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Abstract

We study the dynamic and static input–output behavior of several primitive genetic interactions and their effect on the
performance of a genetic signal differentiator. In a simplified design, several requirements for the linearity and time-scales
of processes like transcription, translation and competitive promoter binding were introduced. By experimentally probing
simple genetic constructs in a cell-free experimental environment and fitting semi-mechanistic models to these data, we
show that some of these requirements can be verified, while others are only met with reservations in certain operational
regimes. Analyzing the linearized model of the resulting genetic network, we conclude that it approximates a differentiator
with relative degree one. Taking also the discovered nonlinearities into account and using a describing function approach,
we further determine the particular frequency and amplitude ranges where the genetic differentiator can be expected to
behave as such.
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1. Introduction

The systematic design of functional genetic circuits is one of
the key challenges in the field of synthetic biology. Usually, the
goal is to add a desired function to a cellular organism. As the
complexity of these functions has been increasing steadily (1),
it becomes increasingly difficult to design the topology of the
genetic network and decide what kind of genetic interactions to
use. One way to approach this synthesis problem is by adapting
methods from the fields of systems and control theory (2), e.g.
by starting with a description of the desired part as a linear
transfer function, finding the necessary fundamental input/out-
put (I/O) functions which realize this transfer function and then
realizing the evolving network topology with primitive genetic
interactions. The key to this approach is to determine how fun-
damental linear I/O functions like gain, integrator, sum and dif-
ference can be realized using only primitive genetic interactions

such as transcription, translation, combinatorial promotors,
post-transcriptional modification or pairwise interactions of
DNA, mRNA or protein molecules.

This design workflow follows the ideas of (3), where the
authors showed that any arbitrary linear input/output system
can be realized exactly using only zeroth and first order
biochemical reactions. We addressed the question of replacing
the zeroth and first order biochemical reactions with general
genetic interactions in (4). Therein, several requirements were
introduced to conclude that the processes of transcription and
translation can be interpreted as gain and integration, respec-
tively, and that combinatorial promoters may be used to realize
the difference of two concentrations. In (4), and also in this
work, we use these results to design a genetic signal differentia-
tor, i.e. a genetic part whose output indicates the temporal
derivative of its input. Such a module would be of particular
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interest in context of a genetic proportional-integral-derivative
controller that could be used to regulate production processes
within a cell. While for this purpose the genetic realization of
the more important integral feedback has been studied exten-
sively (5–10), differential operators in a biological context have
been investigated rather sporadically (11, 12) and have only re-
cently moved into the focus of synthetic biology (13). In latter
work, the authors introduce a differentiator module based on
mechanisms borrowed from the E. coli chemotaxis regulatory
network. This mechanism is based on active enzyme-like degra-
dation and the assumption that this degradation operates at
saturation of the enzyme. In contrast to the results of (13), the
topology presented in (4) is not based on a known biological ex-
ample but is derived from scratch, using an adjusted version of
the general design framework of (3). This leads to a differentia-
tor module of similar complexity but different assumptions and
requirements which need to be guaranteed.

In this work, we combine control theoretic concepts, mathe-
matical models and observations from experiments to verify and
adapt the requirements introduced in (4). We find that, in cell-
free extract, transcription can be considered as a PT1 element,
i.e. a delayed gain, while translation indeed can be seen as an in-
tegrator. Further, we show that combinatorial promoters are not
very well suited to realize the difference of two signals and that
the dynamics are very much dependent on the operation condi-
tions. Lastly, we study how not meeting the requirements affects
the performance of the genetic signal differentiator and reveal
the operating conditions under which the differentiator behaves
as expected and where this is not the case.

In the following, we first introduce the desired signal differ-
entiator, one possible topology to realize this part and the nec-
essary requirements for primitive genetic interactions by
recapitulating the results established in (4). After, we introduce
mathematical models of protein synthesis as well as the cell-
free experimental environment which is used to generate
the experimental data. Subsequently, the requirements on
time-scales and linear operation regimes of the processes of
transcription and translation are verified by fitting the model
to a series of experimental data and analyzing the resulting
parameters, leading to transfer function representations of
these two processes. Using another series of experiments, we
determine the input–output steady-state map of a combinato-
rial promoter and discuss the limited capability of such pro-
moters to realize the difference of two signals. Finally, the
impact of the discovered discrepancies on the performance of
the genetic differentiator is studied both in time and frequency
domain, using a describing function approach for the latter.

2. Background

First, we briefly recapitulate the results from (4) before we ana-
lyze, verify and adjust the requirements we introduced therein.

In the field of control theory, one can study linear systems in
two different domains. First, in the time domain, by looking at
the states of a system and the temporal derivatives thereof
which define a system of ordinary differential equations (ODEs).
And second, in the frequency domain, by looking at transfer
functions which are complex valued functions and describe
how different frequency components of an input signal are
modified by a system. These two domains are connected via the
Laplace transformation and particularly the frequency domain
is very useful for the design and analysis of linear systems. An
ideal differentiator would be given by the transfer function
GðsÞ ¼ s with Laplace variable s. However, as is well known in

the control community, an exact realization of such an ideal dif-
ferentiator is not possible due to the lack of causality. For a sys-
tem to be causal, its output must not depend on future values of
the input signal. This is not the case for the differentiator. In
case the system is given in form of a rational transfer function,
i.e. GðsÞ ¼ NðsÞ

DðsÞ, one can easily check for this property by examin-
ing the degrees of the polynomials N(s) and D(s): causality is
given if the degree of N(s) is not bigger than the degree of D(s).

The desired function thus can only be approximated, e.g. by
adding an additional low-pass filter to the ideal differentiator,
leading to the desired transfer function

GðsÞ ¼ Ks
sþ K

(1)

where K is the bandwidth of the filter. One possibility to realize
this transfer function is by the circuit depicted in Figure 1, with a
(preferably large) gain K in the forward path and a weighted inte-
grator in the feedback path. Ideally, one chooses b¼ 1 to recover
(1). Thus, in order to approximate the differentiator, three basic
functions are needed: a gain, an integrator and the signal differ-
ence between input and feedback. Finding genetic realizations of
these basic functions is the main challenge in designing the dif-
ferentiator. In particular, it is expected that this cannot be
achieved in an exact way, thus it is necessary to determine how
inaccuracies in the basic parts influence the behavior of the as-
sembled circuit. For an initial guess for finding such functions, a
semi-mechanistic model of transcription and translation (14)
was used in (4) to conclude that the processes of transcription
and translation can approximately be seen as a gain and integra-
tor, respectively, and that a combinatorial promoter may be used
to realize the difference of two signals. In the remainder of this
section, we briefly recapitulate these deductions.

In the process of protein synthesis, the genetic information
is read from DNA (with concentration Di) and transcribed into
mRNA (Mi), then, mRNA molecules are translated into proteins
(Pi). In the following, the subscript i stands for the ith gene (Gi) in
a network with I distinct genes. With

P ¼ ½ P1 . . . PI �>

representing all proteins present in the genetic network, the dy-
namics of mRNA and protein concentrations of gene i are de-
scribed by

Mi

:

¼ fiðP;Hi;UÞ � piðMi;Hi;UÞ (2a)

Pi

:

¼ giðMi;Hi;UÞ � qiðPi;Hi;UÞ (2b)

where fiðP;Hi;UÞ and giðMi;Hi;UÞ are the respective production
and piðMi;Hi;UÞ and qiðPi;Hi;UÞ the respective degradation rates.
These rates are possibly dependent on protein and mRNA con-
centrations, certain gene-specific parameters Hi 2 R

N like DNA
concentrations (Di) or initiation and degradation rates, as well
as several environmental parameters U 2 R

L which include,

Figure 1. Ideal approximation of a differentiator, from (4).
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among others, the total amount of RNA polymerase (RNAP),
ribosomes and endonucleases, the transcription and translation
elongation rates, and other host dependent variables. For better
readability the arguments Hi and U are omitted in the
remainder.

In (4), we introduced the topology depicted in Figure 2 as one
approach to realize the transfer function (1). Therein, the input
is considered to be a transcription factor, i.e. u ¼ Pu, which acti-
vates gene G1 and inhibits another gene G2. Each of these genes
produces a transcription factor which suppresses its own pro-
duction. While G1 has the purpose of capturing positive gra-
dients of the input signal, G2 is designed to capture negative
ones. The output of the part is then given as the difference be-
tween the mRNA concentrations of the two genes, i.e.
y ¼ M1 �M2. Further, for the purpose of a minimal signal repre-
sentation, the transcription factors P1 and P2 undergo an annihi-
lation reaction.

Several simplifications and requirements for the processes
of transcription, translation and degradation were introduced to
finally arrive at the desired model equations

_M1 ¼ aD1 � jðPu � P1Þ � �1M1 (3a)

_P1 ¼ bM1 � d1P1 � d12P1P2 (3b)

_M2 ¼ aD2 � jðk0 � Pu � P2Þ � �2M2 (3c)

_P2 ¼ bM2 � d2P2 � d12P1P2 (3d)

with the function

jðxÞ ¼ x x > 0
0 x � 0

�
(4)

assuring strictly positive transcription rates. In the following,
we focus on G1, the gene for capturing positive gradients, and
recapitulate the requirements for the biological processes nec-
essary to arrive at (3). Subsequently, the connection between (3)
and (1) will be discussed. We note that the focus on G1 is with-
out any loss of generality as the following requirements can be
adjusted with minimal effort to arrive at the equations for G2.

Requirement 1 M1 and P1 are subject to first order degrada-
tion, i.e.

p1ðM1Þ ¼ �1M1 (5a)

q1ðP1Þ ¼ d1P1: (5b)

with degradation rate constants m1; d1 2 H1.
Although degradation rates pi and qi are usually depen-
dent on protease and endonuclease levels, we require first

order degradation dynamics to assure linearity with re-
spect to mRNA and protein levels.
Requirement 2 The operation regime is such that f1 and g1 are
both approximately linear in D1 and M1, respectively.

This requirement is rectified by results like the ones
presented in (15), where particularly the linearity of gi in
Mi is shown. Alternatively, similar simplifications have
been applied by following a linearization approach as
pursued in (16). In general, however, although the tran-
scription rate fi increases monotonically with DNA con-
centration Di, it cannot grow arbitrarily large but is subject
to saturation effects for large enough DNA or transcription
factor concentrations, see e.g. (14, 17).
Requirement 3 There exists a combinatorial promoter which is
piecewise linear in two inputs, such that

f1ð½Pu; P1�>Þ � jðPu � P1Þ

with jð�Þ like in Eq. (4).

With this requirement, we demand that the combined ef-
fect of the two transcription factors is proportional to the
difference of their concentrations, as long as Pu > P1, and
zero, otherwise. In other words, f1 as a function of ½Pu; P1�>,
needs to fulfill the fundamental additivity property of lin-
ear functions in the regime Pu > P1. This further means
that, as we are considering a combinatorial promoter,
Pu has to act as an activator for G1 while P1 acts as an in-
hibitor. Consequently, instead of forming the difference
between input Pu and integral feedback P1 by using direct
interactions between the two species, we move the differ-
ence operation to the promoter function.
Now if Requirements 2 and 3 hold, we find

f1ð½Pu; P1�>Þ � aD1 � jðPu � P1Þ (6a)

g1ðM1Þ � bM1; (6b)

where a and b stand for lumped production rate parame-
ters. Thus, with Requirements 1 to 3, we arrive at the first
part of Eq. (3). Note that, when considering both genes G1

and G2, this means that the transcription and translation
rate constants a and b are assumed to be equal for both
genes. Also, it is required that Pu > P1 for the part to work
properly. For this reason, the annihilation reaction be-
tween P1 and P2 was introduced, see (4) for more details.
Finally, concerning an appropriate choice of parameters,
another requirement can be deduced from typical degra-
dation rates given e.g. in (18).
Requirement 4 The degradation of mRNA is much faster than
the one of protein, i.e. m1 � d1.

With that in mind, one can apply a quasi steady state ap-
proximation of the mRNA dynamics and further assume
that d1 � 0 to arrive at

~M1 �
a
�1

D1ðPu � P1Þ

_P1 � b ~M1

where ~Mi stands for the steady state mRNA concentration.
Thus, we conclude that the process of transcription can
be interpreted as a gain while translation approximately
realizes an integrator. With the signal entering the

Figure 2. Genetic differentiator: Genes G1 and G2 tracking positive and negative

slopes of u. Proteins produced by G1 and G2 neutralize each other. Difference of

associated mRNAs indicate output y.
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transcription process chosen as the residual of input Pu

and integral feedback P1, the presented model thus real-
izes Eq. (1).

In (4), we verified this structure by simulating the sys-
tem based on the much more detailed model described in
(14). This detailed model mainly aims at taking the finite
amounts of RNAP and ribosomes as well as the time delay
of transcription and translation into account, however,
chosen parameters only reflected average parameters
from literature. Further, saturation effects and nonlinear-
ities of the promoter dynamics were neglected.

After recapitulating the results of (4) and realizing the
limitations of the used models, we now adjust our model-
ing approach and focus on analyzing and verifying the
requirements by conducting a series of experiments using
a cell-free experimental system (19).

3. Materials and methods

In this section, a brief overview on the experimental technique
as well as the subsequently used models is provided.

3.1 TX-TL experimental platform

For the purpose of establishing a reliable, efficient and fast
prototyping environment for genetic circuits, various cell-free
TX-TL systems have been developed and optimized during the
past decade (19–24). The main advantages of cell-free over clas-
sical cell-based in vitro systems are that cellular systems impose
certain physical constraints on the gene circuits and the incor-
poration of the desired genes is comparably time consuming.
Cell-free extracts on the other hand provide a well reproducible
platform for rapid testing of arbitrary gene circuits. Such an ex-
tract for instance can be produced from Escherichia coli bacteria
by bead-beating cell resuspensions, see (23) for more details
on the production of E. coli extract. As DNA formatting and
transformation as well as cell growth are thus decoupled from
the actual testing of the circuit, testing cycles can be speed up
significantly from several days for testing in original cells to
only a few hours for testing in cell-free extract.

However, regeneration of resources required for mRNA and
protein synthesis is an issue in cell-free environments, which is
why the dynamics of mRNA and protein production are subject
to some overlayed degradation dynamics of the extract.
Therefore, the experiments are only meaningful for a limited
experiment duration and we only consider observations within
the first 200 min after initiation of the experiment. However,
even in this limited time frame, degradation of resources will be
visible in the experimental data. Since this mechanism is not
considered in the mathematical models, the identified parame-
ters will be biased. Production parameters tend to be underesti-
mated while degradation parameters tend to be overestimated.

For every TX-TL experiment, the DNA subject to testing is
suspended in water and mixed with cell extract and an energy
buffer. This buffer contains amino acids, NTPs, tRNAs and other
small molecules necessary for mRNA and protein synthesis.
The reaction volume was chosen to 5lL. Usually, one or more
genetic constructs encode a fluorescent reporter protein such as
green fluorescent protein (GFP). After initialization of the experi-
ment, the mixture is incubated at 29	C inside a Biotek plate
reader, which assesses the level of fluorescent protein every
few minutes. While the concentration of a fluorescent protein
like GFP can be assessed directly, measuring the amount of
mRNA requires an additional mechanism. We therefore make

use of the malachite green dye (20 mM) and a corresponding
aptamer sequence (MGapt) which is added to the 30 untrans-
lated region (UTR) of the gene. The dye binds to a binding pocket
of this sequence and changes its emission properties upon
binding, therefore again enabling us to monitor a fluorescence
signal which is proportional to the mRNA concentration (25).
However, measurements of the mRNA signal due to binding of
the malachite green dye revealed only a poor signal to noise ra-
tio, therefore an additional data pre-processing step was intro-
duced by fitting a Gaussian process to the experimental data
(26). Details on the pre-processing procedure can be found in
Supplementary Data A.

In this work, we distinguish between gene- and extract-spe-
cific parameters. Gene-specific parameters include variables
like the affinity of the particular promoter sequence toward
RNAP and other proteins and by definition are considered to be
independent of the environment the experiment is conducted
in, i.e. hold in different batches of cell extract as well as inside
living cells. In contrast, remaining parameters like the concen-
tration of RNAP or transcription and translation elongation
rates are denoted as extract or environment dependent, thus
may vary even between different batches of cell-free extract.
The experiments presented in this work have all been con-
ducted using the same batch of TX-TL extract.

All genetic parts were originally given as plasmids. Using po-
lymerase chain reactions and appropriate primer sequences,
only the relevant linear double-stranded gene sequence was
extracted from these plasmids and used in the TX-TL experi-
ments. By addition of protein gamS, the degradation of linear
DNA is prevented (27). Information about the used genetic con-
structs can be found in Supplementary Data B.

3.2 Modeling protein synthesis

Throughout this work, different promoters are discussed and
analyzed for various purposes. Therefore, the different mecha-
nisms and modeling framework used for simulating the tempo-
ral evolution of mRNA and proteins are introduced. We therein
build upon the dynamics given in Equation (2), however, avoid
using as strict simplifications as the ones outlined in Section 2.

In the following, complexes of two chemical species A and B
are denoted with A : B and conserved quantities are indicated
by a bar, e.g. R, the total amount of RNAP.

It is a well-established result (18, 28) that the production rate
of mRNA fi is proportional to the concentration of promoter
which is bound to a corresponding RNAP holoenzyme and not
blocked by any inhibitors, e.g.

fiðPÞ ¼ a � Di : R : r70ðP;Hi;UÞ (7)

where the concentration of complex Di : R : r70 may be depend-
ing on other proteins P, gene-specific parameters Hi and ex-
tract-specific parameters U.

In this example, sigma factor 70 (r70) first has to bind to
RNAP to form the holoenzyme before this complex then binds
the promoter region. The sigma factor therein has a very high
specificity toward certain promoters, enabling the cell to switch
between different transcriptional programs depending on
which sigma factor is expressed. Note that compared with (6a),
this is a more realistic model for mRNA production but prohibits
making the same deductions for the genetic differentiator.

The basic mechanisms of interest for us are binding and un-
binding reactions happening at the promoter sequence of DNA.
Usually, as in (18, 29), the amount of Di : R : r70 is approximated
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by Michaelis-Menten like equations, assuming that either DNA
or RNAP holoenzyme is in abundance. In contrast to that, we
won’t make this assumption but particularly take the binding
and unbinding reactions into account in order to consider both
competition for shared cellular resources and saturation effects
at the promoter. For simple setups where only self-competition
occurs, we derive a closed form expression for the steady-state
concentration of the respective biochemical complexes.

3.2.1 Holoenzyme formation
When RNAP R is bound to a sigma factor rx, this complex is re-
ferred to as the RNAP holoenzyme. As discussed briefly in the
previous section, such a holoenzyme binds to the promoter se-
quence of a gene and initiates the transcription process.
Therefore, sigma factors are a crucial component for this pro-
cess and without the right sigma factor, transcription cannot
initiate. According to (30), RNAP alone is sufficient for transcrip-
tion elongation, however, initiation requires sigma factors. We
therefore assume that the formation of holoenzyme is indepen-
dent of the holoenzyme binding to the promoter sequence,
meaning that sigma factor and RNAP can bind and unbind irre-
spective of the fact if RNAP is bound to DNA or not.

We therefore have to consider the reactions

Rþ rx�
kþrx

k�rx

R : rx (8a)

Di : Rþ rx�
kþrx

k�rx

Di : R : rx (8b)

for each sigma factor and DNA species present in the system in
order to account for the competition for RNAP. To simplify (8),
we introduce

R : rx ¼ R : rx þ
X

i

Di : R : rx

X : R ¼ Rþ
X

i

Di : R

the total amount of R bound to rx as well as the total amount of
R which is not bound to its respective sigma factor. Then, (8) can
be combined to

X : Rþ rx�
kþrx

k�rx

R : rx : (9)

In most cases, only dissociation constants

Krx ¼
k�rx

kþrx

are identifiable and it is assumed that binding reactions are fast
compared with the transcription elongation steps and thus in
quasi steady state. Therefore, for notational simplicity, we will
reduce the notation to using dissociation constants instead of
on and off rates in the remainder of this work.

Note that in (9) X : R and rx denote both the unbound chemi-
cal species. If only one sigma factor is present in the system, the
amount of R : rx can be calculated analytically as a function of
the dissociation constant Krx and the total amounts of RNAP
and sigma factor, respectively, viz. by application of the follow-
ing proposition.

Proposition 1 Given the entities A, B and A : B and the
reaction

Aþ B�
K

A : B:

If none of the entities participates in any other chemical reaction,
the steady state of A : B can be expressed in terms of the total
amounts of A and B as

A : B ¼ 1
2

�
Kþ Aþ B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKþ Aþ BÞ2 � 4�A�B

q �
(10)

with A ¼ Aþ A : B and B ¼ BþA : B.
The proof can be found in Supplementary Data C. It is
noted that usually, i.e. for the deduction of Michaelis–
Menten kinetics, it is assumed that either A� B or B� A
holds while Proposition 1 gives exact solutions for any val-
ues of A and B. In cases when only a single sigma factor is
present and its total concentration is constant over the
time course of the experiment, we will later on use the
amount R : rx as a fitting parameter and omit the binding
reaction in order to reduce the complexity of the fitting
problem. However, in cases where the concentration of
sigma factor varies over time, we either use the exact for-
mula from Proposition 1, or if there is more than one
sigma factor, we directly implement the binding reactions
as fast reactions and accept the increased computational
complexity.

3.2.2 Promoter binding
After formation of R : rx, the RNAP holoenzyme binds to the
promoter sequence and starts transcribing the information
encoded as DNA. A promoter is called constitutive, if this bind-
ing of RNAP happens spontaneously and is not influenced by
any activators or inhibitors, i.e.

Di þ R : rx�
KiH

Di : R : rx: (11)

In such cases, given that the promoter does not interact with
other holoenzymes, Proposition 1 can be applied again to sim-
plify the modeling formalism.

In contrast to a constitutive promoter, binding of RNAP can
also be inhibited by other proteins, leading to a combinatorial
promoter with competitive binding mechanism, i.e. by the addi-
tional reaction

Di þ Pj�
Kij

Di : Pj (12)

which now competes with (11).

3.2.3 Translation and degradation rates
Similarly to the transcription rate (7), the rate of translation is
given by

giðMiÞ ¼ b �Mi : QðMi;Hi;UÞ; (13)

where Mi : Q stands for the concentration of ribosomes (Q) bound
to the ribosome binding site of mRNA Mi. We assume unregulated
ribosomal binding and that the ribosome binding site sequences
used for the constructs are of equal strength. Thus, the reactions
for forming the complex Mi : Q are the same as for the formation
of holoenzyme and consequently, in case of only one mRNA spe-
cies present, Proposition 1 can be applied again. Whenever more
than one mRNA species is considered, competition for ribosomes
occurs and binding reactions are implemented.

Degradation of mRNA and protein is mainly influenced by
third party molecules such as endonucleases (E) and proteases.

W. Halter et al. | 5
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It is known (31) that latter species is quasi nonexistent in TX-TL
extract, thus we keep the first order degradation for proteins as
in (5b). Endonucleases, on the other hand, are present in limited
quantities, thus loading effects need to be considered. We ex-
plicitly assume that the binding of ribosomes and endonu-
cleases is independent of each other, i.e. can be seen as two
distinct processes where ribosomes and endonucleases do not
compete for mRNA. Thus, once more we define

piðMiÞ ¼ c �Mi : EðMi;Hi;UÞ (14)

and apply Proposition 1 whenever only self-competition occurs.

4. Results

Given the foundational work summarized in Section 2, it is yet
unclear to what extent Requirements 1 to 4 can be verified. In
particular, we are interested in answering the question of
whether the processes of transcription and translation indeed
can be regarded as a gain and integrator, respectively
(Requirements 1, 2 and 4), and further, whether one can find a
suitable combinatorial promotor which satisfies all linearity
requirements in order to verify Requirements 3.

4.1 I/O behavior of transcription and translation

First, we analyze the time-scales and linearity of transcription
and translation. Therefore, the I/O behavior of these processes
are characterized by experimentally probing a simple gene with
different input steps as depicted schematically in Figure 3. By
observing the response to different step sizes in the input, the
nonlinearity of the promoter dynamics can be identified. The
gene we study is equipped with a r70 dependent constitutive
promoter and expresses GFP. By fitting a suitable model to the
experimental data and analyzing the corresponding parame-
ters, Requirements 1 and 4 will be verified.

4.1.1 Experimental setup
There are two possibilities to realize a step-like input of varying
height at the transcriptional level using promoters like intro-
duced in Section 3.2: either by varying the amount of sigma fac-
tor (i.e. the transcription factor) while keeping the DNA
concentration constant, or alternatively, changing the DNA con-
centration itself. While varying DNA amounts is straightfor-
ward, the sigma factor input additionally required purified
protein which may be biologically unstable and is more difficult
to obtain than DNA.

Depending on the choice of input, i.e. sigma factor or DNA,
different dynamical effects can be expected when probing the
system with steps of different height. As discussed before in
Section 3.2, the mRNA production rate is proportional to the
complex Di : R : r70, wherein the concentration depends on the

total amounts of DNA, RNAP and sigma factor. In case the con-
centration of sigma factor is considered as input, the corre-
sponding model needs to incorporate both the formation of
holoenzyme as well as the binding of holoenzyme to the DNA.
Thus both binding rates would need to be considered. In con-
trast, when varying the DNA concentration, the binding reac-
tion of holoenzyme can be neglected and the amount of total
holoenzyme R : r70 can be introduced instead.

This approach reduces the complexity of the fitting problem
by focusing on the identification of promoter binding kinetics
only. Thus, for the identification of the I/O behavior of transcrip-
tion and translation, we first limit ourselves to step inputs in
form of varying DNA concentrations and study the sigma factor
dependent holoenzyme formation in a separate experiment,
discussed in Section 4.2.

We choose four different DNA concentrations for probing
the system: 1, 3, 5 and 10 nM. Three technical replicates were
conducted. The data obtained by this process are depicted in
Figure 4. Therein, blue-dashed lines stand for the mean of
mRNA (upper column) and protein (lower column) concentra-
tions and the 95% confidence intervals are illustrated as shaded
blue regions, respectively.

4.1.2 Corresponding model
We denote the index of the gene under study with i¼ 1 and ac-
cordingly the amount of GFP with P1. According to Section 3.2
and particularly Equations (2), (5b), (7), (13) and (14), the corre-
sponding model is determined by the complexes

D1 : R : r70 ¼ D1 : R : r70ðD1;R : r70 ;K1HÞ

M1 : Q ¼ M1 : QðM1;Q;KMQ Þ

M1 : E ¼ M1 : EðM1;E;KMEÞ

which are calculated using Proposition 1, depending on the total
amounts of DNA, mRNA, RNAP holoenzyme, ribosomes and
endonucleases as well as the respective dissociation constants.
We again note that the model can capture the dynamics only in
a limited time frame as the degradation of extract is not taken
into account. For fitting the model to the given data, we intro-
duce a maximum likelihood objective function, see e.g. (32), and
apply several rounds of both patternsearch and fmincon opti-
mization algorithms implemented in Matlab. The resulting
parameters given in Table 1 give rise to the red trajectories
depicted in Figure 4.

For the process of translation, we observe that the protein
degradation rate d is evaluated to be of magnitude 10�8 and
therefore, compared with c, practically zero.

Figure 3. Scheme of probing protein synthesis with step in DNA and expected responses.
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Conclusion 1 As required in Requirements 4, the degradation of
mRNA is much faster than the one of protein.

In order to check the linearity Requirements 1 and 2, we
study the entities D1 : R : r70; M1 : E and M1 : Q as func-
tions of the fitted parameters over the relevant range of
DNA and mRNA concentrations as depicted in Figure 5.
This way, one can visualize the nonlinear nature of the
production reactions of mRNA and protein as well as the
degradation of mRNA. Although these results clearly indi-
cate that the processes of transcription and translation do
not behave linearly in their inputs in general, they allow
us to define operation regimes as those required in
Requirements 2, i.e. where the linearity requirement holds
at least approximately.
In that sense, we now introduce a relative measure of non-
linearity and define the �-linear-range of a function f : R!
R as the largest interval ½0; n
� for which this nonlinearity
measure is just �. For the nonlinearity measure, we follow
the methods introduced in (33). Let jjf ðxÞ|L2 ½0;n� be the trun-
cated L2 norm of f(x), defined by

jjf ðxÞkL2 ½0;n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

ðn

0
f ðxÞ2dx

s
:

To approximate f, we use the linear function mx. Note that
we forced the intercept of the linear function to take the
value 0 to assure strictly positive values of the linear func-
tion on the interval ½0; n�. For a given f, the best linear ap-
proximation in the interval ½0; n� is then found as the
argument m ¼ m
 which minimizes

Lðn;mÞ ¼ jjðf ðxÞ �mxÞkL2 ½0;n�; (15)

the absolute L2 norm of the residual between function
f(x) and the linear function mx. The value of Lðn;m
Þ now
can be seen as an absolute measure for the nonlinearity of
f on the interval ½0; n�, however, this measure depends on
the magnitude of the function f. Thus, in order to compare
this measure across different functions, we normalize (15)
by the L2 norm of f, i.e.

Lrelðn;mÞ ¼
jjðf ðxÞ �mxÞkL2 ½0;n�

jjf ðxÞkL2 ½0;n�

to find our relative measure of nonlinearity.
Consequently, n
 is found as the solution of

max n
s:t: minm Lrelðn;mÞ � �:

(16)

In the given case, when one allows for a 5% error, i.e.
e ¼ 0:05, one obtains the linear ranges indicated as black
points in Figure 5.
Conclusion 2 Linearity of production and degradation terms, as
requested in Requirements 1 and 2, can be verified with 95% ac-
curacy with

D1 : R : r70 � Atx � D1 for D1 2 ½0; 3:805�
M1 : E � Adeg �M1 for M1 2 ½0; 593:1�
M1 : Q � Atl �M1 for M1 2 ½0; 141:7�

and Atx ¼ 0:726; Adeg ¼ 0:752; Atl ¼ 0:602.

4.1.3 Linearized model and transfer functions
Given the linear operation regimes indicated in Conclusion 2,
one can now derive linear models for transcription and transla-
tion which are then valid in the respective regimes. In the con-
trol community, the standard approach to approximate a
nonlinear model with a linear one is to locally linearize the non-
linear function at on specific value. In case of the nonlinear
mRNA degradation rate p1 for example, a linearization around
some fixed value M

0
1 would yield

p1ðM1Þ � p1ðM
0
1Þ þ

dp1

dM1

�����
M

0
1

� ðM1 �M
0
1Þ:

Table 1. Values of the parameters obtained by fitting the nonlinear
model to step-response data

Parameter Unit Value Description

a min�1 21.54 Transcription rate const.
b min�1 2.35 Translation rate const.
c min�1 0.18 mRNA deg. const.
d min�1 1.19e-8 Protein deg. const.
K1H nM 0.82 Dissoc. const. for D1 and R : r70

KMQ nM 72.26 Dissoc. const. for M1 and Q
KME nM 102.2 Dissoc. const. for M1 and E
R : r70 nM 4.26 Total RNAP holoenzyme
Q nM 165.94 Total ribosomes
E nM 650.3 Total endonuclease

Figure 4. Mean and 95% confidence interval of experimental step responses (blue, dotted mean, shaded confidence interval) and simulated step responses of the fitted

nonlinear model (red, solid).
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This approach assures that the linear function evaluated at
M

0
1 has the same value as the original nonlinear one, and that

the difference between the two functions is small in a neighbor-
hood around M

0
1. Thus, the quality of the linear model on a cer-

tain interval strongly depends on the chosen value M
0
1. In our

case, particularly the values of M1 may vary across a wide range.
Further, it should be made sure that in the case when neither
DNA nor mRNA or protein is present, the temporal derivatives
of these species also is equal to zero, i.e. that

M1

:

ðD1 ¼ 0;M1 ¼ 0Þ ¼ P1

:

ðM1 ¼ 0; P1 ¼ 0Þ ¼ 0

holds. This will only be achieved if all linear functions go
through the origin. To assure this, one would consequently
have to perform the linearization at D1 ¼ M1 ¼ P1 ¼ 0, leading to
potentially large deviations between the linear and nonlinear
models at larger values of the independent variables. Therefore,
instead of using this standard approach, we directly use the
approximations of Conclusion 2 where we already made sure
that the linear approximation is as good as possible over a given
interval of the independent variable.

We thus obtain the linear model

M1
: � aAtxD1 � cAdegM1

P1

:

� bAtlM1 � dP1

and when defining D1 and M1 as input and output of the tran-
scription module, M1 and P1 as input and output of the transla-
tion module, the corresponding transfer functions

GtxðsÞ ¼
aAtx

sþ cAdeg
(17)

GtlðsÞ ¼
bAtl

sþ d
(18)

are obtained. We conclude that due to the fact that d is very
small, translation can indeed be seen as integration as long as
DNA and mRNA concentrations are in the appropriate operation
regime. However, the initial assumption that transcription can
be seen as a gain needs to be adjusted as mRNA degradation
cannot be neglected, leading to a PT1 element instead of a gain.

So far, we studied and characterized time-scales and linear-
ity of the processes of transcription and translation in context
of an E. coli cell-free extract and mainly focused on possible lim-
itations caused by the promoter and mRNA-binding kinetics.
We therefore bypassed nonlinear effects of RNAP holoenzyme
formation by changing DNA concentrations instead of using r70

as input and found that at least during the first 200 min of a
TX-TL experiment, resource limitations do have an effect on
transcription, translation and mRNA degradation. By studying
different step responses, the linear operation regimes were
identified. We now turn toward inhibitor binding dynamics and

in particular toward the problem of how to realize a signal dif-
ference using combinatorial promoters.

4.2 Signal difference and combinatorial promoters

In order to approximate the derivative of a signal by implement-
ing the scheme depicted in Figure 1, we remember that the in-
put into the gain (i.e. transcription) has to be the residual
between the reference and feedback signal.

There are various ways to realize a signal difference in biol-
ogy, a widely used one being sequestration-based mechanisms
between the signaling molecules, e.g. binding and degradation
of the complex like elaborated in (7, 8). When dealing with RNA
or DNA, such a mechanism can be realized in a straightforward
way by e.g. the use of antisense strands. When it comes to pro-
teins or metabolites, engineering a sequestration mechanism
for an arbitrary protein or metabolite may be possible but in
general is more challenging. Thus, one is rather restricted to the
use of existing pairs of proteins which undergo binding reac-
tions, e.g. sigma factors and antisigma factors. Combinatorial
promoters as an alternative mechanism may offer a higher flex-
ibility during the prototyping process as various inhibitor opera-
tor sequences are already known for transcriptional regulation.
Therefore, it is in principle possible to compare the concentra-
tions of any two transcription factors by combination of these
operator sequences with different promoters. It is one of the
goals of this work to investigate whether this approach can ac-
tually be used for the purpose of subtraction in a biological
context.

Following such an approach, the desired behavior of the
steady state of promoter dynamics is depicted in Figure 6A
where the steady state of Di : R : rx is color-coded over varying
concentrations of (rx ) and inhibitor (Pj). Due to non-negativity
of concentrations, no activity is desired whenever the concen-
tration of inhibitor exceeds the one of activator (upper left trian-
gle resembling zero). Otherwise, it is aspired that Di : R : rx is
proportional to the difference rx � Pj, illustrated by the parallel
and equidistant level sets in Figure 6A.

Applying Proposition 1 and assuming that the total amount
of RNAP holoenzyme is fixed, the amount of Di : R : rx depends
on the chosen DNA concentration as well as on dissociation
constants KiH and Kij of the RNAP holoenzyme and inhibitor, re-
spectively. If for instance we assume that KiH ¼ Kij ¼ 1 and look
at the relative amount of activated DNA Di : R : rx=Di, varying
holoenzyme and inhibitor in the same range results in qualita-
tively different steady-state maps depending on how much Di is
chosen, as depicted in Figure 6B1–B4. For high DNA, sigma fac-
tor acts quasi linearly on the promoter while the inhibitor does
not play a role at all. On the other hand, for small amounts of
DNA, the inhibitor has a large effect and distorts the steady-
state map such that the level sets converge to each other at the
origin. Also, suppression due to the repressor does not seem
strong enough as in all cases, Di : R : rx � 0 for rx < Pj.

A B C

Figure 5. Amount of active complexes for transcription (A), mRNA degradation (B) and translation (C) over relevant range of DNA and mRNA, respectively.
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In contrast to that, Figure 6C1–C4 show the same conditions,
except that now KiH ¼ 10 � Kij, i.e. the inhibitor binds 10 times
stronger to the promoter than RNAP holoenzyme does. In that
case, only minimal transcriptional activity is expected when there
is less sigma factor than repressor. Further, although level sets are
curved, for medium amounts of DNA, e.g. 20 nM, they are compa-
rably equidistant and the steady-state map is almost symmetric.

This means that, while we have to acknowledge that exact
realization of the difference of two signals is not possible
with combinatorial promoters, some crucial properties can be
approximated by choosing dissociation constants and DNA
amounts carefully.

For that purpose and also for detangling the RNAP holoen-
zyme binding reaction, we study a gene with a pTar initiation
sequence combined with a tetO inhibitor operator which
expresses GFP. The pTar promoter is sensitive toward an RNAP
holoenzyme consisting of RNAP bound to r28, while the operator
sequence tetO enables binding and inhibition through Tet re-
pressor proteins (tetR). We denote the concentration of this
gene as D2 and GFP concentration as P2.

To avoid usage of purified protein, both r28 and tetR are pro-
duced in the TX-TL system from respective constitutive (i.e. r70 de-
pendent) DNAs Ds28 and DtetR. While the amount of Ds28 is varied
to achieve different activation levels, inhibition is influenced by
adding different amounts of anhydrotetracycline (aTc)
which binds to tetR and thus alleviates its association with the
promoter. The concentration of DtetR is kept at a constant level of
1 nM. The combinatorial promoter then produces GFP, dependent
on the concentrations of r28 and unblocked tetR. The time-series
of this experiment can be found in Supplementary Data D.

According to the experimental setup, several chemical spe-
cies compete for the same resources, thus Proposition 1 cannot
be applied anymore and the binding reactions themselves had
to be implemented as fast reactions. For brevity reasons, the
binding reactions are not listed here. We focus on mRNA and
protein dynamics, i.e. the ODEs

_Ms28 ¼ a � Ds28 : R : r70 � c �Ms28 : E

_rs28 ¼ b �Ms28 : Q � d � rs28

_MtetR ¼ a � DtetR : R : r70 � c �MtetR : E

tetR
:

¼ b �MtetR : Q � d � tetR
_M2 ¼ a � D2 : R : r28 � c �M2 : E

_P2 ¼ b �M2 : Q � d � P2:

Fitting these equations to the data, we obtain the parame-
ters listed in Table 2 and the trajectories depicted in
Supplementary Data D. In the fitting process, the optimization
is constrained such that the amount of complex R : r70 is simi-
lar to the value fitted in the first experiment where binding of
sigma factor has been neglected, see Table 1.

The values given in Table 2 indicate that the total amount of
RNAP is much bigger than the one of r70 and further, that bind-
ing between these two species is very strong. Although r28 also
binds strongly to RNAP, its affinity is still smaller than the one
of r70. The excessive amount of RNAP and the much higher
binding affinity of r70 thus leads to a decoupling of the two
binding reactions.

We also note that the binding of R : r28 to the pTar promoter
apparently has a very low affinity which leads to low GFP levels
compared with the input step experiments. Together with the fact
that the repressor tetR binds the pTar promoter very strongly, this
leads to the steady-state promoter map depicted in Figure 7,
where the amount of active promoter for 20 nM of DNA and vary-
ing activator and inhibitor concentrations is determined based on
the reactions from Section 3.2 and parameters from Table 2.

Although there is leakage for medium amounts of inhibitor
and activator and the level sets are not completely linear, the
determined promoter dynamics are comparable to the desired
behavior of Figure 6A.

Conclusion 3 Using combinatorial promoters, the differ-
ence between two signals can only be realized to a limited
extent.
Given these results the transcription dynamics of Section
4.1 can now be extended with the appropriate promoter
dynamics and r28 as input. As pointed out before, the
strong binding affinities of the sigma factors lead to a
quite linear but bi-modal I/O behavior, as depicted in
Figure 8, compared with the one depicted in Figure 5A.
Therein, the active D2 : R : r28 complex linearly follows the
amount of r28 until the concentration of RNAP is matched.
Consequently, the transcriptional gain Atx changes due to
the change of input and using the same linear approxima-
tion as defined in (16), one now finds

D2 : R : r28 � ~Atx � r28

with ~Atx ¼ 0:0018: (19)

Figure 6. Level sets of promoter activity Di : R : rx over varying levels of sigma factor and inhibitor. (A) Desired behavior for non-negative signal difference. (B1–B4)

Simulated values for varying DNA concentrations under a weak repressor. (C1–C4) Simulated values for varying DNA concentrations under a strong repressor.
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4.3 Implications for the closed loop

Initially, with Requirements 1 to 4, we expected the process of
transcription to behave like a gain, translation to behave like an
integrator and combinatorial promoters to provide the differ-
ence of two signals. Now, several observations were made
which differ from our initial view.

First, although mRNA degradation is indeed much faster
than protein degradation, the simplification to a simple gain is
not justified and the temporal dynamics of mRNA production
should be taken into account instead, leading to a PT1 behavior
instead of a gain.

Second, both production and degradation rates are subject
to saturations due to finite amounts of resources of the tran-
scriptional and translational machinery in the cell-free extract.
For small inputs, however, these rates can be seen as linear
functions of their inputs and the linear operation regimes have
been determined explicitly.

Third, when realizing the difference of two signals by using
combinatorial promoters, one only obtains an approximation of

the difference and the quality of the estimate depends on the
magnitudes of the inputs.

Now that these deviations from our initial requirements
have been identified and characterized, their effect on function-
ality and performance of the synthetic genetic differentiator
postulated in (4) can be studied. For that purpose, two different
models are compared with the ideal realizable differentiator
from Equation (1) in both time and frequency domain.

The first model is given by the closed loop of the models Gtx

and Gtl given in (17) and (18), respectively, and adapted with the
new transcriptional gain (19). This results in a linear model like
depicted in Figure 9 where no saturation effects are taken into
account and perfect signal difference is assumed. However, the
slow mRNA production and resulting PT1 behavior is taken into
account and parameters of Gtx and Gtl resemble realistic values
as they were obtained from experimental data. With the simpli-
fication d¼ 0, the transfer function of the closed loop system
thus is given by

GclðsÞ ¼
a~Atxs

s2 þ cAdegsþ ab~AtxAtl
: (20)

The second model is considered as the detailed nonlinear
model and is based on the reactions introduced in Section 3.2,
thus taking all saturation effects, nonlinearities and time-
delays into account. It consists of a gene G1 with a combinato-
rial promoter like the one studied in Section 4.2, i.e. sensitive to
a r28 holoenzyme and tetR inhibitor, producing this very same
inhibitor, therefore realizing the circuit from Figure 1. The
concentration of r28 is considered as input signal. In order to
capture both positive and negative gradients, the same ap-
proach as introduced in (4) is used, leading to a network topol-
ogy like in Figure 2 where G2 is of similar structure as G1 but
with negative influence of the input on the transcription rate.
The following additional mechanisms are necessary to realize
this topology:

a. Additionally to r28, a second sigma factor rxx is introduced
to be present at a constant level. While R : r28 activates tran-
scription of G1 and R : rxx activates the one of G2, both hol-
oenzymes bind to both genes, leading to a competition and
negative influence of one to the other.

b. Self-inhibition of the two genes is achieved by two different
inhibitors, e.g. tetR and tetR
.

c. The two inhibitors tetR and tetR
 undergo an annihilation re-
action at rate

d. l ¼ 0:1ðnM:minÞ�1 which was chosen arbitrarily.

As these modifications have been discussed in (4) already,
we omit the details at this point. The mRNA and protein dy-
namics of the core species as well as the output of the system is
given by

_MtetR ¼ a � DtetR : R : r28 � c �MtetR : E (21a)

tetR
:

¼ b �MtetR : Q � d � tetR � l � tetR � tetR
 (21b)

_MtetR
 ¼ a � DtetR
 : R : rxx � c �MtetR
 : E (21c)

tetR

:

¼ b �MtetR
 : Q � d � tetR
 � l � tetR � tetR
 (21d)

y ¼ MtetR �MtetR
 : (21e)

Table 2. Values of the parameters obtained by fitting the nonlinear
model to the time-series responses of the combinatorial promoter

Parameter Unit Value Description

Kr70 nM 1.8e–6 Dissoc. const. for R and r70

Kr28 nM 5.3e–3 Dissoc. const. for R and r28

KtetR nM 8.1e–3 Dissoc. const. for D2 and tetR
KaTc nM 2.74 Dissoc. const. for tetR and aTc
K2H nM 1.084e4 Dissoc. const. for D2 and R : r28

Ks28H nM 33.86 Dissoc. const. for Ds28 and R : r70

KtetRH nM 2.97e3 Dissoc. const. for DtetR and R : r70

R nM 283.14 Total RNAP
r70 nM 3.36 Total sigma factor 70

Figure 7. Promoter activity of pTar-tetO, obtained from fitted model.

Figure 8. Amount of active transcription complex over relevant range of sigma

factor concentration for pTar promoter.
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We summarized the core features of these two models and
the desired circuit in Table 3. Note that Model 1 can be seen as
the linearized version of Model 2.

4.3.1 Frequency domain analysis
In a first step, we compare the two models and desired behavior
in the frequency domain, i.e. in terms of the Bode plot depicted
in Figure 10. This again is a classical tool from the control com-
munity and graphically shows how sinusoid input signals are

modified by a certain transfer function. In the upper part, the
magnitude amplification KðxÞ indicates how the amplitude of
the input signal is amplified for different input frequencies. In
the lower part, the phase shift XðxÞ for these frequencies is
shown. Magnitude and phase of the desired behavior (solid
black) and linearized model (solid blue) are obtained trivially us-
ing Matlab.

For the nonlinear model, however, we use a describing func-
tion approach as described in (34) to compare the I/O behavior
of the nonlinear Model 2 with the linear ones. Therefore, the
nonlinear Model 2 is excited with input

uðtÞ ¼ A0 þA � sinðxtÞ (22)

and the corresponding output y(t) analyzed in terms of its
Fourier coefficients. Assume that after time t
 ¼ k
 2p

x , the output
oscillates in a steady-state fashion, i.e. no transient dynamics
occur anymore, and let

cnðxÞ :¼ 1
T

ðt
þT

t

yðtÞe�inxtdt with period

T :¼ 2p
x

be the nth Fourier coefficient of signal y(t) which corresponds to
frequency x. Then, the magnitude amplification K will be given

as the ratio of the magnitudes of the first Fourier coefficients of
output and input signal. With the input defined like in (22), the

first Fourier coefficient of this signal is simply A
2i. Therefore, we

have

KðxÞ ¼ jc1ðxÞj
j A2i j

¼ 2jc1ðxÞj
A

:

Further, the phase shift X for this frequency and particular
input signal is given by

XðxÞ ¼ atan � Rec1ðxÞ
Imc1ðxÞ

� �
:

The constant part A0 of input signal (22) is necessary to pro-
duce non-negative sinusoid functions. Due to the nonlinearity
of Model 2, the output y(t) does not only depend on the fre-
quency x but the shape of the input function in general, i.e. also
the variables A0 and A. We therefore probed the system for sev-
eral frequencies and values for A0 and A.

For linear systems, an input signals with a single frequency
component, like the one of (22), leads to an output with also
only one frequency component, namely the same as the one of
the input. In other words, higher harmonics are not existent
and jcnðxÞj ¼ 0 for n> 1. This is not the case for general nonlin-
ear systems where higher harmonics can also appear and in
principle more than just the first Fourier coefficient should be
analyzed. Thus, the way we use the describing function ap-
proach in this work relies on the assumption that higher har-
monics of the output signal can be neglected. We thus analyzed
the power spectrum of the output signals for different values of
A, A0 and x and found that for most combinations, the higher
harmonics contributed less than 5% to the overall power spec-
trum. However, in the case when A approaches A0 and x is close
to the pole of the transfer function, it seems that the assump-
tion does not hold, see Supplementary Data E for further details.
We will see in Section 4.3.2 and Figure 11 what this means for
the output signal.

In Figure 10, magnitudes and phases of the respective re-
sponse signal are plotted as dashed lines where different colors
indicate different values for A0. The values for A are chosen as
A ¼ kA0 with k 2 ½0:1; 0:5; ; 0:75� and respective responses plotted
in the same color. As seen in Figure 10, the output response
does not change with varying A, however, the choice of the off-
set A0 significantly influences the I/O behavior of the nonlinear
signal differentiator. Very low values of A0 (dashed red, orange
and purple) lead to a very sensitive response, i.e. too high gain
of the resulting closed loop and a smaller range of frequencies
for which the output approximates the derivative of the input.

A value of A0 ¼ 10 (dashed green) results in the best re-
sponse of the nonlinear system, matching the gain of an ideal
differentiator quite well while providing almost the same fre-
quency range as the one predicted by the linearized system
(xmax � 0:03 rad/min). For too large values of A0 (dashed cyan
and dark red), Model 2 breaks down as expected due to the

Figure 9. Topology of the linearized model given as the closed loop of Gtx

and Gtl .

Table 3. Summary of the models and comparison of the core features

Desired circuit Model 1 Model 2

Topology Figure 1 Figure 9 Figure 2
Dynamics Equation (1) Equation (20) Equation (21)
Features Linear Linear Nonlinear

Perfect gain Delayed gain Delayed gain
No saturation No saturation Saturation
Perfect difference Perfect difference Approximated difference
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previously characterized saturation effects and the resulting
loss of sensitivity toward the input signal.

4.3.2 Time domain analysis
From the previous analysis, we summarize that for the detailed
Model 2, the phase of the output signal is off for too small values
of A0, the gain is very small for values of A0 � 10 and only in
case of A0 � 10 both magnitude and phase are as desired. We
now focus on the shape of the output signal of Model 2 and
therefore stick to sinusoid input signals, fixing x ¼ 0:01 but
varying A0 and amplitude A of the input signal. The normalized
output

~yðtÞ ¼ 1
xA

yðtÞ (23)

as response to the just described input is depicted in Figure 11.
For a small value of A0, as expected, the phase is off, how-

ever, the output signal still has a sinusoid shape for all ampli-
tudes A. In contrast, for higher values of A0, the phase is correct
but with amplitude A approaching the offset A0, the output sig-
nal becomes more and more distorted. This effect is amplified
for higher offset values and is caused by a dilution of the power
spectrum as discussed in the previous section.

5. Discussion

For the synthesis of genetic networks that realize arbitrary lin-
ear transfer functions, we follow a similar approach as in (3).
Therefore, it is crucial to find suitable genetic counterparts to
primitive I/O functions such as gain, integration and difference.
In a first attempt discussed in (4) and recapitulated in Section 2,
several requirements were introduced to associate the

processes of transcription and translation and combinatorial
promoters with these respective I/O primitives. Now, a series of
experiments and analyses was presented to verify and adapt
these requirements.

By observing mRNA and protein levels as response to step
inputs of varying height, it was verified in Conclusion 1 that
protein degradation is almost nonexistent while mRNA degra-
dation is comparably fast. However, degradation dynamics are
not as fast as desired and a quasi steady state assumption for
the process of transcription would be oversimplifying. Thus,
transcription should be considered as a PT1-element rather
than a gain.

By fitting an ODE model to the experimental data and ana-
lyzing the corresponding parameters, it was also shown that all
processes are subject to saturation due to limited amounts of
resources. Using the same model and the fitted parameters, the
linear operation regimes of the I/O primitives can be character-
ized as shown in Conclusion 2, leading to more insight into the
capabilities and limitations of respective genetic circuits.

In a second series of experiments, the dependence of the
performance of a combinatorial promoter on the operation re-
gime was emphasized, realizing in Conclusion 3 that the differ-
ence of two signals can only be obtained approximately. Based
on these insights, DNA concentrations for a simulation study
were chosen such that the I/O behavior of the combinatorial
promoter is as close as possible to the desired one. In conclu-
sion, the use of combinatorial promoters for comparing the con-
centrations of two transcription factors is only possible within a
limited range of magnitudes and we suggest to use sequestra-
tion-based mechanisms in future.

For the realization of a genetic signal differentiator using the
studied parts, the initial goal was to realize a differentiator with
high-pass filter. The corresponding transfer function is given in

Figure 10. Bode plot of desired model (solid black) and linear Model 1 (solid

cyan). In dashed lines, magnitude and phase of output of nonlinear Model 2 sub-

ject to uðtÞ ¼ A0 þ A � sinðxtÞ. Different colors indicate different values of A0.

Several values for A are plotted (lying on top of each other).
Figure 11. Normalized output ~yðtÞ of the nonlinear closed model with input

uðtÞ ¼ A0 þ A � sinð0:01tÞ for varying values of A0 and A.
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Equation (1). It has a zero at the origin and one pole determined
by the filter to make it a causal system. However, slow mRNA
degradation leads to a behavior which, when linearized, is of
relative degree one, i.e. Equation (20) which has one zero at the
origin and two poles in the left half plane. This reveals an addi-
tional delay of the transient dynamics.

If protein degradation were significantly larger than zero,
this would lead to a transfer function of the form

Gcl;protdeg ¼
K1sþ K1c2

s2 þ ðc1 þ c2Þsþ c1c2 þ K1K2
; (24)

thus, shifting the zero from the origin to the right half plane
and therefore leading to an additional lower frequency bound
and a sign change in the output. In comparison, the differentia-
tor introduced in (13) leads to a very similar transfer function as
(24), given that all necessary assumptions introduced there
hold. The main difference is that in (13), the zero of the transfer
function always lies in the left half plane. On one hand, this
means that a sign change is avoided. On the other hand, there
inherently exists a lower bound for admissible input frequen-
cies while for the design presented in this work, this only is be
the case if protein degradation is large.

In order to conduct studies beyond the linearized model, a
describing function approach is used to evaluate the response
of the nonlinear model to sinusoid inputs like in Equation (22).
Therein, it can be seen that the performance of the differentia-
tor critically depends on the constant part of the input signal,
revealing again the limitations due to resource competition but
also unexpectedly toward some supersensitivity at low values
of A0. With an appropriate choice of A0, the presented network
approximates the temporal derivative of an input signal for
frequencies up to x � 0:02 rad/min. Additionally to the depen-
dence on the absolute value of A0, simulations in the time do-
main revealed a dependence on the relative amplitude A

A0
in

sense of a distortion of the output signal. When this relative
amplitude approaches the value 1, the output signal looses its
similarity to the sinusoid input, although phase and gain may
be correct. In other words, the nonlinearities of the model lead
to a dilution of the power spectrum of the output and higher
harmonics are amplified.
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