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Objective: Previous research has suggested that transcranial magnetic stimulation (TMS) related cortical
excitability measures could be estimated quickly using stimulus–response curves with short interstimu-
lus intervals (ISIs). Here we evaluated the resting motor threshold (rMT) estimated with these curves.
Methods: Stimulus-response curves were measured with three ISIs: 1.2–2 s, 2–3 s, and 3–4 s. Each curve
was formed with 108 stimuli using stimulation intensities ranging from 0.75 to 1.25 times the rMTguess,
which was estimated based on motor evoked potential (MEP) amplitudes of three scout responses.
Results: The ISI did not affect the rMT estimated from the curves (F = 0.235, p = 0.683) or single-trial MEP
amplitudes at the group level (F = 0.90, p = 0.405), but a significant subject by ISI interaction (F = 3.64;
p < 0.001) was detected in MEP amplitudes. No trend was observed which ISI was most excitable, as it
varied between subjects.
Conclusions: At the group level, the stimulus–response curves are unaffected by the short ISI. At the indi-
vidual level, these curves are highly affected by the ISI.
Significance: Estimating rMT using stimulus–response curves with short ISIs impacts the rMT estimate
and should be avoided in clinical and research TMS applications.
� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive brain
stimulation method (Barker et al., 1985; Ilmoniemi et al., 1999)
widely used in research and clinical applications (Rossini et al.,
2015; Lefaucheur et al., 2020). Regardless of the exact application,
one of the most influential parameters in all TMS applications is
the strength at which the stimulation is applied (Pretalli et al.,
2012; Rossini et al., 2015). A too low stimulation intensity (SI)
may not activate the target area. In contrast, an excessively high
SI may activate the target and the neighboring regions, resulting
in a loss of focality (Kallioniemi and Julkunen, 2016; Konakanchi
et al., 2020). Also, high SI may decrease the safety of the stimula-
tion (Rossi et al., 2009). A constant SI across the subjects may not
induce similar effects in different individuals because the level of
cortical excitability varies substantially between subjects
(Säisänen et al., 2008; Sollmann et al., 2017). To tackle this, the
conventional approach is to normalize the SI to the subject-
specific cortical excitability. This is done by first estimating the
resting motor threshold (rMT) and, after that applying some sub-
or supra-threshold percentage of rMT (Rossini et al., 2015). The
rMT is defined as the minimal SI needed to induce a motor evoked
potential (MEP) in a relaxed target muscle in 50% of the stimula-
tions (Rossini et al., 2015). The rMT can be estimated with various
manual methods, such as Rossini-Rothwell (Rossini et al., 2015)
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and Mills-Nithi (Mills and Nithi, 1997), and semi-automatic proce-
dures, such as threshold-hunting (Awiszus, 2003), that all lead to
similar results (Tranulis et al., 2006).

From a physiological perspective, the rMT reflects the excitabil-
ity of the motor pathways (Rossini et al., 2015) and is influenced by
central and peripheral motor systems (Weber and Eisen, 2002;
Rossini et al., 2015). By definition, the rMT is not meant to evoke
an MEP at each stimulation, and commonly, successive MEPs are
highly variable in amplitude (Kiers et al., 1993). However, the
rMT is very stable if no substantial brain state change has occurred
(Kimiskidis et al., 2004; Danner et al., 2008; Sankarasubramanian
et al., 2015; Engelhardt et al., 2019; Ter Braack et al., 2019).

The time needed to estimate the rMT depends on the method
and is generally in the range of several minutes. The time associ-
ated with estimating the rMT with manual methods may be longer
than that of semi-automatic, as in manual methods, the user needs
to guess and test potential rMT intensities. In contrast, in semi-
automatic methods, previous data is applied to help narrow the
search. Some investigators have attempted to decrease the time
needed to acquire the rMT (Awiszus, 2011; Qi et al., 2011). The
shortening of the estimation time could be achieved by using
subject- or group-specific priors, decreasing the number of pulses
or the time between two pulses, i.e., the interstimulus interval
(ISI). However, the ISI cannot be absurdly short, as ISIs of 1–4 s
or less may cause cumulative effects to the MEPs (Möller et al.,
2009; Julkunen et al., 2012; Rossini et al., 2015; Pellicciari et al.,
2016). Thus, the general rule of thumb is to use an ISI of at least
5 s. However, the exact neurophysiological phenomenon underly-
ing the 5 s rule remains unknown but could be associated with
the time it takes a neuron to recover from a TMS pulse. The 5 s
ISI results (Julkunen et al., 2012; Rossini et al., 2015; Pellicciari
et al., 2016) have been obtained by keeping the SI constant. It is
unknown whether similar effects would be received with varying
SIs used to estimate the rMT. A study by Mathias et al. (2014)
investigated the stimulus–response curves, in which ISIs ranging
from 1.4 s up to 4 s were applied (Mathias et al., 2014). Stimulus-
response curves, also called input–output, recruitment, or thresh-
old curves, utilize a range of SIs varying from sub- to supra-rMT
and reflect a wide range of cortical excitability (Möller et al.,
2009; Julkunen et al., 2011; Kukke et al., 2014; Kallioniemi et al.,
2015a). The different SIs are applied in a random order, and a
Boltzmann-like model is fitted to the data. The stimulus–response
curves are sigmoidally shaped with a steep slope around 100% of
rMT before the MEP amplitudes plateau. The study by Mathias
et al. found no differences between stimulus–response curves
obtained with different short ISIs. This finding suggests that
although a short ISI affects the MEPs evoked with constant SI, the
cumulative effects might be avoided when using varying SIs given
in random order.

Previously, we evaluated the effects of repetition on MEP ampli-
tudes induced with a constant intensity (Pitkänen et al., 2017).
Altogether, 120 successive pulses with an ISI of 1 s were given,
and trends in individual MEP amplitudes were evaluated. Instead
of systematic effects on the consecutive MEPs, each individual
responded to the sequence differently, also suggested by other
studies (Touge et al., 2001; Romero et al., 2002; Strigaro et al.,
2016). Therefore, we hypothesized that even though the stimu-
lus–response curves may not show variation at group level, these
curves include considerable between-subjects variation. Hence,
our main aim was to study the within-subject reproducibility of
rMT obtained with stimulus–response curves using short ISIs. To
investigate this, we measured stimulus–response curves with sim-
ilar ISIs as Mathias et al. To form the curves, we used prior group
level information from our previous study (Julkunen et al., 2011)
together with a short initial measurement.
8

2. Methods

2.1. Subjects

The study included thirteen healthy right-handed volunteers (9
females, 4 males, age range: 22–60 years) without any history of
neurological or psychiatric disorders. The study was approved by
the local ethics committee (ethical permission 8/2012), and writ-
ten informed consent was collected from all the participants. The
work was carried out in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki) for exper-
iments involving humans. During the measurements, the subjects
were not under the influence of alcohol, any drug, or pharmaceuti-
cal impacting the function of the central nervous system or cortical
excitability.
2.2. Experiments

Before starting the TMS measurements, the participants under-
went a magnetic resonance imaging (MRI) session with a 3 T MRI
device (Philips Achieva 3.0 T, TX, Philips, Eindhoven, The Nether-
lands). The MR images were used to perform neuronavigated
TMS with an eXimia system (version 3.2.2, Nexstim Plc., Helsinki,
Finland). Biphasic single-pulses were administered with a figure-
of-eight coil. Electromyography (EMG) was measured from the
right-hand abductor pollicis brevis (APB) muscle with Ag-AgCl
electrodes in a belly-to-tendon montage with an integrated and
stimulus-locked EMG device. The recorded EMG signal was sam-
pled at 3 kHz with a resolution of 0.3 mV and voltage range from
�7.5 mV to +7.5 mV.

The examination began by mapping the left cortical representa-
tion for the APB muscle according to current recommendations
(Rossini et al., 2015) by holding the coil so that the induced electric
field was perpendicular to the nearest sulcus. Mapping was con-
ducted with an SI that produced MEPs with an amplitude of 1–
2 mV. At this intensity level, the variability of MEP amplitudes
decreases, facilitating finding the optimal target location for the
stimulation, i.e., the hotspot (Rossini et al., 2015). At the location
which consistently evoked the highest amplitude MEPs for APB,
the coil was rotated within ±90� to find the optimal electric field
direction. This optimal location and direction were defined as the
APB target. The number of stimuli applied to determine the target
location varied between subjects (range 39–100), as finding the
target location is a unique process for each individual and is influ-
enced by how easy the target is to find. Three single pulses were
given at the target with an ISI of at least 5 s and an intensity pro-
ducing MEPs between 1 and 2 mV. The peak-to-peak amplitudes
of these three pulses were used to estimate the rMT (rMTguess)
according to Equation (1), which was derived based on the data
from our previous study (Julkunen et al., 2011).

rMTguess ¼ SI þ 8:83e�3 � A� 50lVð Þ
1þ 0:363e�3 � A� 50lVð Þ ð1Þ

In this equation, A denotes the median amplitude of the three
repeated single pulses in microvolts and SI the stimulation
intensity.

After defining the rMTguess, three single-pulse TMS sequences
were applied at the target with a varying ISI: 1.2–2 s, 2–3 s, and
3–4 s. ISIs were jittered to avoid any interference of habituation
(Pitkänen et al., 2017) and expectation effects. These sequences
were given in a randomized order by repeating a train of nine SIs
twelve times. Each train included SIs of 0.75 to 1.25 times of
rMTguess at 0.05 intervals, and the trains were repeated continu-
ously. Thus, in total, 108 pulses were given per sequence. After
that, for comparison purposes, the rMT was estimated separately
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with the Rossini-Rothwell method and the threshold-hunting
paradigm using an ISI of at least 5 s. In the Rossini-Rothwell
approach, the minimum intensity evoking 5/10 responses was set
as the rMT (rMTRR), whereas the threshold-hunting paradigm
determined the rMT with 20 pulses (rMTthreshold).

2.3. Data analysis

MEPs with a peak-to-peak amplitude of at least 50 mV and with-
out visibly observed pre-stimulus muscle contraction for 2 s before
the pulse were accepted as responses. The MEPs from the three ISI
sequences were analyzed offline in an eXimia workstation (version
3.2.2) by verifying the automatically set MEP amplitudes. The rest-
ing stimulus–response curves for each ISI were assessed using a
previously published method employing maximum likelihood esti-
mation of the threshold (Awiszus, 2003; Julkunen et al., 2011). The
stimulus–response curves were characterized based on slope (%
maximum stimulator output, MSO/mV), relative slope (% rMTesti-
mate/mV), rMTestimate(% MSO), spread (% MSO), and relative spread
(% rMTestimate).

In addition to purely evaluating the stimulus–response curves
with experimental data, we also performed simulations to assess
the number of stimuli required to estimate the rMT. These were
done using Monte Carlo simulations (10000 repeats at ‘‘true” rMTs
(rMTtrue) between 25 and 65%-MSO at 1%-MSO intervals). The sim-
ulations were conducted on the pre-defined SIs as experimentally
described. The rMTguess was estimated in the simulations based
on the experimentally observed difference between the rMTguess
and rMTthreshold, for which the distribution was determined using
the bootstrapping mean of the difference 100,000 times to deter-
mine the mean and standard deviation. These values were used
in generating the rMTguess value for the Monte Carlo simulations
by randomizing the aforementioned difference using Matlab-
function normrnd. The SIs used in the simulations were then deter-
mined based on that rMTguess value. Then, the order of the 11 SIs
was randomized within 15 epochs resulting in a total of 165 trials
simulated per estimated rMT value. The occurrence of response
was simulated with a cumulative distribution function (Awiszus,
2003; Julkunen, 2019) constructed based on rMTtrue and the
assumed spread of 0.07*rMTtrue (Awiszus, 2003). After each stimu-
lus, an estimate of the rMT was determined based on the probabil-
ity density function applied in (Awiszus, 2003) to seek the most
likely threshold corresponding with p = 0.5 in the cumulative dis-
tribution function. After each simulation, the relative error
between the rMTtrue and the estimated rMT was evaluated. From
all simulations, the 95% percentile was calculated for the relative
error at each rMTtrue to evaluate the paradigm and its ability to
reach satisfactory confidence at a theoretical level.

2.4. Statistics

At the group level, the effects of ISI on stimulus–response
curve-related parameters were assessed with a repeated-
measures ANOVA. If Mauchly’s test of sphericity was violated,
Greenhouse-Geisser correction was applied. For post-hoc analysis,
Bonferroni correction was used. At the individual level, differences
between MEP amplitude distributions were evaluated with a non-
parametric Friedman ANOVA. The statistical significance level was
set at p < 0.05, and the analyses were performed in SPSS 22 (IBM
Corporation, Somers, NY, USA).
Fig. 1. Median motor evoked potential (MEP) amplitudes at different interstimulus
interval (ISI) stimulus–response curves. The different colors represent different
subjects. In some subjects, the median MEP amplitude decreases with increasing ISI,
whereas, in some subjects, the opposite occurs. In the rest, the median amplitude
does not change linearly with ISI.
3. Results

The participants tolerated the protocols well, and no complica-
tions were observed with any of the ISIs. In one participant, the
9

rMTguess was miscalculated (ID 7), and in another subject (ID13),
the stimulus–response characteristics were highly abnormal and
against previous literature (Möller et al., 2009; Julkunen et al.,
2011; Mathias et al., 2014), see Appendix Fig. A1. These partici-
pants were excluded from the analyses, and thus, altogether, 11
participants were included.

In the stimulus–response curves, there was a main effect of sub-
ject, as subjects showed different MEP amplitudes at comparable
SIs (F(4,86) = 32.55, p < 0.001). At the group level, the ISI did not
affect the rMTestimate (F(1.22) = 0.24, p = 0.683) or single-trial MEP
amplitudes (F(1.93) = 0.90, p = 0.405), but a significant subject by
ISI interaction (F(8.65) = 3.64; p < 0.001) was observed in MEP
amplitudes (Figs. 1 and 2). The MEP amplitude distributions were
impacted by ISI in 3 subjects (p < 0.05, Fig. 2). No clear trends on
the excitability order in the stimulus–response curves measured
with different ISIs were observed. Instead, subjects reacted to the
ISIs quite differently (Fig. 3). ISI did not affect slope (F(2) = 0.02,
p = 0.980), relative slope (F(2) = 0.01, p = 0.994), spread (F(2)
= 1.11, p = 0.349) or relative spread (F(1.33) = 0.99, p = 0.363) at
the group level.

rMTs estimated with different methods, i.e., stimulus–response
curve (rMTestimate), rMTguess, rMTRR, and rMTthreshold, differed at the
group level (F(2.43) = 4.14, p = 0.022). In the Bonferroni post-hoc
analysis, no differences between any two rMT estimates were
found (p > 0.05). At the individual level, the rMTs, however, varied
(Table 1).

The Monte Carlo simulations demonstrated that the concept of
using stimulus–response curves in the estimation of rMTs would
be feasible theoretically (Fig. 4). Relative error observed between
the estimated and rMTtrue dropped below 5% before the 4th trial
was finalized. This indicates that theoretically, <44 stimuli were
needed without accounting for the between-subjects effects
observed in the experiments at short ISIs. Due to the different
impacts of ISI in subjects, however, with real data, substantially
>100 stimuli would be required to reach a reliable rMT estimate
regardless of the applied ISI.
4. Discussion

In this study, we evaluated the within-subject variability in
stimulus–response curves with short ISIs. This was done to test
the possibility of reducing the time in assessing motor cortical
excitability, i.e., rMT, which can be obtained readily with these
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Fig. 2. Motor evoked potential (MEP) distributions at each interstimulus interval (ISI) normalized to the maximum amplitude of the stimulus–response curve. Wider sections
reflect higher probability, and skinnier sections lower probability. No clear trends in distributions can be seen; however, the MEP amplitude distributions differed
significantly only in 3 subjects (ID5, ID8, ID9). Statistics are from the non-parametric Friedman Test. Significant (p < 0.05) within-subject differences are marked with an
asterisk after the ID number.
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curves. Our main finding was that even though at the group level
the estimated rMTs did not differ between the ISIs, at the individ-
ual level, the subjects reacted differently to each ISI without
consistency.
10
One possible explanation for the varying stimulus–response
curve behavior is that subjects differed in time when the neurons
‘‘recovered” from the previous pulse, as suggested by our previous
study (Pitkänen et al., 2017). This is especially plausible as the SIs
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varied from stimulus to stimulus, meaning that subthreshold SIs
were included among the suprathreshold SI stimuli. Thus, it is
plausible that short-interval intracortical inhibition or short-
interval cortical facilitation occurred with some pulses and individ-
uals. Previously, using random SI order has not, however, been
observed to increase MEP variability compared to non-random
order, although this result was obtained with an ISI longer than
used in the present study (Möller et al., 2009). In fact, when using
stimulus–response curves, the SIs need to be provided in random
order due to hysteresis effects (Möller et al., 2009). Hysteresis
reflects that the previous pulse alters the corticospinal excitability
11
impacting the response of the next pulse and, thus, is associated
with how neurons recover from the pulse. If the SIs are applied
in descending strength, with an ISI of 5 s, the stimulus–response
curve shifts to the left, i.e., the curve shows greater excitability
(Möller et al., 2009). If the intensities are used in ascending order,
the curve shifts to the right, i.e., the curve shows decreased
excitability (Möller et al., 2009). Although the rMTguess utilized
to select the SIs for each subject was estimated with only 3 pulses,
rMTguess did not differ from those estimated with the established
methods, Rossini-Rothwell, and threshold-hunting. This is impor-
tant because, by definition, rMT is an SI that induces an MEP in



Table 1
Resting motor thresholds (rMT, % of maximum stimulator output) acquired with stimulus–response curves with varying interstimulus intervals (ISIs), Rossini-Rothwell (Rossini
et al., 2015), and threshold-hunting method (Awiszus, 2003).

Subject ID ISI 1.2–2 s ISI 2–3 s ISI 3–4 s rMTguess(ISI > 5 s) Rossini-Rothwell (ISI > 5 s) Threshold hunting (ISI > 5 s)

1 50 50 49 53 49 52
2 40 39 40 39 38 38
3 36 35 34 33 36 35
4 41 42 44 43 42 43
5 38 40 46 53 46 44
6 37 36 37 43 33 35
8 40 37 36 45 37 36
9 40 37 37 37 38 37
10 58 59 57 63 61 60
11 40 39 38 40 38 39
12 37 37 36 42 31 35
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Fig. 4. A) Bootstrapped distribution of the difference between the rMTguess values and the rMTs (defined with the maximum stimulator output, MSO) determined using
threshold-hunting based on the data provided in Table 1. These data were used to estimate the paradigm-induced error values based on Monte-Carlo simulations. The pre-
defined stimulation intensities were computed based on generated rMTguess values with a randomized difference (with Matlab normrnd-function) to the rMTtrue-value. B)
Relative errors for estimated rMT-values based on stimulus–response curves as a function of the applied trial. Each trial included 11 stimuli at pre-defined stimulation
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short interstimulus intervals. rMT = resting motor threshold, rMTguess = resting motor threshold estimated with three scout pulses and prior data.
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50% of the stimulations (Rossini et al., 2015). When using stimu-
lus–response curves to estimate the rMT, the intensity selection
should thus include both sub- and supra-threshold intensities. As
rMTguess did not differ from the established methods at the group
level, the intensity selection was considered not to be biased either
towards sub- or supra-threshold SI at the group level, even if some
biases might have occurred in individual subjects.

Other underlying factors causing the MEP amplitude distribu-
tions to depend on the ISI might be varying descending waves.
Low TMS SIs typically stimulate neurons trans-synaptically pro-
ducing I-waves in the descending motor pathways, whereas higher
intensities generate a D-wave before the I-waves (Ziemann, 2020).
The D- and I-waves sum up and activate contralateral motoneu-
rons in the spinal cord that elicit an MEP in the target muscle.
There are some indications that the I-wave synchrony increases
with increasing SI (Pitcher et al., 2003). It may also be that the
ISI influences the I-wave synchrony but differently across the sub-
jects. Our previous findings support that I-wave effects, measured
with MEPs, are highly variable between subjects (Kallioniemi et al.,
2018). Repeated TMS pulses could also change neuronal states
(Fedele et al., 2016) and brain dynamics (Stamoulis et al., 2011) dif-
ferently across the subjects, translating to MEP variability between
subjects.
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Based on our simulations, the rMT could be estimated with 44
pulses without between-subjects variability in stimulus–response
curves. However, in the experimental data, the short ISIs presum-
ably changed threshold and/or threshold spread in an unpre-
dictable way. Thus, the minimum number of stimuli for this
paradigm obtained in the Monte-Carlo simulations is not valid
for real data. It is expected that >100 pulses would be needed for
a reliable rMT estimate, regardless of the ISI, with stimulus–re-
sponse curves. In threshold-hunting, which is an already estab-
lished rMT estimation approach, with an ISI of at least 5 s, only
18 pulses are required for a reliable rMT estimate (Awiszus,
2011). This reflects a total measurement time of 90 s with the
threshold-hunting approach compared to >100 s with the stimu-
lus–response curves. Hence, the time potentially gained with short
ISIs in stimulus–response curves is lost in the number of pulses
needed in comparison to already established methods. We cannot
provide the minimum time, i.e., number of pulses, needed for rMT
estimation with stimulus–response curves due to each participant
reacting to the short ISIs differently and unexpectedly. This sug-
gests that short ISIs should not be used to estimate rMTs to mini-
mize experiment time. This is in line with previous studies
performed at constant SI or with a very low number of stimuli
(Awiszus, 2011; Qi et al., 2011; Julkunen et al., 2012).
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Regardless of the inconsistency in how individuals reacted to
short ISIs, the rMTs from stimulus-response curves and the more
established methods, Rossini-Rothwell and threshold-hunting did
not differ at the group level. As shown in Table 1, however, despite
the similarities at the group level, there was variability in consis-
tency at the individual level. In most of the participants, this vari-
ability was relatively low. Although the Rossini-Rothwell and
threshold-hunting did not necessarily result in exactly the same
value, it is more challenging to evaluate the underlying cause for
this variability than that associated with stimulus–response
curves. This is because Rossini-Rothwell and threshold-hunting
only produce a single measure, the rMT, compared to stimulus–re-
sponse curves that show a broad range of cortical excitability.

Short measurement times could be beneficial from several per-
spectives. During a TMS measurement, the participant needs to sit
still, which may be challenging in some study populations. Also, in
many study designs, the coil needs to be moved during the mea-
surement, and thus, the coil needs to be held manually, which puts
a strain on the researcher. High SIs may cause scalp discomfort,
and long measurement times may be susceptible to changes in
the physiological state of the participant. For example, subject
alertness level (Mars et al., 2007; Noreika et al., 2020), arousal
(Bell et al., 2018), pre-TMS muscle activity (Kiers et al., 1993;
Darling et al., 2006), desynchronization of action potentials
(Magistris et al., 1998), afferent feedback (Nielsen, 1996), acoustic
noise (Löfberg et al., 2018) and ongoing electroencephalography
oscillations (Schaworonkow et al., 2019) are known to modulate
MEP amplitudes. Also, coil orientation and location stability
(Brasil-Neto et al., 1992; Kallioniemi et al., 2015b; de Goede
et al., 2018) influence the MEPs. From these perspectives, a shorter
rMT estimation but also a shorter whole experiment time would be
desirable. Earlier studies have reported that with an ISI of at least
5 s, 21 pulses are needed to stabilize MEP amplitude and 23 to sta-
bilize MEP latency (Chang et al., 2016). These results were obtained
with a constant SI and with a neuronavigation system, and similar
results have been found without neuronavigation (Goldsworthy
et al., 2016). It has been suggested that the minimum number of
pulses is limited due to an initial transient-state in cortical
excitability after stimulation is started (Schmidt et al., 2009). How-
ever, the exact physiological phenomenon behind this is still
unknown (Schmidt et al., 2009).

Although our study provides substantial evidence against using
short ISIs, our study did not evaluate ISIs longer than 4 s. Thus, we
cannot recommend the shortest ISI needed to estimate the rMT via
stimulus–response curves so that all subjects react to the stimula-
tion similarly. This should be addressed in future studies, which
should evaluate ISIs up to 15 s as MEP amplitudes were recently
found to increase with increasing ISI up to 15 s (Hassanzahraee
et al., 2019). Also, the MEP amplitude variability is known to
decrease up to 15 s (Hassanzahraee et al., 2019). Furthermore,
our study aimed to evaluate whether individuals react similarly
to short ISIs and not to evaluate the frequency or underlying causes
of different response patterns at a group- or population-level. To
assess the response patterns more comprehensively, a future study
with a higher number of participants is needed.

Although rMT is a relatively stable measure over time
(Kimiskidis et al., 2004; Danner et al., 2008), it is somewhat
impacted by the circadian rhythm (Huber et al., 2013). Thus, rMT
estimated in the morning might slightly differ from that estimated
in the evening. In our measurements, all stimulus–response curves
in a subject were measured within a short time frame preventing
the influence of different phases of the circadian rhythm at the
individual level. Circadian rhythm, however, could have influenced
the group level results as the measurement times were not stan-
dardized between subjects. The possibility for this is low, as the
stimulus–response curves did not differ at the group level. For this
13
same reason, the influence of any other factors potentially influ-
encing cortical excitability, such as the number of hours slept dur-
ing the previous night (Huber et al., 2013), is low. Finally, while the
order of ISI within the stimulus–response curve experiments were
randomized, the order of stimulus–response curve experiments
and the more established rMT estimation methods were not ran-
domized, i.e., the established methods were always applied in
the end of the session. As there were no significant differences
between any two rMTs, this did not significantly influence the
results.

5. Conclusions

Acquiring the rMT quickly with a stimulus–response curve
might help decrease the overall measurement duration, and sub-
ject discomfort. Reducing the ISI, however, impacts the rMT as
we do not know yet what is the shortest ISI needed for the partic-
ipants to react similarly. Accordingly, short ISIs should be used
with caution. Despite the limitation with short ISIs, stimulus–re-
sponse curves provide a useful and comprehensive view of cortical
excitability and may complement pure rMT estimation methods,
such as Rossini-Rothwell and threshold-hunting. Thus, stimulus–
response curves should not be neglected in TMS research, but fur-
ther research is needed to clarify the factors influencing them and
their test–retest reliability.
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