
Vol.:(0123456789)1 3

European Journal of Epidemiology (2019) 34:823–835 
https://doi.org/10.1007/s10654-019-00551-0

METHODS

Assessing heterogeneous effects and their determinants 
via estimation of potential outcomes

Anton Nilsson1,2   · Carl Bonander3   · Ulf Strömberg3   · Jonas Björk1,4 

Received: 19 November 2018 / Accepted: 8 August 2019 / Published online: 16 August 2019 
© The Author(s) 2019

Abstract
When analyzing effect heterogeneity, the researcher commonly opts for stratification or a regression model with interactions. 
While these methods provide valuable insights, their usefulness can be somewhat limited, since they typically fail to take into 
account heterogeneity with respect to many dimensions simultaneously, or give rise to models with complex appearances. 
Based on the potential outcomes framework and through imputation of missing potential outcomes, our study proposes a 
method for analyzing heterogeneous effects by focusing on treatment effects rather than outcomes. The procedure is easy to 
implement and generates estimates that take into account heterogeneity with respect to all relevant dimensions at the same 
time. Results are easily interpreted and can additionally be represented by graphs, showing the overall magnitude and pattern 
of heterogeneity as well as how this relates to different factors. We illustrate the method both with simulations and by examin-
ing heterogeneous effects of obesity on HDL cholesterol in the Malmö Diet and Cancer cardiovascular cohort. Obesity was 
associated with reduced HDL in almost all individuals, but effects varied with smoking, risky alcohol consumption, higher 
education, and energy intake, with some indications of non-linear effects. Our approach can be applied by any epidemiologist 
who wants to assess the role and strength of heterogeneity with respect to a multitude of factors.
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Introduction

When estimating the relationship between an exposure and 
an outcome, the researcher typically aims at determining 
an average effect. While such average effects are certainly 
informative, effects may be vastly different across different 
subgroups of individuals. Advices and recommendations 
based only on average responses may be far from optimal 
from a given individual’s point of view and could even be 
harmful if the individual response is of the opposite sign. In 

contrast to traditional approaches, however, there are cur-
rently some attempts to shift the focus from average effects 
to heterogeneous ones, and the growing field of personalized 
and precision medicine aims to tailor treatments to biomark-
ers or other characteristics of the individual [1–4].

When researchers try to examine heterogeneous effects 
of a treatment, an exposure, or a behavior, they usually do 
so either by stratifying or by introducing interaction terms 
in a regression model. We argue that these approaches are 
not ideal for a serious examination of the role of heteroge-
neity. When stratifying, for example, the researcher would 
typically split the sample only along one dimension (e.g., 
the two sexes). But heterogeneity may operate along many 
dimensions at the same time. Results based on stratifica-
tion with respect to one dimension will at best provide an 
incomplete picture and at worst provide faulty conclusions 
in situations of multiple sources of heterogeneity. Indeed, 
stratifying with respect to several dimensions is possible but 
may give rise to very small sample sizes and it can be dif-
ficult to make sense of the large number of results.

Introducing interaction terms in a regression model has 
similar disadvantages. Only interacting with respect to one 
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dimension may be overly simplistic, while interacting with 
respect to several can give rise to models with complex 
appearances. Additionally, both stratification and interaction 
face limitations in that the overall role of heterogeneity is not 
directly assessable. For example, although tests such as LR 
can be used to detect whether there is any interaction present 
in a regression model, the overall distribution of treatment 
effects is not visible.

In this article, we propose a methodology for the 
assessment of heterogeneity. In addition to providing the 
researcher with easy-to-interpret estimates of how differ-
ent factors may influence the effect, the method provides a 
novel way to illustrate the general heterogeneity in effects 
graphically. Based on the Rubin Causal Model [5, 6], the 
method can be interpreted as an imputation of missing val-
ues on counterfactual outcomes, followed by a calculation 
of individual-level effects. Imputation of potential outcomes 
has been proposed by a few authors before [6–14] but has 
not yet been widely applied. While some discuss estima-
tion of heterogeneous effects [6, 11, 14], we are not aware 
of any application in a medical context. Moreover, previ-
ous methods are largely based on Bayesian inference. Our 
method is easy to implement and while it cannot uncover 
how unobserved factors contribute to heterogeneity, it allows 
for straightforward examinations of how different observed 
variables influence the size of the effect.

We use both a simple simulation and a real-world exam-
ple to illustrate the approach. Results from simulations show 
that estimates from the model are just as accurate as those 
from an interaction model. In the real-world example, we 
examined the heterogeneity in the effects of obesity on HDL 
levels, finding that obesity was associated with reduced HDL 
in almost all individuals, but effects varied with smoking, 
risky alcohol consumption, tertiary education, and energy 
intake.

Potential outcomes framework

In the Rubin Causal Model, every individual, i, is postulated 
to have two potential outcomes: Y0i , which is a theoretical 
outcome if not treated (A = 0); and Y1i , which is a theoretical 
outcome if treated (A = 1). Y0i and Y1i may, in turn, may be 
functions of explanatory variables Xji . Under the assumption 
of causal consistency, the actual observation, Yi , is equal 
to the potential outcome corresponding to the individual’s 
treatment status (i.e., Yi = Y0i if Ai = 0 and Yi = Y1i if Ai = 1 ). 
We here assume that there are no measurement errors in nei-
ther the outcome nor in the explanatory variables. Note that 
“treatment” does not necessarily refer to medical treatment 
but is interchangeable with “exposure.” The unobserved 
potential outcome is often referred to as the “counterfactual 
outcome.”

Only one out of the two potential outcomes can ever 
be observed, as individuals can only be either treated or 
untreated. This, in turn, means that the individual treatment 
effect (ITE), Y1i − Y0i cannot be observed. Estimates may be 
made, however, and a common goal of statistical methods 
is to estimate some population parameter corresponding to 
ITEs, such as the average treatment effect (ATE) [15, 16], 
also known as the average causal effect, [17–19]. Consistent 
estimates of such parameters can be obtained under certain 
assumptions, particularly the “exchangeability” or “ignor-
ability” assumption, postulating that treatment status is inde-
pendent of potential outcomes, conditionally on variables 
accounted for in the analysis [6, 20].

We propose an approach, where the two potential out-
comes are modelled separately and explicitly, allowing 
for an examination of their difference. The two potential 
outcomes can be modelled with a general and flexible 
model, potentially with complex interactions. Typically, the 
researcher will not have to report or examine the param-
eter estimates from this model, and a complex structure is 
therefore unproblematic, at least to the extent that overfitting 
is avoided. After obtaining adjusted estimates of treatment 
effects at the individual level, the researcher then turns to 
examining these effects, and in particular relate them to sets 
of explanatory variables, thus uncovering the determinants 
of heterogeneous effects.

In a linear model, equations for the potential outcomes 
take the following forms:

and

Xji represent all observed variables that are associated with 
the potential outcomes and the two � terms represent unob-
served factors. In both equations, we assume no unobserved 
confounding, which means that the error terms are assumed 
to have means of zero conditional on covariates X . The two 
error terms can be correlated with each other, although the 
degree of correlation is unknown as we cannot observe both 
Y0 and Y1 for the same individual. In general, the error terms 
may also have different variances.

For simplicity, we will assume that error terms are not 
correlated across individuals (no autocorrelation) and that 
their variances do not depend on X (no heteroscedasticity). 
In principle, these assumptions could be relaxed. Estimation 
of Eqs. (1) and (2) will entail the first step of our proposed 
method.

(1)Y0i = �0 +

J∑

j=1

�j0Xji + �0i

(2)Y1i = �1 +

J∑

j=1

�j1Xji + �1i.
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The (individual) treatment effect is given by the differ-
ence between Eqs. (2) and (1); that is, by

Here, the first term Δ� represents an effect independent of 
individual characteristics, thus an overall effect of treatment. 
More specifically, it is the expected treatment effect among 
those with all covariates being equal to zero, which can be 
interpreted as the treatment effect for a “typical” individual 
if continuous covariates are centered and the reference cat-
egory of any factor variable represents a “typical” person.

The second set of terms (Δ�j)Xji represents effects that 
can be explained by observable characteristics, and the 
last term Δ�i represents effects that cannot be explained 
by observable characteristics. Ideally, although hardly ever 
realistic, the researcher is able to measure all variables that 
give rise to heterogeneity. In this scenario, the ITE is fully 
determined by observable characteristics, meaning that the 
two error terms are equal so that their difference cancels. We 
would then get the following expression for the individual 
treatment effect:

Since measuring all factors that give rise to heterogeneity 
is generally unrealistic, the researcher can instead consider 
expected treatment effects, i.e., conditional average treat-
ment effects given covariates. These are found by taking the 
expectation of Eq. (3), yielding:

where the last equality follows from the assumption that 
error terms have means of zero conditional on covari-
ates, as in Eqs.  (1) and (2). The analysis is then about 
the component of the overall heterogeneity that can be 
explained by observable factors. The right-hand sides of 
Eqs. (4) and (5) are obviously equal and results obtained 
from our model can in principle be interpreted in terms 
of either of these, although we generally recommend the 
latter. If one wanted to simulate the more general Eq. (3), 
including the error, untestable assumptions on the corre-
lation structure between the two error terms would need 
to be imposed, and we suspect most researchers may be 

(3)ITE = Δ� +

J∑

j=1

(Δ�j)Xji + Δ�i.

(4)ITE = Δ� +

J∑

j=1

(Δ�j)Xji.

(5)

E
[
ITE|Xi

]
= E

[
Δ� +

J∑

j=1

(
Δ�j

)
Xji + Δ�i|Xi

]

= Δ� +

J∑

j=1

(
Δ�j

)
Xji,

reluctant to this, although a literature on the topic does exist 
[9, 14, 21]. Note that the variation in (5) will generally be 
smaller than that in Eq. (3) as the variance of (3), taken 
over all covariates X as well as the error term can be writ-
ten Var[ITE] = Var[Δ� +

∑J

j=1
(Δ�j)Xj + Δ�] =

∑J

j=1
(Δ�j)

2

Var[Xj] + Var[Δ�] . The variance of Eq. (5) is equal to only 
the first of the two terms in the final expression, and is thus 
smaller.

Estimation procedure

We here describe the method to obtain estimates of 
(expected) treatment effects and then assess heterogeneous 
effects. To be specific, our method comprises the following 
four steps:

1.	 Estimate regression models for the observed potential 
outcomes, one for Y0 and one for Y1, using a compre-
hensive set of covariates.

2.	 Predict both potential outcomes for all individuals by 
calculating the expected potential outcomes from the 
corresponding regression, conditional on the covariates 
in step 1.

3.	 Calculate the difference between the predicted potential 
outcomes to obtain the estimated ITE.

4.	 Regress estimated ITEs on covariates of interest.

The procedure is equivalent to a standard (single) impu-
tation approach, where missing potential outcomes are 
imputed under the assumption of residuals not varying 
depending on treatment; see Appendix 1 for a derivation 
of this result.

Simulation

We conducted a simple simulation exercise to exam-
ine the validity of our approach. We used three covari-
ates, X1 , X2 , and X3 , drawn from a multivariate normal 
distribution, with means 0, variances 1, and correlations 
0.5. Treatment was simulated through a probit model; 
more specifically, by constructing the sum of X1 , X2 , X3 , 
and another standard normal variable, and letting A = 1 
if and only if this sum was less than its 30th percentile. 
We generated potential outcomes according to Eqs.  (1) 
and (2),  with Y0i = 1 + 2X1i + 3X2i + 4X3i + �0i  and 
Y1i = 4 + 3X1i + 3.5X2i + 4X3i + �1i , and error terms coming 
from standard normal distributions. This implied expected 
ITEs of

i.e., there is no heterogeneity with respect to the third covari-
ate. We simulated 1000 datasets with 500 observations in 

(6)E
[
ITE|Xi

]
= 3 + X1i + 0.5X2i,
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each, and for statistical inference we bootstrapped the entire 
procedure using 1000 bootstrap replications per simulation. 
Predictions of potential outcomes (steps 1–2) were based 
on linear regression models that simply used the covariates 
X1 , X2 , and X3 . These were also the covariates we related the 
estimated treatment effects to (step 4), although in practice 
the researcher may use a smaller set of covariates in this step 
compared to when predicting potential outcomes. In Table 1 
below, results from our model are contrasted to those from 
linear regressions with interaction terms, estimated by ordi-
nary least squares (OLS).

Since our model is, in effect, a stratified model (stratifi-
cation with respect to treatment status), it yielded the very 

same point estimates as the interaction model. Furthermore, 
standard errors were very similar and 95% CIs had the sup-
posed coverage not only for the interaction but also for the 
imputation model. Bootstrap CIs were formed using normal 
approximation, but we have verified that bootstrap confi-
dence intervals based on percentiles give accurate coverages 
as well. While it is comforting that our model yields accurate 
results just like an interaction model, the intuitive interpre-
tation of our model is somewhat different from that of an 
interaction model, as focus lies on treatment effects rather 
than the original outcomes. Moreover, since ITEs immedi-
ately follow from the model, these can be examined along 
different dimensions, as we will now illustrate.

Based on one particular simulation conducted above, we 
drew the histogram of estimated treatment effects shown to 
the left in Fig. 1. Indeed, the figure has roughly the appear-
ance of a normal distribution, which will not necessarily be 
the case when covariates have other distributions. Also, the 
appearance will depend on how much variation is induced 
by differences in model parameters across Eqs. (1) and (2). 
To the right in Fig. 1, we show an alternative scenario where 
Y0 was generated according to the same scenario as before 
but Y1i = 4 + 4X1i + 5X2i + 4X3i + �1i , which means that 
more heterogeneity was introduced, as the differences in the 
impacts of covariates on Y1 and Y0 became larger. Indeed, the 
variation in treatment effects was now larger and the effect 
varied between − 6 and 11 rather than between − 1 and 8.

In addition to the histogram, it is useful to graphically 
examine the relationship between treatment effects and 
covariates in order to (1) get a sense of whether any het-
erogeneity is present and if so, (2) detect any non-linear 
effects. For the latter, it is important that nonlinearities are 
captured by our estimated treatment effects, and we therefore 
add all quadratic terms and two-way interactions in step 1 
of the analysis. Plotting the relationship between estimated 

Table 1   Simulation results: results from the imputation/prediction 
model in the first column and results from a standard regression 
model with interactions in the second column

In the imputation/prediction model, bootstrap was used for statistical 
inference

Model Imputation Interaction

Average Δ̂� 3.005 3.005

Average Δ̂�1 1.002 1.002

Average Δ̂�2 0.503 0.503

Average Δ̂�3 − 0.001 − 0.001

Average standard error of Δ̂� 0.179 0.178

Average standard error of Δ̂�1 0.130 0.130

Average standard error of Δ̂�2 0.130 0.131

Average standard error of Δ̂�3 0.130 0.130

95% CI coverage Δ̂� 0.955 0.955

95% CI coverage Δ̂�1 0.949 0.952

95% CI coverage Δ̂�2 0.951 0.961

95% CI coverage Δ̂�3 0.949 0.954

Fig. 1   Estimated treatment effects according to simulations in the first model as well as in a model with increased heterogeneity, obtained 
according to steps 1–4. The average effect is indicated by a dashed line
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treatment effects and X1 in our first example, we found the 
pattern in the first graph Fig. 2, which indeed shows evi-
dence of heterogeneity as the effect varies by the covariate. 
There is no evidence of non-linearity, as a fitted quadratic 
curve looks essentially linear. Indeed, the slope of the curve, 
roughly equal to 1, reflects the estimate of the coefficient of 
X1 , Δ�1 , whereas the average treatment effect of 3 when X1 
is zero reflects Δ� in Eq. (6). Correspondingly, as shown 
in the second graph, the treatment effect increases by 0.5 
per increase in X2 , with no evidence on non-linear effects. 
Finally, as shown in the third graph, there was no evidence 
of any heterogeneity with respect to X3 . Note that, for the 
figures, we corrected covariates for multicollinearity by 
regressing them on other covariates and then used the resid-
ual from that regression instead of the covariate in question; 
see Appendix 2 for a derivation of this method.

To examine the robustness of our simulations with respect 
to imposed assumptions, two additional simulations were 
carried out (see Appendix 3). In the first of these (Table 4) 

we increased the correlation between the first two covariates 
from 0.5 to 0.9. Again, results are virtually identical to those 
from a linear regression model with interactions.

In the second additional simulation (Table 5), we again 
increased the correlation between the first two covariates to 
0.9 but additionally omitted the second covariate from the 
last step of the model. This is in line with our suggestion 
that a more comprehensive set of variables may be used for 
the estimation of potential outcomes, and a smaller set of 
“relevant” covariates in the final estimation step. In the case 
of our simulation, we can imagine that the two first covari-
ates measure roughly the same entity of interest, and one is 
dropped to avoid multicollinearity. As can be seen, param-
eter estimates from this simulation are biased, as compared 
to the “correct” parameters in Eq. (6). The biases in our 
model differ somewhat from those generated by an interac-
tion model, while standard errors are very similar across 
the models (with the standard error of Δ̂�1 now being much 
lower than in the previous simulation).

Fig. 2   Estimated treatment effects at different levels of covariates according to the first simulation. In the two first curves, fitted quadratic curves 
have been inserted
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The different biases in the estimated effect of X1 when 
omitting X2 either from our model or from the interaction 
model can be determined using the “omitted variables for-
mula” [22]. According to this formula, the bias that occurs 
when dropping a variable from a linear regression is deter-
mined by the product of two factors: (1) the effect of the 
omitted variable on the outcome and (2) the “effect” of the 
included variable of interest on the excluded one (controlling 
for all included variables). With our model, the bias in the 
effect of X1 on the ITE is thus given by the product of 0.5 
(which is the effect of X2 on ITE) and the “effect” of X1 on 
X2 , controlling for X3 . Correspondingly but somewhat dif-
ferently, in the interaction model, the bias in the A ∗ X1 on Y  
is given by the product of 0.5 (which is the effect of A ∗ X2 
on Y ) and the “effect” of A ∗ X1 on A ∗ X2 , controlling for all 
main effects and the interaction A ∗ X3 . The second factor of 
the omitted variables formula thus differs and has a simpler 
determination with our approach.

A real‑world example: data and setup

To illustrate our proposed method with a real-world exam-
ple, we used data from the Malmö Diet and Cancer (MDC) 
Study [23] to examine heterogeneous effects of baseline 
obesity (the exposure) on subsequent high-density lipopro-
tein (HDL), “the good cholesterol” (the outcome). MDC 
is a prospective population-based cohort, where about 
17,000 women (born 1923–1950) and 11,000 men (born 
1923–1945) were initially recruited in Malmö, Sweden, 
between 1991 and 1996. Data represent a combination of 
self-reports on life-style such as food intake, socioeconomic 
factors, medications, and previous diseases; as well as 
measurements of anthropometry and many other factors. In 
addition, comprehensive register data has been linked from 
government authorities including Statistics Sweden and the 
National Board of Health and Welfare.

A subsample of the individuals in MDC formed a cardio-
vascular cohort and underwent additional examinations and 
assessments of cardiovascular risk factors. A follow-up was 
conducted in 2007–2012 and we used data on HDL from 
this source.

The following variables, based on self-reports, were used 
in the first step: physical activity energy expenditure (a score 
based on time spent in different activities per week, similar 
to the Minnesota Leisure Time Physical Activity Instrument 
[24]), smoking (yes or no), alcohol intake, fat intake, carbo-
hydrate intake, protein intake, cholesterol intake, and total 
energy intake. Energy intake was measured in kcal per day 
whereas other intake variables were measured in grams. We 
additionally exploited information on age, sex and educa-
tional attainment (primary, secondary, or tertiary education). 
For simplicity, individuals with missing data on relevant 

variables were discarded (although in a more general setup, 
such data could be imputed as well).

For the analysis of heterogeneity, presentation of esti-
mates becomes a major point of interest and it is therefore 
important to use variables that are natural to interpret as 
well as avoiding variables that capture similar processes, 
so that multicollinearity arises. We thus created an indica-
tor for “risky alcohol consumption” (more than 60 g/day if 
male and more than 40 g/day if female). We also created 
indicators for 10-year age spans. Moreover, we used total 
energy intake per day and not the more specific variables of 
protein, fat, carbohydrate, and cholesterol intake (which are 
all strongly correlated with total energy intake). Continuous 
independent variables (physical activity and energy intake) 
were centered so that the intercept may be interpreted as the 
effect on an individual with average values on these vari-
ables and zeros on binary/categorical variables.

The sample contained 3385 individuals with non-missing 
information on relevant variables (11% were obese, where 
obesity was defined as having a body mass index (BMI) of 
30 or more). Descriptive statistics for variables used in the 
heterogeneity analysis are shown in Table 2.

A real‑world example: results

We proceeded as described in steps 1–3 above. Using the 
logarithm of HDL as the outcome, our estimated ITEs had 
a mean of − 0.147 (with a median of − 0.139 and an inter-
quartile range of 0.091). Relative effects are obtained by 
taking the exponential and we find that the relative mean ITE 
is equal to 0.864. A histogram of relative ITEs is shown in 

Table 2   Descriptive statistics for obese and non-obese individuals in 
the sample

Continuous variables are presented with means and standard devia-
tions whereas binary variables are presented with percentages

Variable Non-obese (n = 3028) Obese (n = 357)

HDL (ln mmol/l) 0.33 (0.30) 0.19 (0.28)
Risky alcohol consumption 1% 2%
Smoker 24% 15%
Physical activity score 8288 (5779) 7170 (5124)
Energy intake (kcal/day) 2342 (657) 2303 (673)
Primary education 68% 76%
Secondary education 11% 5%
Tertiary education 22% 18%
Male 40% 38%
Age 45–49 17% 13%
Age 50–59 52% 50%
Age 60–68 31% 37%



829Assessing heterogeneous effects and their determinants via estimation of potential outcomes﻿	

1 3

Fig. 3. More than 98% of the effects are less than one, where 
one represents no effect.

We then regressed treatment effects on covariates (step 
4), bootstrapping the entire procedure 1000 times to obtain 
standard errors. Specifically, we here regressed individu-
als’ predicted difference in log HDL under obesity and non-
obesity on a set of seven variables. This yielded the results 
in Table 3.

Heterogeneous effects of obesity on HDL levels (ln 
mmol/l). Normality-based confidence intervals were formed 
by bootstrapping the entire procedure. Since univariate mod-
els (i.e., models with only one variable included in step 4) 
were estimated separately, there is no common intercept to 
be reported. Effects are multiplicative, as the outcome is 
measured in logarithms and we have exponentiated coef-
ficient estimates.

The “constant” of 0.855 shows that in the reference 
group, obese individuals have a 14.5% lower HDL level than 
non-obese. This is similar to the average treatment effect of 

0.864 previously reported. One should note, however, that 
individuals in the reference group may deviate from average 
individuals and in general, the effect on them does not have 
to be the same as the average effect.

Turning to the heterogeneity analysis (the remaining esti-
mates in Table 3), results suggest that the reducing effects 
of obesity on HDL may be stronger among individuals that 
smoke or have higher energy intake, while being weaker 
among those with university education or with risky alco-
hol consumption. Effects are multiplicative so, for example, 
while smoking multiplies the (expected) treatment effect 
by 0.890 and an increased energy intake by 1000 kcal/day 
multiplies it by 0.949 according to the multivariate model, 
the combination of smoking and a 1000 kcal/day higher 
energy intake multiplies it by 0.890 * 0.949. This yields an 
(expected) treatment effect of 0.855 * 0.890 * 0.949 = 0.722 
for an individual who deviates from the reference group both 
in terms of being smoker and having a 1000 kcal/day higher 
energy intake than average.

For comparison, we have estimated the relationship 
between HDL and obesity with an interaction model, using 
all the variables that we entered in step 1–3 above as main 
effects, and the variables that we entered in step 4 interacted 
with obesity. Estimates corresponding to those in Table 3 
(i.e., the interactions and the main effect of obesity but no 
other main effects) are reported in Table 6 in Appendix 4. 
As can be seen, results are similar, both in terms of point 
estimates and confidence intervals.

We then examined graphically the relationships between 
ITEs and the continuous covariates: physical activity and 
energy intake. To do this, we added the squares of physical 
activity and energy intake into the first step of the model, 
estimated the ITEs and then constructed plots of these esti-
mated effects against (centered) physical activity and energy 
intake. The results are shown in Fig. 4. As before, covariates 
have been adjusted for multicollinearity by using residuals 
from regressions of the covariate versus other covariates. 

Fig. 3   Estimated (relative) effects of obesity on HDL levels in the 
empirical example, obtained according to steps 1–3. The average 
effect is indicated by a dashed line

Table 3   Relative impacts of 
individual characteristics on 
the estimated effects of having 
BMI ≥ 30 versus BMI < 30 on 
HDL (ln mmol/l), according to 
the proposed four-step method

Univariate (95% CI) Multivariate (95% CI)

Risky alcohol consumption 1.142 (0.986–1.324) 1.155 (1.000–1.334)
Smoker 0.886 (0.806–0.975) 0.890 (0.807–0.982)
Physical activity score (10,000 units, centered) 1.015 (0.955–1.079) 1.014 (0.954–1.078)
Energy intake (1000 kcal/day, centered) 0.967 (0.926–1.010) 0.949 (0.906–0.995)
Primary education 1.000 (ref) 1.000 (ref)
Secondary education 1.008 (0.906–1.122) 1.018 (0.914–1.134)
Tertiary education 1.081 (1.004–1.163) 1.077 (1.002–1.159)
Male 1.019 (0.961–1.080) 1.051 (0.987–1.120)
Age 45–49 0.995 (0.949–1.043) 1.001 (0.967–1.036)
Age 50–59 1.000 (ref) 1.000 (ref)
Age 60–68 1.001 (0.953–1.052) 0.991 (0.949–1.035)
Constant – 0.855 (0.817–0.895)
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In the graphs, we also inserted fitted quadratic curves, in 
order to highlight the possibility of relationships varying 
depending on whether the covariate is small or large. While 
the main purpose of the graphs is to detect variations in 
slopes, the levels of the curves are of less interest, but we 
have adjusted them vertically by − 0.015 to make their value 
at x = 0 correspond to the treatment effect of 0.855 for a 
person in the reference group (see Table 3).

In line with our estimates in Table 3, Fig. 4 suggests no 
clear relationship between physical activity and treatment 
effects—the pattern is quite flat. However, the stronger effect 
of obesity on HDL among those with higher energy intake 
is clearly confirmed in the second graph, where a downward 
slope can be seen. A visual inspection of the graphs suggests 
no clear evidence of non-linearity, although the fitted quad-
ratic curves indicate potentially accelerated effects among 
individuals with high physical activity or high energy intake. 
With results like these, the researcher may opt for a more 
sophisticated model and for example include quadratic terms 
when estimating determinants of the treatment effects in step 
4, although we abstain from this due to power concerns.

Discussion

Standard statistical models, such as regressions, are typically 
based on the implicit assumption that effects are homogene-
ous across individuals. This may often be unrealistic, as indi-
vidual outcomes are shaped through a complex combination 
of genetics, environmental exposures, and behaviors. When 
researchers ignore the possibility of heterogeneous effects 
they generate evidence that can be misleading for large sub-
groups of individuals. In this article, we proposed a way of 
assessing the role of heterogeneity in effects. The method 
is simple to implement, and results have a straightforward 

interpretation, as we only estimate main effects (on treat-
ment effects) rather than interactions (as would have been 
the case in an interaction model). The main prerequisite to 
apply our method is a basic understanding of the potential 
outcomes framework, a framework that is gaining increased 
popularity as attention in epidemiology is shifting towards 
the estimation of causal effects.

Some readers will notice that our approach has simi-
larities with multilevel/hierarchical models [25, 26], where 
treatment effects can be modelled as functions of covariates. 
Such models, however, make the most sense when observa-
tions can naturally be divided into groups, a scenario that 
is generally not at hand, at least not when covariates are 
continuous. There are also more complex approaches to 
analyze heterogeneity, such as models based on Bayesian 
inference, decision trees, and machine learning [27–30]. It is 
fully possible to implement versions of our approach where, 
for example, a more advanced strategy is used to obtain ITEs 
in steps 1–3.

The results from our simulation showed that the model 
works just as well as a correctly specified interaction model, 
both in terms of accuracy and precision. The results from 
our empirical example suggested that the effect of obesity 
on HDL may be larger in individuals smoke or have a higher 
energy intake, while being smaller in individuals with higher 
education or risky alcohol consumption. Graphical illustra-
tions provided easily interpreted summaries of the degree 
of (explained) variation in effects, and showed some evi-
dence of nonlinearities in the interplay between covariates 
and obesity.

The possibility to graphically inspect the heterogeneity in 
treatment is an important feature of our approach. Several 
different versions of the histograms can be considered, such 
as with restrictions on covariates or treatment status. Cor-
relation plots of treatment effects versus covariates are also 

Fig. 4   Estimated (relative) effects of obesity on HDL levels by different levels of physical activity or energy intake. Fitted quadratic curves have 
been inserted (vertically shifted in order for treatment effects at x = 0 to represent individuals in the reference group)
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useful for model-building and decisions about functional 
forms in the last step of the analysis.

As shown in Appendix 1, our approach is equivalent to a 
(single) imputation approach, where missing potential out-
comes are replaced by predicted ones. There is a large and 
expanding literature on how missing data may be imputed 
[31–35]. Methods include both single and multiple imputa-
tions, where the latter involve replacing each missing value 
with several imputed. Multiple imputation is often motivated 
for reasons of statistical inference, although single imputa-
tion combined with bootstrap has been shown to perform 
very well and sometimes better than multiple imputation in 
standard analyses [32].

It would certainly be possible to carry out our method 
with multiple imputation as well, imputing unobserved out-
comes in Eqs. (1) and (2) and then calculating treatment 
effects. This would allow for the scenario in Eq. (3), where 
the two error terms do not cancel. Under such a scenario, 
the imputed values could either be generated independently 
(under the extreme assumption of no correlation between 
the two error terms) or under some other assumption on 
the correlation structure [14, 21]. However, the structure 
of the relationship between the error terms cannot be 
known, as the two terms are never both observed for the 
same individual. Instead of imposing something arbitrary 
we therefore believe it to be a useful working assumption to 
postulate they are equal—or, equivalently to let the entity 
of interest be expected rather than actual treatment effects. 
The only consequence of this choice is that the variabil-
ity in the estimated treatment effects reduces, as the vari-
ance of Eq. (4) equals the variance of Eq. (3) minus the 
variance of Δ� . Allowing the error terms to vary within 
individuals, as in Eq. (3), would increase the variability in 
the histograms and decrease the precision of estimates, but 
leave the expected point estimates unchanged. More pre-
cisely, the histograms of treatment effects would be more 
dispersed but one would still obtain consistent parameter 
estimates under the assumption that error terms have expec-
tations of zero conditional on included covariates, since in 
Eq. (3), the expected conditional error term can be written 
E
[
Δ�||X] = E[�1 − �0

||X] = E[�1
||X]−E[�0||X

]
= 0 − 0 = 0.

Our empirical analysis was explorative and we ignored 
issues such as mass significance and multiple hypothesis 
testing. Just like standard analyses of main effects, analyses 
of heterogeneous effects may want apply multiple hypoth-
esis testing [36–38] and we believe that more research needs 
to be done on multiple hypothesis testing in the context of 
heterogeneity. Given our focus on exploration and the illus-
tration of a method, we also abstained from discussions of 
biological mechanisms.

Our method has some limitations. As in any observa-
tional analysis, unobserved confounding cannot be ruled 
out, and in our context this can mean either confounding 

of the overall treatment effect or confounded heterogeneity. 
The causal interpretation of the results relies on the ability 
to measure the confounding variables—to avoid confounded 
heterogeneity, particularly any factors that are both related to 
observed covariates and to the ITE. However, our approach 
can still be applied to study heterogeneity in association esti-
mates, which is useful for predictions.

As is generally the case, results may also depend on 
functional form and, in particular, the size and pattern of 
heterogeneous effects may depend on the scale chosen, e.g., 
additive or multiplicative scale [39]. In the present study, we 
have also restricted ourselves to linear models with continu-
ous outcomes and binary treatments, although outcomes in 
medicine are often binary or time-to-event, and treatments 
or exposures may not be binary. In future work we aim to 
address how the approach may be generalized and applied to 
different types of models with different outcomes.
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Appendix 1

We here show the equivalence of our method (steps 1–3) 
and a single imputation approach, where the errors from 
the regressions predicting the two potential outcomes are 
assumed to be equal. As noted, equality of the errors is 
reasonable in a well-specified linear model, where all het-
erogeneity arises from observed factors. We also assume 
that regressions are estimated on large enough data so that 
residuals equal errors, implying that the two residuals are 
equal to each other as well. This assumption may be relaxed 
if the focus of interest is on expected effects rather than 
actual ones, since the expected differences between the two 
residuals would still be zero.

Say that Y0i is observed and that Y1i needs to be imputed. 
This can be done according to:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Taking the difference between Y1i and Y0i then yields

This is exactly the expression implied by our method. The 
same result is also obtained if Y0i is missing whereas Y1i is 
observed, which can be verified analogously.

Appendix 2

We here show mathematically why scatterplots with out-
comes on the y-axis and residuals from regressions of one 
covariate on other covariates on the x-axis can be used to 
detect non-linear effects that do not suffer from confound-
ing. Our approach corresponds to a method that has previ-
ously been implemented in STATA [40] and builds on the 
“regression anatomy formula” [41], according to which a 
slope coefficient in a multiple linear regression model can 
just as well be obtained from a simple linear regression of 
the outcome on the above-mentioned residual.

For concreteness, assume that an outcome is determined 
by a quadratic polynomial plus an error term, and we want to 
assess non-linearity with respect to the first covariate X1 on 
the outcome (since the approach is general, we abstain from 
referring to the outcome as a treatment effect, although this 
is the outcome modeled in the article). We assume there are 
J main effects and that all two-way interactions are included:

To ease exposition, the first covariate X1 , its squared term, 
and its interactions with other covariates have been broken 
out of the terms summing over k. If X1 were independent 
of all other covariates, plotting the relationship between Y  
and X1 would have been unproblematic; the contributions 
of covariates other than X1 would then tend to be the same 
regardless of X1 , thus only adding random noise. Fitting a 
quadratic curve with no adjustment for confounding, one 
would obtain the following slope, which is obtained as the 

(7)

Y1i = 𝛼̂1 +

J∑

j=1

𝛽j1Xji + 𝜀̂1i = 𝛼̂1 +

J∑

j=1

𝛽j1Xji + 𝜀̂0i = 𝛼̂1

+

J∑

j=1

𝛽j1Xji +

(
Y0i − 𝛼̂0 −

J∑

j=1

𝛽j1Xji

)

(8)

Y1i − Y0i = 𝛼̂1 +

J∑

j=1

𝛽j1Xji − 𝛼̂0 −

J∑

j=1

𝛽j0Xji

= Δ𝛼̂ +

J∑

j=1

Δ𝛽j1Xji

(9)

Yi = a + b1X1i + c1X
2

1i
+

J∑

j=2

d1jX1iXji +

J∑

k=2

bkXki

+

J∑

k=2

ckX
2

ki
+

J∑

k=2

J∑

j>k

djkXjiXki + ei.

derivative of the outcome with respect to the first covariate, 
averaged over other covariates and the error:

However, with confounding factors, the pattern could 
look completely different, not reflecting true impacts of X1 . 
To proceed, assume that X1 is related to other covariates 
through the linear equation:

The square of Eq. (11) is:

Plugging (11) and (12) into (9) yields:

Equation (13) can be viewed as a function of the error u , 
where the latter may be estimated from Eq. (11). Notably, 
the error is unrelated to all covariates other than X1 and as 
a result, a plot of the outcome Y  versus the error will not be 
distorted by confounding. The derivative of Eq. (13) with 
respect to the error is:

In the special case where all covariates have means 
of zero (which implies that g = 0 ), this derivative equals 
b1 + 2c1

∑J

j=2
hjXji + 2c1ui +

∑J

j=2
d1jXji, which after taking 

averages over all covariates other than the first becomes:

(10)
dYi

dX1i

= b1 + 2c1X1i +

J∑

j=2

d1jXji.

(11)X1i = g +

J∑

k=2

hkXki + ui.

(12)

X2

1i
=

(
g +

J∑

k=2

hkXki + ui

)2

= g2 + 2g

J∑

k=2

hkXki + 2gui

+

J∑

k=2

J∑

j=2

hjhkXjiXki + 2

(
J∑

k=2

hkXki

)
ui + u2

i
.

(13)

Yi = a + b1

(
g +

J∑

k=2

hkXki + ui

)
+ c1(g

2
+ 2g

J∑

k=2

hkXki

+ 2gui +

J∑

k=2

J∑

j=2

hjhkXjiXki + 2

(
J∑

k=2

hkXki

)
ui

+ u2
i
) +

J∑

j=2

d1j

(
g +

J∑

k=2

hkXji + ui

)
Xji +

J∑

k=2

bkXki

+

J∑

k=2

ckX
2

ki
+

J∑

k=2

J∑

j>k

djkXjiXki + ei.

(14)
dYi

dui
= b1 + 2c1

(
g +

J∑

k=2

hkXki + ui

)
+

J∑

j=2

d1jXji.

(15)
dYi

dui
= b1 + 2c1ui.



833Assessing heterogeneous effects and their determinants via estimation of potential outcomes﻿	

1 3

This expression mirrors Eq. (10) in the case where all 
covariates have means of zero, implying that Eq. (15) can 
be used for an analysis of the effects of X1 on the outcome.

If X1 has mean zero whereas other covariates may not, 
then g = −

∑K

k=2
hkX̄ki and Eq. (14) becomes:

After averaging over all covariates other than the first, this 
equation mirrors (10), as desired.

In the case where also X1 may not be non-zero on average, 
a plot of the outcome versus the residuals will still give the 
accurate slopes, given that we consider the plot as horizon-
tally shifted. To see this, suppose we generate another vari-
able ũi = ui + X1i = ui + g +

∑J

j=2
hjXji , which is simply the 

error term shifted to the right by the average of X1 . The error 
u can now be written ui = ũi − g −

∑J

j=2
hjXji , and applying 

the chain rule, the derivative of the outcome with respect to 
ũ is determined as:

On average (averaging over all covariates except the first) 
this expression becomes:

Again, this exactly mirrors the average derivate of the 
outcome with respect to X1 when no confounding is present, 
as established by Eq. (10).

The same procedure (adding the mean of the covariate 
to the residual) can also be applied if covariates have been 
centered before the analysis but one would like to evaluate 
slopes with respect to the uncentered variable. Here, the 
derivative dYi

dui
 with respect to ui in (15) corresponds to the 

derivative dYi

dX1i

 in (10) with respect to (the centered) X1 . Con-
sidering Y  as a function of the uncentered rather than the 
centered version of X1 simply means shifting the Y  curve to 
the right by the average X1 , which is exactly the same shift 
that occurs when considering Y  as a function of ũ rather than 
u . Algebraically, this can also be verified by the chain rule.

(16)

dYi

dui
= b1 + 2c1

(
−

J∑

k=2

hkX̄ki +

J∑

k=2

hkXki + ui

)

+

J∑

j=2

d1jXji.

(17)

dYi

dũi
=

dYi

dui

dui

dũi
=

(
b1 + 2c1

(
g +

J∑

k=2

hkXki + ui

)
+

J∑

j=2

d1jXji

)
∗ 1

= b1 + 2c1

(
g +

J∑

k=2

hkXki + ui

)
+

J∑

j=2

d1jXji

= b1 + 2c1

(
g +

J∑

k=2

hkXki +

(
ũi − g −

J∑

j=2

hjXji

))
+

J∑

j=2

d1jXji

= b1 + 2c1

(
J∑

k=2

hkXki + ũi −

J∑

k=2

hkXki

)
+

J∑

j=2

d1jXji.

(18)
dYi

dũi
= b1 + 2c1ũi +

J∑

j=2

d1jXji.

Finally, while our main interest lies in the slope of the 
relationship between the outcome and the first covariate, we 
may also want to interpret the intercept. The average inter-
cept would be determined by setting u (as well as product 
terms involving it) equal to zero and letting other variables 
equal their averages. Assuming no nonlinearities (i.e., that 
the c and d parameters are zero) and that covariates are zero 
on average, the average intercept in Eq. (13) becomes:

This is obviously the same intercept as in Eq. (9), which 
describes the relationship between the outcome and the 
covariates.

In the event of nonlinearities, the average intercept in (13) 
becomes more complicated as squares and interaction terms 
between covariates appear as well. The average intercept 
in (13) will not quite correspond to an average intercept in 
Eq. (9), making interpretation more difficult. To give the aver-
age intercept a clearer interpretation, one possibility is to shift 
the entire fitted curve vertically so that the implied intercept 
corresponds to the estimated outcome for an individual in the 
reference group with X1 = 0 , while keeping the slope of the 
curve unchanged. We employ this strategy in our empirical 
example, where there is some evidence of non-linear effects.

Appendix 3

See Tables 4 and 5.

(19)Yi(0) = a + b1

(
g +

J∑

j=2

hjXji

)
+

J∑

j=2

bjXji = a.

Table 4   Simulation results as in Table  1 but with the correlation 
between X1 and X2 increased to 0.9

Result in the first column were obtained from the imputation/predic-
tion model outlined in steps 1–4 using bootstrap for statistical infer-
ence, whereas results in the second column were obtained from a 
standard regression model with interactions

Model Imputation Interaction

Average Δ̂� 3.001 3.001

Average Δ̂�1 1.003 1.003

Average Δ̂�2 0.493 0.493

Average Δ̂�3 − 0.000 − 0.000

Average standard error of Δ̂� 0.182 0.182

Average standard error of Δ̂�1 0.232 0.232

Average standard error of Δ̂�2 0.232 0.232

Average standard error of Δ̂�3 0.122 0.122

95% CI coverage Δ̂� 0.945 0.949

95% CI coverage Δ̂�1 0.939 0.947

95% CI coverage Δ̂�2 0.952 0.954

95% CI coverage Δ̂�3 0.944 0.948
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Appendix 4

See Tables 6.

Table 5   Simulation results as in 
Table 1 but with the correlation 
between X1 and X2 increased 
to 0.9 and X2 omitted from the 
heterogeneity analysis

Results in the first column were obtained from the imputation/prediction model outlined in steps 1–4 using 
bootstrap for statistical inference, whereas results in the second column were obtained from a standard 
regression model with interactions. In the imputation/prediction model, X2 was omitted from the last step 
and in the regression model with interactions, no interaction between treatment and X2 was included

Model Imputation Interaction

Average Δ̂� 3.013 2.947

Average Δ̂�1 1.438 1.400

Average Δ̂�3 0.033 0.012

Average standard error of Δ̂� 0.183 0.181

Average standard error of Δ̂�1 0.143 0.143

Average standard error of Δ̂�3 0.123 0.123

Table 6   Relative impacts of 
individual characteristics on 
the estimated effects of having 
BMI ≥ 30 versus BMI < 30 on 
HDL (ln mmol/l), according 
to a regression model with 
interactions

Heterogeneous effects of obesity on HDL levels (ln mmol/l), based on interaction models where all vari-
ables previously used in “step 1–3” were entered as main effects and either one or all variables previously 
used in “step 4” were interacted with obesity. Since univariate models (including only one interaction term) 
were run separately, there is no common main effect of obesity to be reported. Effects are multiplicative, as 
the outcome is measured in logarithms and we have exponentiated coefficient estimates

Univariate (95% CI) Multivariate (95% CI)

Interaction effects
Risky alcohol consumption 0.911 (0.737–1.125) 0.906 (0.730–1.124)
Smoker 0.897 (0.825–0.975) 0.907 (0.832–0.988)
Physical activity score (10,000 units, centered) 1.013 (0.955–1.073) 1.009 (0.952–1.070)
Energy intake (1000 kcal/day, centered) 0.978 (0.935–1.023) 0.964 (0.915–1.015)
Primary education 1.000 (ref) 1.000 (ref)
Secondary education 1.011 (0.888–1.151) 1.018 (0.893–1.161)
Tertiary education 1.090 (1.009–1.177) 1.085 (1.003–1.174)
Male 1.025 (0.963–1.091) 1.057 (0.983–1.135)
Age 45–49 0.960 (0.881–1.046) 0.967 (0.884–1.058)
Age 50–59 1.000 (ref) 1.000 (ref)
Age 60–68 1.012 (0.952–1.076) 0.999 (0.936–1.065)
Main effect of obesity – 0.857 (0.810–0.906)
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