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Abstract

Posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) are common stress-related psychiatric disorders. Genetic
and neurobiology research has supported the viewpoint that PTSD and MDD may possess common and disorder-specific underlying
mechanisms. In this systematic review, we summarize evidence for the similarities and differences in brain functional and structural
features of MDD, PTSD, and their comorbidity, as well as the effects of extensively used therapies in patients with comorbid PTSD and
MDD (PTSD + MDD). These functional magnetic resonance imaging (MRI) studies highlight the (i) shared hypoactivation in the pre-
frontal cortex during cognitive and emotional processing in MDD and PTSD; (ii) higher activation in fear processing regions including
amygdala, hippocampus, and insula in PTSD compared to MDD; and (iii) distinct functional deficits in brain regions involved in fear
and reward processing in patients with PTSD + MDD relative to those with PTSD alone. These structural MRI studies suggested that
PTSD and MDD share features of reduced volume in focal frontal areas. The treatment effects in patients with PTSD + MDD may cor-
relate with the normalization trend of structural alterations. Neuroimaging predictors of repetitive transcranial magnetic stimulation
response in patients with PTSD + MDD may differ from the mono-diagnostic groups. In summary, neuroimaging studies to date have
provided limited information about the shared and disorder-specific features in MDD and PTSD. Further research is essential to pave
the way for developing improved diagnostic markers and eventually targeted treatment approaches for the shared and distinct brain
alterations presented in patients with MDD and PTSD.
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Introduction al.,, 2012). Recently, a meta-analysis of randomized controlled tri-

Posttraumatic stress disorder (PTSD) and major depressive disor-
der (MDD) are common stress-related psychiatric disorders asso-
ciated with significant psychosocial and neurocognitive dysfunc-
tion (Godard et al., 2012; Thomas et al.,, 2010). Further, comorbid
MDD is common in patients with PTSD, with approximately half of
people with PTSD being diagnosed with comorbid MDD (Flory and
Yehuda, 2015; Rytwinski et al., 2013). Prolonged trauma seems to
be a major risk factor for comorbid PTSD and MDD (PTSD + MDD)
(Kostaras et al., 2017). One explanation for the high comorbid-
ity rate is that it may reflect overlapping symptoms of the two
disorders, such as sleep disturbance, anhedonia, and concentra-
tion impairments (Flory and Yehuda, 2015). An alternative view
is that the co-occurrence of PTSD and MDD possibly represents
a subtype of PTSD (Flory and Yehuda, 2015). Individuals with
PTSD 4+ MDD tend to have more severe clinical symptoms and
neurocognitive impairments (e.g. verbal memory and attention
deficits), greater risk for suicidal behavior than individuals with
PTSD or MDD alone (Dold et al., 2017; Nijdam et al., 2013; O’'Donnell
et al., 2004), and diminished overall treatment efficacy and in-
creasing chronicity (Kaplan and Klinetob, 2000; Pukay-Martin et

als proved that the co-occurrence of depression may act as a risk
factor for attenuated response in PTSD psychotherapies (Kline et
al., 2021). Together, these issues call for intensive research on the
overlaps and differences in the neural mechanisms in MDD and
PTSD.

A series of studies of various research areas have been con-
ducted to deepen our understanding of the underlying mech-
anisms of MDD and PTSD, mainly involving genetic and epi-
genetic factors, gene-environment interactions, neurotransmit-
ter systems, and neuroendocrine function. Genetic and epige-
netic research has supported the viewpoint that PTSD and MDD
may possess common and disorder-specific gene expression pat-
terns, mainly associated with neuroendocrine and neurotrans-
mitter systems. Specifically, previous genetics studies revealed
that PTSD and MDD had consistent and opposing directionality of
molecular findings in epigenetic processes and genes expression
of glucocorticoid receptor and FK506 binding protein 51 (FKBP5S)
(Yehuda et al., 2015; Zannas and Binder, 2014). A recent cross-
trait meta-analysis identified 29 genomic loci shared in PTSD and
MDD, and held the view that MDD is influenced by a broader
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spectrum of causal gene variants than PTSD (Zhang et al., 2022).
Moreover, one post mortem study performing RNA sequencing in
the prefrontal cortex (PFC) and amygdala regions revealed that
overlapping gene expression patterns were associated with de-
creased immune signaling and neuroinflammation in MDD and
PTSD, and a limited number of PTSD-specific differentially ex-
pressed genes were associated with subpopulations of GABAergic
inhibitory neurons (Jaffe et al., 2022). A positron emission tomog-
raphy study reported lower monoamine oxidase-B levels in corti-
colimbic brain areas in PTSD with comorbid MDD compared with
PTSD alone (Gill et al., 2022). In the aspect of gene-environment
interaction, the most extensive analyses have focused on FKBPS
and have elucidated that interaction between FKBPS genotype
and childhood trauma is associated with increased risk for stress-
related disorders including PTSD and MDD (Smoller, 2016). In
terms of neuroendocrine function and neurotransmitter systems,
common and distinct changes have been reported in MDD and
PTSD. Concretely, the abnormal functioning of the hypothalamic-
pituitary-adrenal axis has been supposed to play a key role in the
development of PTSD and MDD (Dunlop and Wong, 2019; Pari-
ante and Miller, 2001). Both MDD and PTSD were associated with
alterations in dopaminergic (Ney et al., 2021; Shen et al., 2012)
and serotonergic transmission (Dell’Osso et al., 2016; Southwick
et al., 1999). Collectively, these genetic and neurobiology studies
have contributed to setting a stronger foundation for research
on the shared and distinct neuroimaging markers of MDD and
PTSD.

The mono-diagnostic and transdiagnostic neuroimaging stud-
ies have enabled qualitative and quantitative comparisons of
MDD and PTSD, respectively. To date, numerous mono-diagnostic
neuroimaging studies using magnetic resonance imaging (MRI)
have identified functional and structural abnormalities in MDD
and PTSD. Functional MRI (fMRI) studies have demonstrated al-
terations in core functional networks including the default mode
network (DMN), executive control network (ECN), and salience
network (SN) in both disorders (Albert et al., 2019; Bao et al., 2021).
Similar effects of behavioral treatments on normalizing neural
functional alterations have been reported (Shou et al,, 2017; Yang
et al., 2018a, 2018b). Common neural correlates in structural MRI
have also been frequently found in the two disorders, including
reduced gray matter volume in the insular and anterior cingulate
cortices (ACC) (Bora et al., 2012; Bromis et al., 2018; O’'Doherty et
al., 2015). In summary, these mono-diagnostic neuroimaging stud-
ies provided indirect evidence for similar functional and struc-
tural abnormalities in MDD and PTSD. In the past two decades,
a limited number of case-control transdiagnostic neuroimaging
studies have focused on direct comparisons of MDD and PTSD,
aiming to identify common and divergent underlying neural sig-
natures. In particular, increasing attention has been paid to indi-
viduals with PTSD + MDD. Some studies examined the effects of
MDD comorbidity on brain activity and structure in the context of
PTSD (Kemp et al., 2007; Lanius et al., 2007; van Rooijj et al., 2015).
Advances in estimating the relevance/interaction effect between
MDD and PTSD are now available. We therefore performed a sys-
tematic review to provide a more comprehensive knowledge of
extant studies probing the similarities and differences in the un-
derlying neural pathophysiology of MDD and PTSD in adult pop-
ulation, displaying the existing research gaps and making corre-
sponding suggestions for future research. Of note, the summa-
tive conclusions may provide potential targets for neuroregula-
tory intervention in MDD and PTSD, especially comorbid MDD
and PTSD.

Methods

The present review was conducted according to the Preferred Re-
porting Items for Systematic reviews and Meta-Analyses (PRISMA)
guidelines. We searched PubMed using the following key words:
‘MDD’ OR ‘major depressive disorder’ OR ‘depression’; ‘PTSD’ OR
‘posttraumatic stress disorder’ OR ‘post-traumatic stress disor-
der’; and ‘functional MRI' OR ‘task-based’ OR ‘fMRI' OR ‘resting-
state’ OR ‘functional connectivity’ OR ‘diffusion’ OR ‘DTI' OR
‘GMV’ OR ‘grey matter’ OR ‘gray matter’ OR ‘VBM’ OR ‘voxel-
based morphometry’ OR ‘surface-based morphometry’ OR ‘corti-
cal thickness’. The reference lists of the articles included in re-
lated review and meta-analyses were also checked for relevant
studies. We screened 735 studies published before 30 August 2024,
and included original neuroimaging studies that: (i) directly com-
pared patients with PTSD and those with MDD; (ii) compared indi-
viduals with PTSD + MDD to those with PTSD alone or MDD alone;
(iii) explored the effects of treatments on ameliorating depres-
sion and PTSD symptoms in patients with PTSD + MDD; and (iv)
found potential neuroimaging features for classification of MDD
and PTSD (MDD alone vs PTSD alone, MDD alone vs PTSD + MDD,
or PTSD + MDD vs PTSD alone). Studies in children, adolescents
or geriatrics were not included in the present review. We excluded
studies that did not examine the neuroimaging features using
MRI. We also excluded case reports and review articles, unless
they included a meta-analysis. To provide supplementary infor-
mation, we gave an overview of these meta-analyses providing a
quantitative analysis of neuroimaging findings between PTSD and
MDD.

We extracted authors, year of publication, sample categories
and size, neuroimaging methods, and key findings. Each enrolled
cross-sectional study was assessed for quality by two indepen-
dent reviewers (L.L. and JJ.) using a 12-point checklist adapted
from previous meta-analytic studies (Brambilla et al., 2003; Shep-
herd et al, 2012). This checklist was modified to reflect critical
variables essential in assessing the quality of included original
studies. Each item was scored 1, 0.5, or 0 if the criteria were fully,
partially or not met, respectively (summarized in Table S1). Addi-
tionally, we recorded the therapy, symptom relief, neuroimaging
predictors, and treatment-related findings for studies in patients
with PTSD + MDD.

Results

The literature search using PubMed yielded 735 results. We
screened the titles and abstracts of these 735 records. Two origi-
nal studies were not included as they enrolled patients with MDD
or PTSD who experience own-thought auditory verbal hallucina-
tions (Zhuo et al.,, 2020a, 2020b). It left 28 relevant studies for re-
view (see Fig. 1). Among them, 17 original studies focused on the
disease-related neural traits, including eight papers using resting-
state fMRI (Averill et al., 2024; Gong et al., 2017, 2019a; Kennis
et al.,, 2013; Koopowitz et al., 2023; Yuan et al., 2019; Zhu et al,
2017; Zilcha-Mano et al., 2020), six studies using task-based fMRI
(Bryant et al., 2021; Keller et al., 2022; Kemp et al., 2007; Lanius
et al., 2007; van Roojj et al., 2015; Whalley et al., 2009), and three
structural MRI studies (Dai et al.,, 2020; Gong et al., 2019b; Kroes
et al, 2011) (summarized in Table 1). The quality scores ranged
from 10.5 to 11.5 (mean score 11.1) shown in Table S2, demon-
strating that most included original studies were of relatively high
quality. Five original studies explored the potential neural mecha-
nisms and/or predictors of response to treatments in PTSD + MDD


https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae022#supplementary-data
https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae022#supplementary-data

Common and divergent neuroimaging features in MDD and PTSD | 3

665 records excluded due to:

—»| -children, adolescent or geriatrics

-co-occurence of psychotic symptoms

42 articles excluded due to:

-Not original articles or meta-analyses

Figure 1: Flow chart showing the selection of studies.

populations (Barredo et al., 2021; Dai et al.,, 2020; Henigsberg et
al., 2011; Philip et al, 2018; Yang et al., 2018b) (summarized in
Table 2). A total of seven meta-analyses have reported the shared
and/or distinct neuroimaging findings between MDD and PTSD
(Bromis et al., 2018; Janiri et al., 2020; Jenkins et al., 2016; McTeague
et al.,, 2017; Schulze et al., 2019; Serra-Blasco et al., 2021; Wang et
al., 2024) (summarized in Table 3). A graphical representation of
the key brain regions with similar or distinct neuroimaging fea-
tures among MDD alone, PTSD alone, and PTSD + MDD cohorts is
shown in Fig. 2.

Functional MRI in PTSD and MDD

Comparisons between PTSD and MDD

We identified three task-based fMRI studies directly comparing
the MDD and PTSD groups (Bryant et al., 2021; Keller et al., 2022;
Whalley et al.,, 2009). The region of interest (ROI) fMRI study by
Bryant et al. reported that patients with PTSD demonstrated sig-
nificantly greater activation than MDD in multiple regions in-
volved in amygdala and striatal-subcortical pathways during an
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emotion processing task (Bryant et al, 2021). Common effects
across MDD and PTSD groups relative to controls were not ex-
plored in that study. Furthermore, Whalley et al. demonstrated
greater activation during the memory retrieval process in patients
with PTSD compared to depressed group in multiple brain re-
gions including amygdala, hippocampus, and insula, while areas
of shared alteration relative to healthy controls (HC) were not
reported (Whalley et al.,, 2009). In addition, Keller et al. reported
less focal neural activation in the right dorsomedial PFC and in-
ferior frontal gyrus during cognitive reappraisal in both MDD and
PTSD relative to HC, as well as MDD-specific reduced activation in
the left middle temporal cortex and supplementary motor cortex
(Keller et al., 2022). Notably, Keller et al. found clinical group differ-
ences in multiple regions involving DMN, SN, ECN, and auditory
network using the seed-to-voxel and voxel-to-voxel functional
connectivity (FC) analyses during cognitive reappraisal process,
emphasizing the PTSD-specific features of overactive and hyper-
connected SN (Keller et al., 2022). Despite involving various trauma
events, these studies showed that MDD and PTSD had shared hy-
poactivation in the PFC, a region critical for threat detection and
evaluation, and inhibitory control of emotion and memory expres-
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sion, while higher activation in SN and fear processing regions in-
cluding amygdala, hippocampus, and insula was mainly observed
in PTSD relative to MDD group during cognitive and emotional
processing (Fig. 2). One relevant study found that left dorsolateral
PEC activation during a cognitive control task was negatively cor-
related with depression severity across MDD and PTSD (Yang et
al., 2018b), suggesting the common neural alteration possibly as-
sociated with the overlapping depressive symptoms.

These meta-analyses based on task-related fMRI studies have
provided additional information to support the viewpoint that
MDD and PTSD may have transdiagnostic and disorder-specific
features in brain function during the execution of tasks, mainly
involving the SN and fear processing regions (Janiri et al., 2020;
McTeague et al, 2017; Schulze et al., 2019; Wang et al.,, 2024).
Aiming to investigate transdiagnostic and disorder-specific neu-
ral abnormalities during the processing of negative affective stim-
uli, Schulze et al. conducted comparative meta-analyses in task-
related fMRI studies in borderline personality disorder, MDD, and
PTSD (Schulze et al., 2019). Results for individual disorders demon-
strated decreased activation in the right amygdala in MDD con-
trasting with enhanced activation in PTSD compared with HC. Di-
rectly compared to MDD, individuals with PTSD showed enhanced
activation in the leftinferior and superior frontal gyri, right middle
frontal gyrus, and bilateral amygdala and hippocampus. Conjunc-
tion analysis identifying the transdiagnostic neural activation il-
lustrated a hyperactivation of the right median cingulate gyrus as
well as hypoactivation of the right middle frontal gyrus and mid-
dle occipital gyrus. Another meta-analysis of task-related fMRI
studies by Janiri et al. identified transdiagnostic clusters of hypoac-
tivation in regions primarily involved in inhibitory control and
salience processing (i.e. inferior PFC/insula, inferior parietal lob-
ule, and putamen) across psychiatry disorders including MDD and
PTSD (Janiri et al., 2020). Moreover, a transdiagnostic neuroimaging
meta-analysis by McTeague et al. investigated the neural circuitry
disruptions underlying cognitive control processing across psychi-
atric disorders including MDD and PTSD (McTeague et al., 2017).
This study revealed abnormal activation in multiple regions, such
as the PFC, anterior insula, and so on. Recently, the meta-analysis
by Wang et al. also supported the viewpoint that PTSD and MDD
share similar neural activation in the PFC (Wang et al., 2024).

In addition, we identified four resting-state fMRI studies that
compared MDD and PTSD directly (Averill et al.,, 2024; Gong et
al., 2017, 2019a; Koopowitz et al., 2023). Among them, the two
studies by Gong et al. enrolled patients with PTSD who had ex-
perienced the same trauma event of 2008 Sichuan earthquake
(Gong et al., 2017, 2019a). Focusing on networks of interest (i.e.
DMN, ECN, and SN), Gong et al. revealed transdiagnostic reduc-
tions in intra-network connectivity of the DMN and no signifi-
cant difference in inter-network connectivity among HC, PTSD,
and MDD groups (Gong et al.,, 2017). Another study by Gong et
al. applied psychophysiological interaction analysis to measure
the resting-state effective connectivity between the medio-dorsal
thalamic nucleus and rest of the cortex (Gong et al, 2019a).
In this study, Gong et al. identified transdiagnostic features of
stronger effective connectivity between the medio-dorsal thala-
mic nucleus and neocortex (several prefrontal and parietal re-
gions bilaterally such as postcentral gyrus, supramarginal gyrus,
and medial superior frontal gurus) in medication-naive MDD and
PTSD cohorts relative to the HC. Koopowitz et al. recently re-
cruited mothers at the 18-month postpartum time point and di-
vided them into four groups: PTSD, MDD, PTSD + MDD, and con-
trols (Koopowitz et al., 2023). FC within and between higher or-
der cognitive control networks, including the SN, dorsal atten-

tion network (DAN), frontoparietal network, and DMN were com-
pared across the four groups. Koopowitz et al. found that PTSD
with comorbid MDD showed greater intrinsic FC within the right
frontoparietal network, relative to the controls and the mono-
diagnostic groups. Compared to PTSD group and controls, MDD
group showed greater FC within the DMN, and weaker FC within
the left frontoparietal network. No group differences in inter-
network connectivity were observed in this study. Recently, Aver-
ill et al. compared the longitudinal alterations of DMN strength
following a mild experimental stressor in MDD and PTSD (Aver-
ill et al,, 2024). This study revealed a stress-induced reduction
in DMN strength in PTSD group while increased DMN strength
in MDD group. Notably, the researchers also demonstrated a
significant main effect of group, showing significantly reduced
DMN strength in the PTSD group relative to MDD group. Over-
all, these fMRI studies support the viewpoint that DMN dysfunc-
tions, especially a functional impairment of the PFC, are impli-
cated in the pathophysiology of MDD and PTSD. A fuller pre-
sentation of findings of these original fMRI studies is shown in
Table 1.

Comparisons between PTSD + MDD and PTSD alone

Patients diagnosed with PTSD might have either subthreshold de-
pression or meet criteria for MDD. Individuals with PTSD + MDD
often exhibit greater functional and occupational impairments
and poorer treatment response than participants with PTSD alone
(Kessler et al.,, 2005), raising interest in underlying neurobiologi-
cal differences and similarities between patients with PTSD alone
and those with PTSD + MDD. In the present review, we identi-
fied three task-related neuroimaging studies examined the effects
of MDD comorbidity on neural activity in the context of PTSD
(Kemp et al., 2007; Lanius et al., 2007; van Roojj et al., 2015). Dur-
ing a trauma script-driven imagery procedure, Lanius et al. found
that both PTSD + MDD and PTSD alone groups revealed decreased
brain activation in the ACC and right ventrolateral PFC relative to
traumatized controls, whereas the PTSD + MDD group had lower
insula activation, less reduction in ACC and higher posterior cin-
gulate cortex (PCC) activation versus patients with PTSD alone
(Lanius et al., 2007). Another fMRI study reported that decreased
subgenual ACC (sgACC) activation was related to the MDD sta-
tus within the PTSD group during trauma-unrelated emotional
processing (van Rooij et al., 2015). The opposite findings in the
ACC of the two studies (Lanius et al., 2007; van Rooij et al., 2015)
possibly relate to the various trauma type (veteran experience vs
motor vehicle accident) and imagery procedure stimuli (trauma-
driven vs trauma-unrelated), but this needs further examination.
Some fear-related regions such as amygdala and PFC in PTSD are
more likely to be activated by negative stimuli than they are in
PTSD + MDD. Supporting this view, Kemp et al. found lower activ-
ity in the amygdala and medial PFC in response to fear stimuli in
patients with PTSD + MDD compared to patients with PTSD alone
(Kemp et al., 2007). Of special interest, the PTSD alone group in this
study showed increased activation in the right amygdala while the
PTSD + MDD group showed decreased activation in the left amyg-
dala relative to the HC. As the most common fMRI finding in in-
dividuals with PTSD, amygdala hyperactivity has been thought to
facilitate associative fear learning and result in stronger fear as-
sociations (Harnett et al., 2020). The findings of Kemp et al. hinted
the effects of comorbid depression on amygdala activation in the
context of PTSD.

Several resting-state fMRI studies investigating whether
PTSD + MDD comorbidity holds an underlying neural basis
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Figure 2: Key brain regions that showed similar or distinct neuroimaging features among MDD alone, PTSD alone, and PTSD + MDD cohorts.

Abbreviations: HIP, hippocampus; OFC, orbitofrontal cortex.

different from PTSD alone have focused on regions related to
fear and reward processing, such as ACC, insula, amygdala, and
nucleus accumbens (NAcc) (Fig. 2). The study by Kennis et al .
used the sgACC and insula as seeds to investigate whether or
not comorbid MDD contributes to the FC alterations in veter-
ans with PTSD (Kennis et al., 2013). Kennis et al. found that FC
of the sgACC with the thalamus and perigenual parts of the
ACC can distinguish PTSD + MDD from PTSD alone, suggesting
that these features may serve as a neurobiological marker for
comorbid depression in PTSD population (Kennis et al, 2013).
Besides, Kennis et al. also reported that reduced FC of insula-
hippocampus in PTSD + MDD relative to PTSD alone might
be due to medication effects, raising an issue that needs more
attention in future research. The amygdala, another core region
in the fear circuit, has been suggested to be involved in the
pathophysiology of both PTSD and MDD. Recent studies have
identified the specialized roles of basolateral (BLA) and cen-
tromedial amygdala (CMA) during fear conditioning (Ciocchi et
al., 2010; Mahan and Ressler, 2012). Considering the dissociable
functions of the BLA and CMA, Zhu et al. conducted the first
study investigating amygdala FC at the subregional level between
PTSD alone and PTSD 4+ MDD with seeds of BLA, CMA, and NAcc
(Zhu et al,, 2017). They found that PTSD + MDD group exhibited
weaker FC of BLA-orbitofrontal cortex, Nacc-thalamus, and NAcc-
hippocampus relative to either PTSD alone or trauma-exposed
HC, whereas there was no significant difference between PTSD
alone and trauma-exposed HC, suggesting that deficits in NAcc
and amygdala pathways involved in fear and reward processing
are prominently and selectively altered in PTSD + MDD. The
findings of Zhu et al. are consistent with evidence that individuals

with PTSD + MDD have more severe illness and need more robust
intervention.

To eliminate the potential influences of predefined ROI, var-
ious trauma types and medication treatment, Yuan et al. per-
formed a whole-brain group analysis to comprehensively explore
the functional networks involving the subregional amygdala in
drug-naive individuals with PTSD + MDD and PTSD alone ex-
posed to the same massive earthquake (Yuan et al., 2019). Yuan
et al. found that weaker BLA-right putamen/pallidum connectiv-
ity in PTSD + MDD was related to comorbid depression severity,
as opposed to greater PTSD symptom severity in PTSD + MDD.
In addition, PTSD + MDD group also showed weaker FC be-
tween right BLA with left ACC/supplementary motor area and left
putamen/pallidum, as well as greater CMA connectivity with left
ACC/supplementary motor area. These findings suggest that spe-
cific FC dysfunctions may distinguish PTSD + MDD from PTSD
alone at the whole-brain level. In line with this view, Zilcha-
Mano et al. further demonstrated the clinical utility of within-
and between-networks connectivity features in differentiating in-
dividuals with PTSD alone from those with PTSD + MDD by means
of a support vector machine model with accuracy achieving 76.7%
(Zilcha-Mano et al., 2020). The most discriminative features in-
cluded within-network FC in the basal ganglia network (BGN),
DAN, and SN. Group analysis of these FC biomarkers demon-
strated higher within-network connectivity in the BGN but lower
within-network connectivity in the ECN, SN, and DAN in PTSD
alone, versus PTSD + MDD. Overall, these studies propose proof
for the effects of comorbid MDD on the brain in PTSD populations,
suggesting the potential application of neuroimaging markers in
differential diagnosis of PTSD.
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Structural MRI in PTSD and MDD

Although past mono-diagnostic neuroimaging studies demon-
strated that PTSD and MDD may share similar abnormalities
in neuroanatomical substrates, few studies have contrasted the
neuroanatomical alterations in MDD with those in PTSD. In the
present review, we identified two studies using voxel-based mor-
phometry (VBM) (Gong et al.,, 2019b; Kroes et al., 2011), and one
study using tensor-based morphological method (Dai et al., 2020).
Various trauma types, analysis methods and sample types of
these structural MRI studies make it impossible to make any sum-
mative conclusions. Specifically, Kroes et al. used VBM analysis to
identify associated volumetric changes of PTSD and MDD, versus
trauma-exposed HC. The research group found similar volume re-
ductions predominantly in prefrontal areas (i.e. middle cingulate
gyrus, medial PFC, ACC, orbitofrontal cortex, and dorsolateral PFC)
but no significant difference between PTSD and MDD (Kroes et al.,
2011). Considering the similar levels of depression severity in the
PTSD and MDD groups, Kroes et al. suggested that existing findings
of gray matter reductions in prefrontal areas may not be specific to
PTSD but rather related to features shared with other conditions,
such as depression. In another VBM study, Gong et al. identified
a transdiagnostic marker of increased putamen volume in four
psychiatric groups (i.e. PTSD, MDD, obsessive-compulsive disorder,
and psychosis) relative to HC by diagnosis-specific comparisons
(e.g. PTSD vs HC, and MDD vs HC) (Gong et al., 2019b). It is worth
noting that the comorbid disorders of these participants were not
recorded, and the research group did not conduct a direct com-
parison between MDD and PTSD in this study. Using tensor-based
morphological analysis, Dai et al. investigated the regional volume
differences for 29 HC participants and 21 patients with MDD, in-
cluding 10 participants with comorbid PTSD (Dai et al., 2020). They
found that both MDD alone and PTSD + MDD groups showed
smaller volume in right opercular inferior frontal gyrus relative
to HC, only the MDD alone group showed smaller volume in left
orbital inferior frontal gyrus compared to HC, and no significant
difference was found between the MDD alone and PTSD + MDD
groups (Table 1). The reliability and reproducibility of the findings
need to be further verified in view of the small sample size. To pro-
vide more information, we also paid attention to relevant stud-
ies aiming to identify specific depression-related neuroanatom-
ical abnormalities in the context of PTSD. Using FreeSurfer to
analyze the volume of hippocampal subfields, Averill et al. pro-
vided the first evidence relating both PTSD and depression symp-
toms to structural alteration in the hippocampus-amygdala tran-
sition area, one region highly connected to prefrontal-amygdala
circuitry, while dentate gyrus abnormalities were associated with
depression severity but not PTSD symptoms (Averill et al., 2017).
Several meta-analyses of structural MRI studies have been con-
ducted recently to provide additional information. Bromis et al.
conducted a statistical comparison of the ROI meta-analysis of
PTSD with a previous meta-analysis of MDD (Bromis et al., 2018).
Both PTSD and MDD showed reduced hippocampal volume com-
pared to HC, with no difference between the patient groups in this
region. Compared to patients with PTSD and HC, patients with
MDD had significantly reduced thalamus volume. Patients with
PTSD had reduced total brain volume, relative to MDD and HC.
Serra-Blasco et al. recently analyzed common and specific gray
matter volume characteristics by conducting a meta-analysis of
VBM studies of MDD, anxiety disorders, and PTSD with samples
with no or minimal percentages of comorbidities (Serra-Blasco et
al., 2021). The pairwise comparison results (MDD vs PTSD) showed
no significant difference for MDD and PTSD, whereas the con-

junction analysis did show that the two disorders shared gray
matter reduction in the left middle cingulate cortex when ap-
plying a more liberal threshold (P < 0.01, uncorrected). From a
connectomic perspective, the Enhancing Neuroimaging Genet-
ics through Meta-Analysis (ENIGMA)-Psychiatric Genomics Con-
sortium used cortical thickness to construct structural covari-
ance networks, and then calculated the cortical thickness-based
centrality, a measure that characterizes the number of connec-
tions of a region. The researchers found that participants with
PTSD + MDD showed higher centrality in the medial PFC and
lower centrality in right visual cortex compared to PTSD alone
(Rakesh et al., 2023). Synthesizing the findings of these original
studies and meta-analyses, we concluded that structural abnor-
malities in the PFC would be the most reliable findings across
MDD and PTSD.

To identify transdiagnostic white matter alterations, Jenkins et
al. conducted transdiagnostic meta-analysis and disorder-specific
meta-analyses of fractional anisotropy (FA) studies across five
emotional disorders including MDD and PTSD (Jenkins et al., 2016).
The transdiagnostic meta-analysis revealed commonalities in re-
duced FA in emotional disorders compared to HC in multiple
white matter tracts, including the left anterior thalamic radia-
tion (ATR), bilateral superior longitudinal fasciculi, and so on. The
disorder-specific meta-analyses showed that the two largest peaks
of reduced FA in MDD contrasts were in the left ATR and superior
longitudinal fasciculus. Reduced FA in the left uncinate fascicu-
lus and superior longitudinal fasciculus was identified in the PTSD
contrasts, however, the two regions were inferior to those identi-
fled in MDD. To sum up, the PTSD group was the most distinct,
with no clusters of reduced FA overlapping with any other emo-
tional disorders. Yielding the largest studies, the ENIGMA Consor-
tium examined the overlap in white matter deficit patterns across
disorders (Kochunov et al.,, 2022). The researchers adopted diffu-
sion tensor imaging analytic workflow based on tract-based spa-
tial statistics to extract 24 regional tractwise FA values for the en-
tire white matter skeleton. They demonstrated that white matter
deficits of PTSD showed only weak parallels with those seen in
MDD. The two meta-analyses of FA studies support the anatomi-
cal specificity of white matter deficits in MDD and PTSD (Jenkins
et al., 2016; Kochunov et al., 2022). Although these gray and white
matter structural findings derived from secondary analyses of
these original studies need further verification, they raise aware-
ness of the potential importance of further studying the common
and unique neuroanatomical alterations associated with MDD
and PTSD.

Poter_ltial neural mechanisms and .
predictors of response to treatments in

PTSD + MDD populations

To date, a series of reviews have summarized the clinical appli-
cation of these therapeutic methods in treating MDD and PTSD
mainly including antidepressants (e.g. selective serotonin re-
uptake inhibitors, serotonin/norepinephrine reuptake inhibitors,
and ketamine), repetitive transcranial magnetic stimulation
(TMS), and psychological intervention (e.g. acceptance and com-
mitment therapy, cognitive therapy, and cognitive behavioral ther-
apy) (Akhtar and Pilkhwal Sah, 2021; Cui et al., 2024; Hidalgo
and Davidson, 2000; Hung et al., 2011; Jeffreys et al., 2012). Given
that individuals with PTSD + MDD tend to have more severe
clinical symptoms and greater risk for suicidal behavior com-
pared to patients with PTSD alone or MDD alone, we therefore
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specifically focused on these studies exploring the underlying
neural mechanisms of therapeutic effects that may correlate with
the overlapped and/or disorder-specific neuroimaging features in
PTSD + MDD populations. So far, a limited number of MRI studies
have purely investigated the potential neural mechanisms of ther-
apeutic response in PTSD + MDD populations, mainly involving
selective serotonin reuptake inhibitors, ketamine, and repetitive
TMS.

Antidepressant medication

There is increasing evidence to support the use of antidepres-
sants, particularly the selective serotonin reuptake inhibitors, as
first-line therapy in MDD and PTSD (Akhtar and Pilkhwal Sah,
2021; Culi et al., 2024; Hidalgo and Davidson, 2000). Enrolling pa-
tients with PTSD + MDD, Henigsberg et al. measured changes of
neuronal marker N-acetyl-aspartate, choline (CHO), and creatine
using proton magnetic resonance spectroscopy in responders to
antidepressant treatment with selective serotonin reuptake in-
hibitors (Henigsberg et al., 2011). They found significant increase
in choline/creatine ratio following the antidepressant treatment,
suggesting increased turnover of cell membranes as a mechanism
of the antidepressant drug therapy. Of note, research into pharma-
cotherapy for PTSD + MDD indicated that higher doses of antide-
pressant drugs may be needed than for patients with PTSD alone
(Chiba et al., 2016). Available first-line antidepressant medications
require several weeks to produce a full therapeutic response, and
many patients fail to achieve remission. Thus, regarding individ-
uals with PTSD + MDD, most attention has been focused on the
antidepressant ketamine, an N-methyl-D-aspartate (NMDA) glu-
tamate receptor antagonist that can rapidly (within 1 day) pro-
duce an antidepressant response and treat suicidality (Feder et
al., 2014; Kritzer et al., 2022; Zarate et al., 2006).

Neuronal atrophy and glutamatergic signaling dysfunction cat-
alyzed by stress have been implicated in cognitive deficits associ-
ated with PTSD and depression (Millan et al., 2012; Musazzi et al.,
2013; Popoli et al., 2011). Ketamine has shown potential as a novel
glutamate-targeting antidepressant for patients who do not re-
spond to treatment with first-line antidepressants with MDD and
PTSD (Derakhshanian et al, 2021; Kritzer et al., 2022). It rapidly
increases serotonergic neurotransmission and restores effective
PFC synaptic connections (Holmes et al., 2022; Li et al., 2010). Ev-
idence suggests that repeated ketamine infusions are efficacious
in rapidly ameliorating both PTSD and MDD symptoms (Albott et
al.,, 2018; Artin et al., 2022) and contribute to improvement of work-
ing memory in individuals with PTSD + MDD (Albott et al., 2022).
Dai et al. reported significant improvement of both depression and
PTSD symptoms in PTSD + MDD participants after a single infu-
sion of ketamine administration (Dai et al., 2020). Artin et al. found
distinct effects of ketamine on depression and PTSD symptoms
(Artin et al., 2022), suggesting potentially different modes of ac-
tion on corresponding underlying mechanisms. Recently, Johnston
et al. provided an overview of ketamine use in psychiatric disor-
ders and related comorbidities, and came to a conclusion that ke-
tamine can effectively target multiple symptom domains, such as
depression, anhedonia, and suicidal ideation (Johnston et al., 2024).

However, few studies have explored the effects of ketamine
infusions on brain structure and function in patients with
PTSD + MDD to date. Dai et al. found a minor increase of the vol-
ume in the right opercular inferior frontal gyrus after a single ke-
tamine infusion in patients with PTSD + MDD relative to baseline,
suggesting that acute ketamine administration normalize struc-
tural alterations associated with depression but not PTSD symp-

toms (Dai et al., 2020). For functional alterations in PTSD + MDD,
Albott et al. have recently proposed a research plan to verify the
hypothesis that ketamine infusions could improve PTSD and MDD
clinical symptoms by reversal of FC alterations (Albott et al., 2021).
The researcher suggested that the completion of this study will
strongly support the concept of a biologically based model of
PTSD + MDD in the future. Overall, the effects of ketamine treat-
ment on brain in patients with PTSD + MDD require more inves-
tigation. Additionally, predictive neuroimaging biomarkers for ke-
tamine treatment in PTSD + MDD have not yet been systemati-
cally assessed.

Repetitive TMS treatment

As a type of noninvasive neurostimulation in clinical medicine,
TMS has shown its ability to treat MDD and promise in several
other conditions including PTSD (Huntley et al., 2023). Recent ev-
idence suggests that TMS can be an effective treatment for pa-
tients with PTSD + MDD (Philip et al., 2022, 2016; Wilkes et al.,
2020). Dorsolateral PFC, a core region of the central executive net-
work responsible for top-down regulation of other networks such
as DMN and SN, is the most common region targeted by TMS in
psychiatric studies (Barredo et al., 2019). Studies in patients with
MDD have demonstrated that TMS to the dorsolateral PFC could
induce physiologic changes distal to the stimulation site, partic-
ularly in sgACC. Increased sgACC blood flow and higher sgACC
metabolic activity at baseline predicted subsequent response to
TMS, and posttreatment changes in blood flow and metabolism
in the sgACC were associated with improved depression symp-
toms (Baeken et al., 2015; Kito et al.,, 2011, 2012). Philip et al. con-
ducted the first study evaluating TMS-associated changes in FC
in patients with PTSD + MDD, and underscored the involvement
of sgACC, DMN, and SN in potential mechanisms of TMS response
(Philip et al., 2018). In this study, Philip et al. found that both depres-
sive and PTSD symptom improvements were associated with re-
duced sgACC-to-DMN connectivity and hippocampus-to-SN con-
nectivity after TMS treatment in patients with PTSD + MDD. This
study also indicated that different potential mechanisms corre-
lated to MDD and PTSD symptom amelioration after TMS, includ-
ing reduced connectivity between sgACC and visual regions re-
lated to PTSD symptom improvement and reduced connectivity
between sgACC and somatosensory/motor regions related to de-
pression amelioration (summarized in Table 2).

Regarding neuroimaging predictors of TMS response, Philip et
al. found that reduced sgACC-to-DMN connectivity and increased
amygdala-to-PFC connectivity predicted TMS response in patients
with PTSD + MDD (Philip et al, 2018), while in patients with
MDD alone, Liston et al. found that hyperconnectivity between
sgACC and DMN predicted subsequent response to TMS (Liston
et al., 2014). Effects of different stimulation protocols (varied fre-
quencies and intensities) and MRI data processing pipelines in
the two studies need to be considered in comparing their find-
ings, but differences are suggested. It raises issues about veri-
fication and comparison of neuroimaging predictors of TMS re-
sponse in MDD alone, PTSD alone, and their comorbidity. Philip
and colleagues further constrained tract-based probabilistic trac-
tography via pre-TMS diffusion-weighted imaging data from pa-
tients with PTSD + MDD, and the weighted pathway averages
of white matter integrity metrics were then extracted from four
frontal white matter pathways: the forceps minor, ATR, cingu-
lum, and uncinate fasciculi (Barredo et al., 2019). Then Philip
et al. used backward stepwise regressions to evaluate whether
the metrics in these fronto-limbic pathways (i.e. explanatory
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variables) accounted for significant variance in functional predic-
tors of TMS outcome (i.e. dependent variables) revealed by their
former study (Philip et al., 2018). They demonstrated that pretreat-
ment FA in the left ATR was negatively associated with amygdala-
to-PFC functional predictors for PTSD and depressive symptom
improvements after TMS treatment, while FA in the right ATR was
positively associated with these predictors (Barredo et al., 2019).
These findings provide information about the underlying struc-
tural elements of functional predictors of treatment response to
TMS. The reproducibility and reliability of these finding should be
further verified. More efforts need be made to explore the neural
mechanisms in relation to TMS action and biomarkers predicting
and tracking response in PTSD + MDD populations, as well as cor-
responding similarities and differences among MDD alone, PTSD
alone, and PTSD + MDD cohorts.

Other related studies and corresponding
suggestions for future research

As an effective late-line treatment for refractory MDD, electrocon-
vulsive therapy has been found associated with significant reduc-
tions of both PTSD and MDD symptoms in comorbid PTSD + MDD
(Ahmadi et al., 2016; Callens and Sienaert, 2024), which may be
predicted by response to dexamethasone suppression test (Ah-
madi et al., 2018; Watts and Groft, 2010). However, the related un-
derlying neural mechanisms have been rarely investigated. Sim-
ilarly, external stimulation of the trigeminal nerve as an emerg-
ing adjunct to pharmacotherapy showed the efficacy for individ-
uals with PTSD + MDD (Cook et al., 2016) with the neural mech-
anism poorly understood. The clinical implications and efficacy
of cognitive-behavioral treatment program for individuals with
PTSD + MDD have been examined (Nixon and Nearmy, 2011). Of
note, a unified study examining brain activity induced by an emo-
tional conflict task has reported that MDD and PTSD had simi-
larly increased activation of cognitive control regions, implicating
improved cognitive control activation as a transdiagnostic mech-
anism for the cognitive-behavioral treatment response (Yang et
al., 2018b). The meta-analysis by Marwood et al. demonstrate that
there are consistent activation decreases in ACC, inferior frontal
gyrus and insula after psychological therapy across multiple dis-
orders including MDD and PTSD (Marwood et al.,, 2018). The re-
producibility and reliability of these findings need to be further
verified.

Specialized search strategies would be beneficial to a bet-
ter understanding of the underlying transdiagnostic mechanisms
for MDD and PTSD. A review by Moustafa et al. recommend
a symptom-based approach investigating neural substrates as-
sociated with different clusters of symptoms (Moustafa et al,
2016), rather than the comparison of disorders. Using this ap-
proach, Satterthwaite et al. identified foci of resting-state func-
tional dysconnectivity associated with depression severity in the
bilateral amygdala across MDD and PTSD (Satterthwaite et al,
2016). Follow-up seed analyses revealed that depression sever-
ity in the pooled sample was associated with amygdalo-frontal
hypo-connectivity in a network involving regions of bilateral dor-
solateral PFC, ACC, and anterior insula. Future research adopting
the symptom-based approach may help understand commonali-
ties between MDD and PTSD considering their overlapping symp-
toms. The identification of neural substrates related to key clinical
features in MDD and PTSD may help to tailor individualized pro-
grams to treat emotion and cognitive deficits. Furthermore, Seitz
et al. recently investigated transdiagnostic dysfunction of DMN

and some other key regions (e.g. ventral striatum and amygdala)
with childhood maltreatment as the predictor in a transdiagnos-
tic adult sample including patients with MDD, PTSD, and somatic
symptom disorder (Seitz et al., 2024, 2023; Valencia et al., 2024).
These studies showed us novel research approaches based on the
shared risk factors.

From connectome perspectives, Suo et al. systematically re-
viewed neuroimaging studies using graph theoretical approaches
for six major psychiatric disorders including MDD and PTSD
(Suo et al, 2018). Summaries of altered small-world properties
showed no consistent alterations in MDD and PTSD, making cross-
disease comparisons impossible. From the perspectives of segre-
gation and integration, Suo et al. classified altered small-world
properties into four patterns: namely, regularization, randomiza-
tion, stronger small-worldization, and weaker small-worldization.
Benefitting from these conceptualized patterns, future studies in
MDD and PTSD may provide novel insights into the transdiagnos-
tic and disorder-specific pathophysiological mechanisms underly-
ing MDD and PTSD from a connectomic perspective.

Early diagnosis and treatment of comorbidity would contribute
to more rapid symptom reduction and any chronic illness pro-
gression. In the future machine learning may be beneficial to pro-
vide objective categorical diagnoses of MDD alone, PTSD alone,
and PTSD + MDD, and to develop comprehensive models that
can effectively predict an individual’s risk for comorbidity as well
as the treatment response. The predictive models may need to
combine the underlying biological mechanisms of MDD and PTSD
from dimensions of psychopathology including genetics, behavior,
and neuropathology that may extend across diagnostic categories.
It may help to identify change patterns involving interactions
among genetics, environment exposure, and neuroimaging as pre-
disposing factors for developing comorbidities. In addition, the ef-
fects of progressive depression in patients with PTSD remain un-
clear. Further longitudinal studies are crucial to illuminate possi-
bly different neuroimaging presentations at different stages of the
illness course, and to provide a better understanding of the inter-
acting effect of PTSD and depression in patients with comorbidity.

Conclusions

Relevant neuroimaging studies to date have provided important
information about the shared and disorder-specific neural fea-
tures in MDD and PTSD, whereas it is difficult to obtain some reli-
able models from these findings considering their various analysis
methods and different sample types. We just made some concep-
tual summaries at this stage. Direct comparisons in task-related
brain functional activation in MDD and PTSD groups showed
shared hypoactivation in the PFC, but higher activation in SN
and fear processing regions in PTSD alone relative to MDD alone
and comorbid PTSD + MDD groups during cognitive and emo-
tional processes. Comparisons between PTSD + MDD and PTSD
alone suggest that deficits in brain regions involved in fear and
reward processing might be markers for distinguishing PTSD with
and without MDD. Furthermore, both patients with PTSD and
those with MDD displayed volume reductions in frontal areas
including dorsolateral PFC and ACC. With respect to the treat-
ments of ketamine and TMS in patients with PTSD + MDD, the
underlying neural mechanisms associated with symptom im-
provements as well as predictive biomarkers for treatment ef-
fects need further investigation. Future research on the common
and disease-specific features of MDD and PTSD may benefit from
the novel approaches based on the symptom clusters and shared
risk factors. Machine learning models combining genetics, behav-
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iors, and neuropathology will be beneficial to predicting an indi-
vidual’s risk for PTSD + MDD comorbidity as well as treatment
response.
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