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Abstract. Attribute reduction is a key issue in rough set theory, and
this paper focuses on the maximum distribution reduction for complete
inconsistent decision tables. It is quite inconvenient to judge the max-
imum distribution reduct directly according to its definition and the
existing heuristic based judgment methods are inefficient due to the lack
of acceleration mechanisms that mainstream heuristic judgment methods
have. In this paper, we firstly point out the defect of judgment method
proposed by Li et al. [15]. After analyzing the root cause of the defect,
we proposed two novel heuristic attribute reduction algorithms for max-
imum distribution reduction. The experiments show that proposed algo-
rithms are more efficient.
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1 Introduction

Rough set theory, introduced by Z. Pawlak [1] in 1982, is an efficient tool to
imprecise, incomplete and uncertain information processing [2–5]. Currently,
rough set theory has been successfully applied to many practical problems,
including machine learning [6,7], pattern recognition [8,9], data mining [10],
decision support systems [11], etc.

Attribute reduction, the process of obtaining a minimal set of attributes that
can preserve the same ability of classification as the entire attribute set, is one
of the core concepts in rough set theory [12]. Maximum distribution reduction,
proposed as a compromise between the capability of generalized decision preser-
vation reduction and the complexity of distribution preservation reduction [13]
by Zhang et al. [14] in 2003, guarantees the decision value with maximum prob-
ability of object in inconsistent decision tables unchanged. Subsequently, Pei
et al. proposed a theorem for maximum distribution reduct judgment in 2005.
Next, Li et al. [15] paid attention to the computational efficiency of reduction
definition and designed a new definition of maximum distribution reduction to
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speed up attribute reduction. Taking into consideration the general reduction on
inconsistent decision tables, Ge et al. [16] proposed new definition of maximum
distribution reduction.

Heuristic approaches is one of import method in attribute reduction. The
heuristic approach is composed of two parts: the attribute reduction heuristic and
the search strategy [17]. The attribute reduction heuristic is the fitness function
of a heuristic approach. Existing definitions of heuristics are mainly based on
three aspects: dependency degree [18], entropy [19–21], and consistency [22,23].
The search strategy is the control structure of the heuristic approach. Speaking
loosely, the search strategy mainly includes three kinds of methods: the deletion
method, the addition method, and the addition-deletion method [24].

Existing methods for the judgment of maximum distribution were weak asso-
ciation with mainstream heuristics. As a result, the efficiency of heuristic max-
imum distribution reduction algorithm was limited due to lack of the support
of acceleration policies that mainstream heuristics have. This paper focuses on
the quick reduction algorithms for maximum distribution reduction. At first, we
analyze the defect of the quick maximum distribution reduction algorithm (Q-
MDRA) proposed in [15] and explore the root cause of its defect. Next, based
on the existing mainstream heuristic function, we develop three heuristic max-
imum distribution reduction algorithms. Finally, we conduct some experiments
to evaluate the effectiveness and efficiency of proposed algorithms.

The rest of this paper is organized as follows. In Sect. 2, we review some basic
notions related to maximum distribution reduction and three classic heuristic
functions. In Sect. 3, we show the defect of Q-MDRA with a calculation example
of maximum distribution reduction. After exploring the root cause of its defect,
we present three novel algorithms for maximum distribution reduction. In Sect. 4,
we evaluate the efficiency of proposed algorithms through algorithm complexity
analysis and comparison experiments.

2 Preliminary

In this section, we review some basic notions related to maximum distribution
reduction and three classic heuristic functions.

The research object of the rough set theory is called the information system.
The information system IS can be expressed as four tuple, i.e. < U,A, V, f >,
where U stands for the universe of discourse, a non-empty finite set of objects.
A is the set of attributes, V =

⋃
a∈A Va is the set of all attribute values, and

f : U × A → V is an information function that maps an object in U to exactly
one value in Va. For ∀x ∈ U,∀a ∈ A, we have f(x, a) ∈ Va. Specifically in the
classification problem, the information table contains two kinds of attributes,
which can be characterized by a decision table DT = (U,C ∪ D,V, f) with
C ∩ D = ∅, where an element of C is called a condition attribute, C is called
a condition attribute set, an element D is called a decision attribute, and D is
called a decision attribute set.
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For the condition attribute set B ⊆ C, the indiscernibility relation and
discernibility relation of B is respectively defined by IND(B) = {< x, y >∈
U × U |∀a ∈ B, f(x, a) = f(y, a)} and DIS(B) = {< x, y >∈ U × U |∃a ∈
B, f(x, a) 
= f(y, a)}. For an object x ∈ U , the equivalence class of x, denoted
by [x]B , is defined by [x]B = {y ∈ U | < x, y >∈ IND(B)}. The family
of all equivalence classes of IND(B), i.e., the partition determined by B, is
denoted by U/IND(B) or simply U/B. Obviously, IND(B) is reflexive, sym-
metric and transitive. Meanwhile, DIS(C) is irreflexive, symmetric, but not tran-
sitive. Something else needed to be reminded of is that DIS(C) ∪ IND(C) =
U × U,DIS(C) ∩ IND(C) = ∅.

One the basis of above notions, the concept of maximum distribution reduc-
tion was proposed by Zhang et al. [14] in 2003.

Definition 1. Let DT = (U,C ∪ D,V, f) be a decision table, B ⊆ C is a maxi-
mum distribution reduct of C if and only if B satisfies

∀x ∈ U, γB(x) = γC(x);
∀B′ ⊂ B,∃x ∈ U, γB′(x) 
= γC(x),

where γC(x) = {Pi : Pi ∈ U/D ∧ |Pi ∩ [x]C | = maxPj∈U/D(|Pj ∩ [x]C |)}.
It is said that B is a maximum distribution consistent attribute set if B

satisfies condition (1) mentioned above only. There are two methods of max-
imum distribution reduction: the discernibility matrix based methods and the
heuristic methods. For that the discernibility matrix based methods are low-
efficiency, heuristic methods are the more reasonable choice for processing the
larger scale data. The heuristic attribute reduction algorithms comprises two
parts: the heuristic function and the control strategy. We take the addition strat-
egy based heuristic algorithms as the research object of paper. For the heuristic
functions, we take three classic heuristic functions, i.e., the dependency degree,
the condition entropy, and the consistency as the alternatives for the construc-
tion of improved algorithms.

Definition 2. Given a decision table DT = (U,C ∪ D,V, f) and B ⊆ C, U/B =
{X1, X2, · · · , Xm}, U/D = {Y1, Y2, · · · , Yn}, three classic heuristic functions
(dependency degree, the consistency and conditional entropy) are defined by:

(1) ΓB(D) = |POSB(D)|
|U | ;

(2) δB(D) = |{Dj | |[x]B∩Dj |
|[x]B | =

|U/D|
max
k=1

{ |[x]B∩Dk|
|[x]B | }}|/|U |;

(3) H(D|B) = −∑m
i=1 P (Xi)

∑n
j=1 P (Yj |Xi) log P (Yj |Xi), where P (Yj |Xi) =

|Xi ∩ Yj |/|Xi|, where H(B) = −∑m
i=1 P (Xi) log P (Xi), P (Xi) = |Xi|/|U |.

3 Novel Heuristic Maximum Distribution Reduction
Algorithms

In this section, we present two defects in Q-MDRA firstly. After analyzing its
cause, we construct two quick heuristic maximum distribution reduction algo-
rithms based on classic heuristic functions.
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At first, we want to review the quick maximum distribution reduction algo-
rithm (Q-MDRA) proposed by Li et al. Here. Based upon Definition 1, Li et al.
[15] proposed following theorem for the judgment of the maximum distribution
reduct.

Theorem 1. Let DT = (U,C ∪ D,V, f) be a decision table and B ⊆ C, B is a
maximum distribution reduct of C if and only if B satisfies

∀x ∈ U, γMd
B (D) = γMd

C (D);

∀B′ ⊂ B, γMd
B′ (D) 
= γMd

C (D),

where γMd
B′ (D) =

∑
X∈U/B

|X∩Pi:argmaxPi∈U/D|X∩Pi||
|U | .

This theorem is expressed by the Theorem 6.11 of Ref. [15]. γMD
B (D) = γMD

C (D)
maintains unchanged the scale of the maximum decision classes instead of the
maximum decision classes for all of the objects in decision tables. That is to say,
B may be not a maximum distribution reduct of C in some special conditions. We
present the detail information in Sect. 3.1. Based on the variant of dependency
degree heuristic function in Theorem 1, Algorithm 1 was constructed by the way
of the addition strategy. Something needed to be reminded of in Algorithm 1 is
that we denote the assignment operation as “:=” and use the “=” to represent
that two items are on equal term.

Algorithm 1. Quick Maximum Distribution Reduction Algorithm (Q-MDRA)
Require: Decision table DT = (U,C ∪ D,V, f)
Ensure: A maximum distribution reduct of DT
1: red := φ
2: while True do
3: T := red
4: for a ∈ C − red do
5: if γMd

red∪{a}(D) > γMd
T (D) then

6: T := red ∪ {a}
7: end if
8: end for
9: if red = T then

10: break
11: else
12: red := T
13: end if
14: end while
15: return red
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3.1 The Defects of Q-MDRA

Here, in the way of calculation example, we show the detail information about
that Q-MDRA may not perform well as our expectation. Assume that there is a
decision table given as Table 1, we are assigned to get the maximum distribution
reduct of Table 1.

Table 1. A decision table

U a1 a2 a3 d

x1 0 0 0 0
x2 1 0 0 1
x3 1 1 0 0
x4 1 1 0 1
x5 1 1 1 0
x6 1 1 1 1
x7 1 1 1 1

For Table 1, we know that U = {x1, x2, · · · , x7}, C = {a1, a2, a3}, D =
{d}, and obviously we have U/C = {X1, X2, X3, X4} = {{x1}, {x2}, {x3,
x4}, {x5, x6, x7}} and U/D = {P1, P2} = {{x1, x3, x5}, {x2, x4, x6, x7}}.
According to Definition 1, we know that γC(x1) = {P1}, γC(x2) = {P2}; for
x ∈ X3, γC(x) = {P1, P2}; for x ∈ X4, we have γC(x) = {P2}.

The process of Q-MDRA for obtaining maximum distribution reduct of
Table 1 is shown as follows.

Step 1. red := ∅.

Step 2. T := red, γMd
T (D) = |P2|/|U | = 4/7; γMd

T∪{a1}(D) = (|P1∩X1|+|{x2, x3,

· · · , x7} ∩ P2|)/|U | = 5/7;T := T ∪ {a1}; γMd
T∪{a2}(D) = 4/7; γMd

T∪{a3}(D) = 4/7.
Because of T 
= red, we operate the assignment of red := T = {a1}.

Step 3. T := red, γMd
T (D) = |P2|/|U | = 5/7; γMd

T∪{a2}(D) = 5/7; γMd
T∪{a3}(D) =

5/7. Because T is equal to red, program is over.
Using Q-MDRA we get a collection of attributes {a1}. According to Theo-

rem 1, {a1} is a maximum distribution reduct of Table 1 for that {a1} satisfies
γMd

{a1}(D) = γMd
{C}(D) = 5/7 and γMd

φ (D) 
= 5/7. But checking it with original
Definition 1, we know that {a1} is not a maximum distribution reduct for Table 1
because γ{a1}(x3) = {P2} 
= γC(x3) = {P1, P2}. Consequently, Theorem 1 is
incorrect.

Here we analyze the root of the defect of Theorem 1. Given a decision table
DT = (U,C ∪ D,V, f), U/C = {X1, X2, · · · , Xn}, U/D = {P1, P2, · · · , Pm}.
Let mxcf(Xi) = maxPj∈U/D(|Pj ∩Xi|), we have γMd

C (D) =
∑

Xi∈U/C
mxcf(Xi)

|U | .
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Assume that x1 ∈ X1, x2 ∈ X2, γC(x1) 
= γC(x2), |γC(x1)| > 1, |γC(x2)| >
1, |γC(x1) ∩ γC(x1)| ≥ 1 and B ⊆ C, U/B = {X1 ∪ X2, X3, · · · , Xn}, it is
obvious that mxcf(X1) + mxcf(X2) = mxcf(X1 ∪ X2) and γMd

C D = γMd
B (D).

But for x ∈ X1 ∪ X2, γB(x) = γC(x1) ∩ γC(x2), it is not equal to γC(x1) or
γC(x2). The measure γMd

C (D), used in Theorem 1, is not sensitive to the change
of the maximum decision classes of objects that have two or more than two
maximum decision classes.

On the other side, an attribute set red outputted by Q-MDRA does not always
satisfy γMd

red (D) = γMd
C (D). The reason is that ∀a ∈ C − red, γMd

red∪{a}(D) =
γMd

red (D) does not guarantee γMd
red (D) = γMd

C (D). That is to say, ∀a ∈ C −
red, γMd

red∪{a}(D) = γMd
red (D) is not conflicted with ∃B ⊆ C − red, γMd

red∪B(D) >

γMd
red (D).

3.2 Novel Maximum Distribution Reduction Algorithms

To solve the problems identified in Q-MDRA, the concept of indiscernibility
relation and discernibility relation of maximum distribution with respect to the
specific attribute set are defined. Firstly. Next, the maximum distribution reduct
is defined using the indiscernibility relation of maximum distribution. Finally,
we construct heuristic maximum distribution reduction algorithms with classic
heuristic functions.

Definition 3. Given a decision table DT = (U,C ∪ D,V, f), the indiscernibility
relation of maximum distribution of U with respect to B ⊆ C is defined as
INDmd(B) = {< x, y > |x, y ∈ U, γB(x) = γB(y)}, and the discernibility
relation of maximum distribution of U with respect to B stands for DISmd(B) =
{< x, y > |x, y ∈ U, γB(x) 
= γB(y)}.
Obviously, INDmd(C) is reflexive, symmetric and transitive; DISmd(C) is
irreflexive, symmetric, but not transitive. It is worth noting that INDmd(C) ∪
DISmd(C) = U × U, INDmd(C) ∩ DISmd(C) = ∅.

Theorem 2. Given DT = (U,C,D, V, f), B is a maximum distribution con-
sistent attribute set of C if and only if B satisfies IND(C) ⊆ IND(B) ⊆
INDmd(C), DISmd(C) ⊆ DIS(B) ⊆ DIS(C).

Proof. It is apparent that DIS(B) ⊆ DIS(C) , IND(C) ⊆ IND(B), and
based on IND(B) ∩ DIS(B) = φ, IND(B) ∪ DIS(B) = U × U, INDmd(C) ∩
DISmd(C) = φ, INDmd(C) ∪ DISmd(C) = U × U , we know that DIS(C) ⊆
DIS(B) ⊆ DISmd(C) is equal to IND(C) ⊆ IND(B) ⊆ INDmd(C). Thus
what all we need is to prove that DISmd(C) ⊆ DIS(B) is true.

– Sufficiency(⇒): Assume that if B is a maximum distribution consistent
attribute set then DISmd(C) � DIS(B). DISmd(C) � DIS(B) means
∃ < x, y >∈ DISmd(C), < x, y >/∈ DIS(B). Then we know γC(x) 
= γC(y)
and γB(x) = γB(y). It is conflicted with our assumption. So if B is a maxi-
mum distribution consistent attribute set, then DISmd(C) ⊆ DIS(B).
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– Neccessity(⇐): Assume that if B satisfies DISmd(C) ⊆ DIS(B) then
∃x ∈ U, γB(x) 
= γC(x). According to the assumption, we know ∃y ∈
[x]B−[x]C , γC(y) 
= γC(x). That is to say, < x, y >∈ DISmd(C), < x, y > /∈
DIS(B). It is conflicted with DISmd(C) ⊆ DIS(B). Consequently we know
if B satisfies DISmd(C) ⊆ DIS(B) then ∀x ∈ U, γB(x) = γC(x).

As mentioned above, Theorem 2 is true. ��
Above theorem is good for understanding but it is not friendly in computing.
So we represent maximum distribution reduction in the way of classic heuris-
tic functions. According to Definition 2, we can present the definition of the
maximum distribution reduct by conditional entropy.

Theorem 3. Given a decision table DT = (U,C,D, V, f), Let TGran stands
for U/INDmd(C), B ⊆ C is a maximum distribution reduct if and only if B
satisfies

(1) H(TGran|B) = 0;
(2) ∀B′ ⊂ B, B′ doesn’t satisfy condition (1).

Proof. On the basis of Theorem 2, we can prove this theorem by explaining the
equivalence relation between H(TGran|B) = 0 and DISmd(C) ⊆ DIS(B).

– Sufficiency(⇒): According to the definition of H(Q|P ), it is easy to know
that H(TGran|B) = 0 ⇔ ∀Y ∈ TGran, ∃{X : X ∈ U/B ∧ X ∩
Y 
= φ},

⋃
Xi∈X Xi = Y . Therefore, we conclude that DISmd(C) ⊆

DIS(B), INDmd(C) ⊇ IND(B). As a result, H(TGran|B) = 0 ⇒ B is a
maximum distribution consistent attribute set.

– Neccessity(⇐): Assume that B is a maximum distribution consistent attribute
set, and B satisfies H(TGran|B) 
= 0. According to the definition of condi-
tional etropy, we know H(TGran|B) 
= 0 means ∃Y ∈ TGran, X ∈ U/B
satisfies X ∩ Y 
= φ ∧ X 
⊂ Y . That is to say, ∃p ∈ X − X ∩ Y, q ∈
X ∩ Y, γC(p) 
= γC(q), γB(p) = γB(q). This concludes a conflict with B is a
maximum distribution reduct. That is to say, if B is a maximum distribution
consistent attribute set, then H(TGran|B) = 0.

As a result, Theorem 3 is true. ��
According to Definition 2, we can use dependency degree for the presentation of
the maximum distribution reduct.

Theorem 4. Given a decision table DT = (U,C,D, V, f), Let TGran stands
for U/INDmd(C), B ⊆ C is a maximum distribution reduct if and only if B
satisfies (1) ΓB(TGran) = 1; (2) ∀B′ ⊂ B, B′ doesn’t satisfy condition (1).

Proof. According to Theorem 2 and Theorem 3, the conclusion is clearly
established.
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For that ΓC(D) = 1 ⇔ δC(D) = 1, we have ΓB(TGran) = 1 ⇔ δB(TGran) =
1. As a result, there is no need to construct a theorem for maximum distribution
reduction with δB(TGran). Based on upon theorems, the significance functions
for maximum distribution reduction can be defined as follows.

(1) Sigouter
1 (a,B, TGran) = H(TGran|B) − H(TGran|B ∪ {a}), a 
∈ B;

Sigouter
2 (a,B, TGran) = ΓB(TGran) − ΓB∪{a}(TGran), a 
∈ B.

(2) Siginner
1 (a,B, TGran) = H(TGran|B − {a}) − H(TGran|B), a ∈ B;

Siginner
2 (a,B, TGran) = ΓB(TGran) − ΓB−{a}(TGran), a ∈ B.

For convenience of algorithm description, we denote Sigj
i (a,B, TGran,

U ′), i ∈ {1, 2}, j ∈ {inner, outer} as the significance value computed in U ′.
Using Theorem 3 and Theorem 4, we can construct Algorithms 2 and 3 for
maximum distribution reduction. Algorithms 2 and 3, indeed, are the variant of
the discernibility matrix based reduction algorithms. The difference of two algo-
rithms to the discernibility matrix based algorithms is the focus paid toward the
indiscernibility relation instead of the discernibility relation. It can be proved
by extending the relation of IND(B) ∪ DIS(B) = U × U to the reduction
algorithms. As a result, in intuition, the correctness of two algorithms can be
transmitted from the discernibility matrix based algorithm for obtaining maxi-
mum distribution reducts.

Algorithm 2. Maximum Distribution Reduction Algorithm Using Condition
Entropy (MDRAUCE)
Require: Decision table DT = (U,C ∪ D,V, f)
Ensure: A maximum distribution reduct of DT
1: red := ∅;
2: TGran := U/INDmd(C);
3: U ′ := U ;
4: while Ur 
= ∅ do
5: Calculate amax : amax = argmaxa∈C−redSigouter

1 (a, red, TGran,Ur);
6: red := red ∪ {amax};
7: U ′ := U ′ − POSred(TGran);
8: TGran := TGran − POSred(TGran);
9: end while

10: return red

4 Correctness Analysis and Experiments Results

The objective of this section is to present the correctnes and the efficiency of
the attribute reduction algorithms proposed in this paper, i.e. MDRAUCE and
MDRAUDD. To show the correctness of two algorithms, we calculate the max-
imum distribution reduct of Table 1 using MDRAUCE and MDRAUDD, and
check outputs of two algorithms with the definition of maximum distribution
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Algorithm 3. Maximum Distribution Reduction Algorithm Using Dependency
Degree (MDRAUDD)
Require: Decision table DT = (U,C ∪ D,V, f)
Ensure: A maximum distribution reduct of DT
1: red := ∅;
2: TGran := U/INDmd(C);
3: U ′ := U ;
4: while U ′ 
= ∅ do
5: Calculate amax : amax = argmaxa∈C−redSigouter

2 (a, red, TGran,U ′);
6: red := red ∪ {amax};
7: U ′ := U ′ − POSred(TGran);
8: TGran := TGran − POSred(TGran);
9: end while

10: return red

reduction for validation. On the other side, we employed 12 UCI data sets to
verify the performance of time consumption of MDRAUCE, MDRAUDD, and
existing maximum distribution reduction algorithms.

4.1 The Validation of Correctness

In this part, we show the correctness of two algorithms proposed in Sect. 3
through presenting the process of calculating the maximum distribution reduct
for Table 1 using Algorithm 2 and Algorithm 3. After that, we check the outputs
of two algorithms according to the maximum distribution definition.

The process of MDRAUCE for finding the maximum distribution reduct of
Table 1 is presented here. In the following description of calculation process,
“item1=item2” denotes that the relationship of two are on equal item, and “:=”
stands for the assignment operation.

Step 1. red := ∅, TGran = U/INDmd(C) = {{x1}, {x2, x5, x6, x7}, {x3,
x4}}, U ′ = {x1, x2, · · · , x7}.

Step 2. Sigouter
1 (a1, red, TGran,U ′) = HU ′

(TGran|red) − HU ′
(TGran|red ∪

{a1}) = 1.38 − 0.79 = 0.59, Sigouter
md (a2, red, TGran,U ′) = HU ′

(TGran|red) −
HU ′

(TGran|red ∪ {a2}) = 1.38 − 0.98 = 0.40, Sigouter
md (a3, red, TGran,U ′) =

HU ′
(TGran|red) − HU ′

(TGran|red ∪ {a3}) = 1.38 − 0.86 = 0.52. So amax =
a1, red := red ∪ {a1} = {a1}. We have POSred(TGran) = {x1}. U ′ and
TGran are updated as follows, U ′ := U ′ − POSred(TGran) = {x2, x3, · · · , x7},
TGran = TGran − POSred(TGran) = {{x2, x5, x6, x7}, {x3, x4}}.

Step 3. Sigred
1 (a2, red, TGran,U ′) = HU ′

(TGran|red) − HU ′
(TGran|red ∪

{a2}) = 0.92 − 0.81 = 0.11, Sigouter
md (a3, red, TGran,U ′) = HU ′

(TGran|red) −
HU ′

(TGran|red∪{a3}) = 0.92−0.46 = 0.46. So amax = a3, red := red∪{a3} =
{a1, a3}. We have POSred(TGran) = {x5, x6, x7}. U ′ and TGran are updated
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as follows, U ′ := U ′ − POSred(TGran) = {x2, x3, x4}, TGran = TGran −
POSred(TGran) = {{x2}, {x3, x4}}.

Step 4. Sigouter
md (a2, red, TGran,U ′) = HU ′

(TGran|red) − HU ′
(TGran|red ∪

{a2}) = 0.92 − 0 = 0.92. So amax = a2, red := red ∪ {a2} = {a1, a3, a2}. We
have POSred(TGran) = {x2, x3, x4}. U ′ and TGran are updated as follows,
U ′ := U ′ − POSred(TGran) = ∅, TGran = TGran − POSred(TGran) = ∅.

Step 5. Because U ′ = ∅, program is over. Algorithm outputs red = {a1, a3, a2}
as the result.

The process of MDRAUDD for obtaining the maximum distribution reduct
of Table 1 is presented as follows.

Step 1. red := ∅, TGran = U/INDmd(C) = {{x1}, {x2, x5, x6, x7}, {x3,
x4}}, U ′ = {x1, x2, · · · , x7}.

Step 2. Sigouter
1 (a1, red, TGran,U ′) = ΓU ′

red∪{a1}(TGran) − ΓU ′
red(TGran) =

1
7 − 0 = 1

7 , Sigouter
1 (a2, red, TGran,U ′) = ΓU ′

red∪{a2}(TGran) − ΓU ′
red(TGran) =

0 − 0 = 0, Sigouter
1 (a3, red, TGran,U ′) = ΓU ′

red∪{a3}(TGran) − ΓU ′
red(TGran) =

3
7 − 0 = 3

7 . So amax = a3, red := red ∪ {a3} = {a3}. We have
POSred(TGran) = {x5, x6, x7}. U ′ and TGran are updated as follows, U ′ :=
U ′ −POSred(TGran) = {x1, x2, x3, x4}, TGran = TGran−POSred(TGran) =
{{x1}, {x2}, {x3, x4}}.

Step 3. Sigouter
1 (a1, red, TGran,U ′) = ΓU ′

red∪{a1}(TGran)−ΓU ′
red(TGran) = 1

4 −
0 = 1

4 , Sigouter
1 (a2, red, TGran,U ′) = ΓU ′

red∪{a2}(TGran) − ΓU ′
red(TGran) = 2

4 −
0 = 0.5. So amax = a2, red := red∪{a2} = {a3, a2}. We have POSred(TGran) =
{x3, x4}. U ′ and TGran are updated as follows, U ′ := U ′ − POSred(TGran) =
{x1, x2}, TGran = TGran − POSred(TGran) = {{x1}, {x2}}.

Step 4. Sigouter
1 (a1, red, TGran,U ′) = ΓU ′

red∪{a1}(TGran) − ΓU ′
red(TGran) =

1 − 0 = 1. So amax = a1, red := red ∪ {a12} = {a3, a2, a1}. We have
POSred(TGran) = {x1, x2}. U ′ and TGran are updated as follows, U ′ :=
U ′ − POSred(TGran) = ∅, TGran = TGran − POSred(TGran) = ∅.

Step 5. Because U ′ = ∅, program is over. Algorithm outputs red = {a3, a2, a1}
as the result.

According to Definition 1, we know γred(x1) = {P1} and γred(x2) = {P2};
for x ∈ {x3, x4}, we have γred(x) = {P1, P2}; for x ∈ {x5, x6, x7}, we know
γred(x) = {P2}. Meanwhile, we know γC(x1) = {P1} and γC(x2) = {P2}; for
x ∈ {x3, x4}γC(x) = {P1, P2}; for x ∈ {x5, x6, x7}, we have γC(x) = {P2}. It
is obvious that for ∀x ∈ U, γred(x) = γC(x). Finally we know that MDRAUCE
and MDRAUDD are correct.
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4.2 The Efficiency of Proposed Algorithms

In this part, we employed 12 data sets to verify the performance of time con-
sumption of MDRAUDD, MDRAUDD, Q-MDRA [15] and QGARA-FS [16]. We
carried out all the attribute reduction algorithms in experiments on a personal
computer with Windows 10, Intel(R) Core(TM) CPU i5-8265U 1.60GHZ and
8GB RAM memory. The software used was Visual Studio Code 1.3.8, and the
programming language was python 3.7.

The data sets used in experiments are all downloaded from UCI repository
of machine learning data sets [25] whose basic information is outlined in Table 2.
For the sake that reduction algorithms can address only symbolic data, data sets
containing continuous attributes were preprocessed by CAIM [26] discretization
algorithm. For each data sets, the positive region dependency degree, i.e. γC(D),
is listed in the last column of Table 2. As we know, the data set is consistent if
γC(D) = 1; otherwise, it is inconsistent. As shown in Table 2, Wpbc, Wine, and
Sonar are consistent. Taking into consideration the value of γC(D), we take Sat,
Segment, Wdbc, and Wave as consistent data sets whose value of γC(D) satisfies
0.981 ≤ γC(D) ≤ 1. The other 5 data sets (Vehicle, Ion, Glass, Heart, and Pid)
are inconsistent.

Table 2. Description of data sets

ID Data sets Cases Attributes Classes γC(D)

1 Wpdc 198 34 2 1
2 Wine 178 13 3 1
3 Sat 6435 86 6 0.993
4 Segment 2310 19 7 0.991
5 Wdbc 569 30 2 0.989
6 Waveform 5000 21 3 0.981
7 Vehicle 846 18 4 0.946
8 Ions 351 34 2 0.940
9 Glass 214 9 7 0.937
10 Heart 270 6 2 0.935
11 Sonar 208 60 2 1
12 Pid 768 8 2 0.519

Table 3 indicate the computational time of MDRAUCE, MDRADD, Q-
MDRA, and QGARA-FS for obtaining maximum distribution reduct on 12 data
sets. We can see that MDRADD was the fastest of four attribute reduction
algorithms for that it was the best on 11 data sets, and MDRAUCE was faster
than QGARA-FS. MDRAUCE performed better than Q-MDRA in obtaining the
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Table 3. Time consumption of maximum distribution reduction algorithms

Data sets Time consumption(s)
MDRAUCE MDRADD Q-MDRA QGARA-FS

Wpdc 0.253 0.208 0.447 1.110
Wine 0.051 0.051 0.045 0.166
Sat 5.395 3.220 59.683 16.604
Segment 1.027 0.546 1.743 1.213
Wdbc 0.591 0.452 0.915 2.411
Waveform 3.607 1.634 11.820 2.551
Vehicle 0.463 0.304 1.587 0.633
Ions 0.612 0.300 0.572 1.582
Glass 0.034 0.034 0.064 0.092
Heart 0.087 0.040 0.121 0.105
Sonar 0.649 0.411 0.621 1.832
Pid 0.101 0.081 0.100 0.137
Average 1.073 0.607 6.477 2.370

reduct of 9 data sets. Q-MDRA performed better than MDRAUCE, MDRAUCE
on small data sets,i.e. Wine data set. However, in processing the large scale data,
Q-MDRA consumed more time than MDRAUCE, MDRADD. From results of
experiments on both consistent and inconsistent decision tables, the computa-
tional times of four algorithms in obtaining the maximum distribution reduct
followed this order: MDRADD ≥ MDRAUCE, Q-MDRA > QGARA-FS. For
most of the cases in experiments, the computational time of MDRAUDD can
reduce half of the computation time of QGARA-FS and Q-MDRA, such as data
sets Wpdc, Glass, Heart, etc. In the same condition. from the row of average
time consumption in obtaining reduct of 12 data sets, we know that MDRAUCE
and MDRADD are more efficient and steady in time consumption of maximum
distribution reduction than existing maximum distribution reduction algorithms.

5 Conclusion

In this paper, we focus on the maximum distribution reduction for complete
inconsistent decision tables. The problems in Li’s algorithm for obtaining the
maximum distribution reduct were pointed out, and based on classic heuris-
tic functions, we designed two novel heuristic algorithms, i.e. MDRAUCE and
MDRADD, to efficiently finding a maximum distribution reduct. Because the
scale of data processed becomes larger and larger, the efficiency of attribute
reduction algorithms is still our focus of future researches.
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