dx.doi.org/10.1093/nar/gkr1029
http://www.ncbi.nlm.nih.gov/pubmed/22110037
http://www.ncbi.nlm.nih.gov/pubmed/18073188
http://dx.doi.org/10.1016/j.molcel.2011.01.015
http://www.ncbi.nlm.nih.gov/pubmed/21329885
http://dx.doi.org/10.1186/1471-2105-7-113
http://www.ncbi.nlm.nih.gov/pubmed/16522208
http://dx.doi.org/10.1371/journal.pbio.0060027
http://www.ncbi.nlm.nih.gov/pubmed/PMC2235902
http://dx.doi.org/10.1126/science.1198374
http://www.ncbi.nlm.nih.gov/pubmed/21177974
http://dx.doi.org/10.1093/bioinformatics/btr261
http://www.ncbi.nlm.nih.gov/pubmed/PMC3106199
http://dx.doi.org/10.1093/nar/gkq999
http://www.ncbi.nlm.nih.gov/pubmed/20965965


56. Zhu LJ, Christensen RG, Kazemian M, Hull CJ, EnuamehMS, Basciotta MD, et al. FlyFactorSurvey: a
database of Drosophila transcription factor binding specificities determined using the bacterial one-
hybrid system. Nucleic Acids Research. 2011; 39(Database issue):D111–D7. doi: 10.1093/nar/gkq858
PMID: PMC3013762.

57. Bergman CM, Carlson JW, Celniker SE. Drosophila DNase I footprint database: a systematic genome
annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster. Bioinformatics.
2005; 21(8):1747–9. Epub 2004/12/02. doi: 10.1093/bioinformatics/bti173 PMID: 15572468.

CLIMP: Clustering Cliques of Motifs in Parallels

PLOS ONE | DOI:10.1371/journal.pone.0160435 August 3, 2016 17 / 17

http://dx.doi.org/10.1093/nar/gkq858
http://www.ncbi.nlm.nih.gov/pubmed/PMC3013762
http://dx.doi.org/10.1093/bioinformatics/bti173
http://www.ncbi.nlm.nih.gov/pubmed/15572468

