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miR-424-5p has been widely identified to function as an onco-
miR in multiple human cancer types. However, the biological
function of miR-424-5p in distant metastasis of thyroid cancer,
as well as the underlying mechanism, remains not clarified yet.
In the current study, miR-424-5p expression was elucidated in
10 paired fresh thyroid cancer tissues and the thyroid cancer
dataset from The Cancer Genome Atlas (TCGA). Lung metas-
tasis colonization models in vivo and functional assays in vitro
were used to determine the role of miR-424-5p in thyroid can-
cer. Bioinformatics analysis, western blot, luciferase reporter,
and immunofluorescence assays were applied to identify the
potential targets and underlying mechanism involved in the
functional role of miR-424-5p in lung metastasis of thyroid
cancer. Here, we reported that miR-424-5p was upregulated
in thyroid cancer, and overexpression of miR-424-5p signifi-
cantly correlated with distant metastasis of thyroid cancer.
Upregulating miR-424-5p promoted, whereas silencing
miR-424-5p inhibited, anoikis resistance in vitro and lung
metastasis in vivo. Mechanistic investigation further revealed
that miR-424-5p promoted anoikis resistance and lung metas-
tasis by inactivating Hippo signaling via simultaneously target-
ing WWCIl, SAV1, and LAST2. Therefore, our results support
the idea that miR-424-5p may serve as a potential therapeutic
target in lung metastasis of thyroid cancer.

INTRODUCTION

Thyroid cancer is one of the most prevalent endocrine malignancies,
with an increasing incidence in recent years worldwide."” Based on
substantial progresses in the treatment of thyroid cancer, the vast
majority of thyroid cancer patients have an excellent prognosis,
with a 5-year survival rate exceeding 95%.” However, early metas-
tasis of the malignancy to distant organ is a critical contributor
affecting the prognosis of thyroid cancer patients.* Among the met-
astatic sites of thyroid cancer, lung is the most frequently seen
distant metastatic organ due to high hemodynamics.” Therefore,
identification of novel therapeutic strategies to reduce the incidence
of lung metastasis will achieve long-term remission in thyroid
cancer patients.
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As a tumor-suppressive signaling, the Hippo signaling has been
frequently identified to be inactivated in distinct human cancer
types.®® Primarily four protein components, including kinases
MST1/2 and LATS1/2 and adaptor proteins SAV1 and MOBI, consti-
tute core kinase cassette of the Hippo pathway.® By tightly balancing
the activity of YAP and TAZ through phosphorylation-ubiquitination
mechanisms, the Hippo signaling keeps constitutively active.”'’ By
contrast, unphosphorylated YAP1/TAZ translocates to the nucleus
of cells and induces the transcriptional activity of TEA domain
(TEAD) family members as the transcriptional co-activators when
Hippo signaling is inactive, which further transcriptionally upregu-
lates multiple downstream effectors to exert a pleiotropic role in pro-
gression and metastasis of cancers.' "> Garcia-Rendueles et al.'” have
shown that NF2 loss promoted RAS-induced thyroid cancers via
inactivating Hippo signaling. And importantly, inactivation of Hippo
signaling predicted poor prognosis in thyroid cancer patients.'* These
studies suggest that identification of the underlying mechanism
responsible for inactivation of the Hippo pathway will improve the
prognosis of thyroid cancer patients.

MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs.
miRNAs post-transcriptionally regulate gene expression via interact-
ing with the 3’ UTR of downstream target genes.'” miRNAs exert
their functions in several biological processes, including cell differen-
tiation, proliferation, and cardiogenesis.'>'® Aberrant expressions of
miRNAs are implicated in the development, progression, and metas-
tasis in a variety of cancers.”>* Furthermore, deregulation of
miRNA expression significantly contributes to the tumorigenesis
and metastasis of thyroid neoplasias.”> miR-424-5p, one of the orig-
inally discovered miRNAs, has been identified to be upregulated
in multiple human cancer types.”*>® Our preliminary study has
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Figure 1. miR-424-5p Expression Is Elevated in Thyroid Cancer

(A) miR-424-5p expression level in thyroid cancer tissues and the adjacent normal tissues (ANTS) as assessed by analyzing the RNA sequencing dataset of thyroid cancer
from TCGA (ANT, n = 59; thyroid cancer, n = 505). Each bar represents the median values + quartile values. (B) miR-424-5p expression level in 59 paired thyroid cancer
tissues and the matched adjacent normal tissues as assessed by analyzing the RNA sequencing dataset of thyroid cancer from TCGA. (C) Real-time PCR analysis of
miR-424-5p expression in 10 fresh paired thyroid cancer tissues. GAPDH was used as endogenous controls. Each bar represents the mean values + SD of three inde-
pendent experiments. *p < 0.05. (D) miR-424-5p expression level examined in 10 papillary thyroid cancer tissues and 7 anaplastic thyroid cancer tissues. Each bar represents
the median values + quartile values. (E) Real-time PCR analysis of miR-424-5p expression in normal thyroid follicular epithelial cells, PTFE cells, and seven thyroid cancer cells,
including four papillary thyroid cancer (PTC) cell lines (B-CPAP, BHT101, TPC-1, and K1), two anaplastic thyroid cancer (ATC) cell lines (CAL-62 and 8305C), and one thyroid
duct cell carcinoma cells, TT. GAPDH was used as endogenous controls. Each bar represents the mean values + SD of three independent experiments. *p < 0.05. (F)
miR-424-5p expression level in metastatic thyroid cancer tissues (M, n = 9) and non-metastatic thyroid cancer tissues ("M, n = 282) by analyzing the RNA sequencing dataset
of thyroid cancer from TCGA. Each bar represents the median values + quartile values.

revealed that miR-424-5p was upregulated in thyroid cancer tissues,
which was positively associated with aggressive clinical features in
thyroid cancer patients,” suggesting that miR-424-5p may play an
important role in malignant progression or metastasis of thyroid
cancer patients. However, the clinical significance and functional
roles of miR-424-5p in thyroid cancer, particularly in the metastasis
of thyroid cancer, remain not yet elucidated.

In the current study, our findings demonstrated that miR-424-5p was
overexpressed in thyroid cancer tissues, which was positively associ-
ated with distant metastasis of thyroid cancer. Our findings further
showed that upregulating of miR-424-5p promoted anoikis resistance
and lung metastasis of thyroid cancer cells in vitro and in vivo.
Conversely, silencing miR-424-5p yielded an opposite effect on
lung metastasis of thyroid cancer. Moreover, we found that miR-
424-5p inhibited activity of Hippo signaling via directly targeting
WWC1, SAV1, and LAST2, which further promoted anoikis resis-
tance and lung metastasis in thyroid cancer. Therefore, our findings
determine that miR-424-5p plays an important role in lung metastasis
of thyroid cancer.

RESULTS

miR-424-5p Is Upregulated in Thyroid Cancer

To evaluate miR-424-5p expression in thyroid cancer, we analyzed an
miRNAs dataset of thyroid cancer from The Cancer Genome Atlas
(TCGA), and the results showed that miR-424-5p was remarkably
upregulated in thyroid cancer tissues compared with the adjacent
normal tissues (ANTSs) (Figure 1A). Consistently, expression levels
of miR-424-5p in 59 paired thyroid cancer tissues were dramatically
overexpressed compared with those in the matched ANTs in the
majority of thyroid cancer tissues (Figure 1B), which was further
demonstrated in our 10 paired thyroid cancer tissues (Figure 1C).
However, there was no significant difference of miR-424-5p expres-
sion in 10 papillary thyroid cancer (PTC) samples and 7 anaplastic
thyroid cancer (ATC) samples (Figure 1D). The expression levels of
miR-424-5p in normal thyroid follicular epithelial cells, primary thy-
roid follicular epithelial (PTFE) cells, and seven thyroid cancer cells,
including one thyroid duct cell carcinoma cell TT, two anaplastic thy-
roid cancer cell lines, CAL-62 and 8305C, and four papillary thyroid
cancer cell lines, B-CPAP, BHT101, TPC-1, and K1. As shown in Fig-
ure 1E, we found that miR-424-5p expression in thyroid cancer cells
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Figure 2. Silencing miR-424-5p Suppresses Lung Metastasis of Thyroid Cancer Cells In Vivo

(A) Real-time PCR analysis of miR-424-5p expression in the vector, miR-424-5p-overexpressing, anti-vector, and miR-424-5p-downexpressing thyroid cancer cells. Error
bars represent the mean + s.d. of three independent experiments. *p < 0.05. (B) Representative images of the lung metastases formed from the indicated cells in the mice
(n =6, each group). (C) The numbers of lung tumor nests in each group were counted under a low-power field and are presented as the median values + quartile values (right
panel). *p < 0.05. Each bar represents the median values + quartile values. (D) Representative H&E staining images of lung metastasis nodules in the indicated mouse groups.
Scale bars, 200 um (original magnification x100); 50 um (original magnification x400). (E) The quantification of the number of thyroid cancer cells (/mm?) in the indicated
tumor tissues. Error bars represent the mean + SD values. *p < 0.05. (F) Kaplan-Meier survival curves from the indicated mouse groups.

was differentially upregulated compared with that in PTFE cells.
Importantly, miR-424-5p expression was observed to be significantly
upregulated in thyroid cancer tissues with distant organ metastasis
compared with that without metastasis via analyzing a thyroid cancer
dataset from TCGA (Figure 1F). Collectively, these results indicated
that miR-424-5p is upregulated in thyroid cancer, which may be
implicated in distant metastasis of thyroid cancer.

miR-424-5p Promotes Lung Metastasis of Thyroid Cancer

Because lung has been reported to be the most common distant met-
astatic organ among all metastatic sites of thyroid cancer,” the effect of
miR-424-5p on lung metastasis of thyroid cancer was first investi-
gated in lung colonization models in vivo. We further established
miR-424-5p stably expressing B-CPAP and K1 cell lines by ectopi-
cally overexpressing miR-424-5p and endogenously knocking down
miR-424-5p via retrovirus infection (Figure 2A). Vector, miR-424-
5p-overexpressing, or anti-miR-424-5p K1 cells were injected into
the mice via tail veins, respectively. As shown in Figures 2B and
2C, upregulating miR-424-5p enhanced the number of lung metasta-
tic nodules. H&E staining revealed that upregulating miR-424-5p
increased the lung metastasis burden of K1 cells (Figure 2D). Further-
more, upregulating miR-424-5p dramatically elevated the number of
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cancer cells per square millimeter (Figure 2E), as well as reduced the
overall survival of the mice (Figure 2F). Conversely, silencing
miR-424-5p yielded a dramatically opposite role in lung metastasis
of thyroid cancer (Figures 2A-2F). Taken together, our results
demonstrated that miR-424-5p promotes lung metastasis ability of
thyroid cancer cells in vivo.

Proliferation of Thyroid Cancer Cells Is Not Impeded by
miR-424-5p In Vitro

We further investigated the functional role of miR-424-5p in lung
metastasis of thyroid cancer. Cell Counting Kit-8 (CCK-8) assay
was first performed to examine the effect of miR-424-5p on thyroid
cancer cells, and the result showed that silencing miR-424-5p slightly
inhibited the cell growth of B-CPAP and K1 cells; however, upregu-
lating miR-424-5p had no effect on cell proliferation of thyroid cancer
cells (Figures 3A-3D). Furthermore, neither colony formation ability
nor cell-cycle progression in thyroid cancer cells was affected by
changed expression of miR-424-5p (Figures 3E and 3F). Furthermore,
we found that either upregulating or downregulating miR-424-5p had
no significant effect on tumor growth of thyroid cancer cells in vivo
(Figures 3G-3I). However, upregulating miR-424-5p promoted,
whereas silencing miR-424-5p repressed, anchorage-independent
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Figure 3. miR-424-5p Does Not Affect Growth and Proliferation of Thyroid Cancer Cells

The effects of miR-424-5p on proliferation rate in the indicated B-CPAP (A and B) and K1 (C and D) cells via CCK-8 assay. Each bar represents the mean values + SD
of three independent experiments. (E) The effects of miR-424-5p on colony formation ability in the indicated thyroid cancer cells via colony formation assay. Each
bar represents the mean values + SD of three independent experiments. (F) Flow cytometric analysis of the effects of miR-424-5p on cell cycle in the indicated
thyroid cancer cells. Each bar represents the mean values + SD of three independent experiments. (G) Images of excised tumors from the mice at 35 days

(legend continued on next page)
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growth capability of thyroid cancer cells (Figure 3]). Therefore, these
results indicated that miR-424-5p does not impede the proliferation
ability of thyroid cancer cells in vitro.

miR-424-5p Promotes Anoikis Resistance, Invasion, and
Migration

As demonstrated above, upregulating miR-424-5p significantly
augmented anchorage-independent growth capability of thyroid can-
cer cells. Several lines of evidence have reported that anoikis resistance,
namely, the capacity of cancer cells to survive under suspension condi-
tions, is a major hallmark of metastatic cancer cells, which significantly
contributes to distant metastasis in a variety of cancers.”’** Therefore,
the effect of miR-424-5p on anoikis resistance of thyroid cancer cells
was further investigated. As shown in Figure 4A, upregulating
miR-424-5p reduced the apoptosis rate of thyroid cancer cells;
however, silencing miR-424-5p elevated the apoptosis rate in thyroid
cancer cells. Moreover, upregulating miR-424-5p increased, whereas
silencing miR-424-5p lowered, the mitochondrial potential of thyroid
cancer cells via mitochondrial membrane potential assay (Figure 4B).
Then, we further examined the effects of miR-424-5p on the activity
caspase-3 and -9, and the expression of anti-apoptotic protein, BCL2
and BCL2L1, and pro-apoptotic protein, BAX and BAD, in thyroid
cancer cells, and found that overexpression of miR-424-5p increased
BCL2 and BCL2L1 expression, reduced BAX and BAD expression,
and repressed the activity of caspase-3 or -9 in thyroid cancer cells (Fig-
ures 4C—4E). By contrast, silencing miR-424-5p displayed an opposite
effect (Figures 4C-4E). Furthermore, upregulating miR-424-5p
enhanced, whereas silencing miR-424-5p inhibited, invasion and
migration abilities of thyroid cancer cells (Figures 4F and 4G). Collec-
tively, these results revealed that miR-424-5p promotes anoikis resis-
tance, invasion, and migration in thyroid cancer cells.

miR-424-5p Inactivates the Hippo Signaling Pathway

To determine the underlying mechanism involved in a pro-lung
metastasis role of miR-424-5p in thyroid cancer, luciferase reporter
plasmids of multiple signaling pathways were transfected into thyroid
cancer cells, respectively, and we found that transcriptional activity of
TEAD, the transcriptional co-activators of the Hippo signaling
pathway, was inactivated by miR-424-5p overexpression, but silenced
by silencing miR-424-5p in thyroid cancer cells (Figures 5A and 5B).
Immunofluorescence assay showed that upregulating miR-424-5p
promoted, whereas silencing miR-424-5p reduced, nuclear transloca-
tion of YAP in thyroid cancer cells (Figure 5C). Real-time PCR anal-
ysis showed that upregulating miR-424-5p inhibited, whereas
silencing miR-424-5p upregulated, expression levels of multiple
downstream genes, including CTGF, CYR61, SOX9, and HOXAI,
of the Hippo pathway in thyroid cancer cells (Figures 5D and 5E).
Thus, these findings indicated that miR-424-5p represses activity of
Hippo signaling in thyroid cancer.

Molecular Therapy: Oncolytics

miR-424-5p Targets WWC1, SAV1, and LAST2

By analyzing several available algorithms, including TargetScan (http://
www.targetscan.olrg/velrt_71/),33 miRanda (http://www.microrna.org/
microrna/microrna/home.do),”* and miRWalk (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk/),”> we found that multiple core com-
ponents of Hippo signaling, including WWC1, SAV1, and LAST2, may
be the potential targets of miR-424-5p (Figure 6A). Western blotting
analysis revealed that upregulating miR-424-5p repressed WWCI,
SAV1, and LAST2 expression, and meanwhile reduced phosphorylated
MST1/2, LATS]1, and YAP levels and increased nuclear YAP and TAZ
expression, but had no effect on total level of MST1 and LATSI in
thyroid cancer cells (Figure 6B). By contrast, silencing miR-424-5p pre-
sented an opposite pattern (Figure 6B). RNA immunoprecipitation
(IP) assay revealed a direct association of miR-424-5p with the tran-
scripts of WWCI, SAV1, and LAST2 (Figures 6C and 6D). Further-
more, luciferase assay demonstrated that upregulating miR-424-5p
suppressed, whereas silencing miR-424-5p increased, the reporter ac-
tivity of 3 UTR of WWC1, SAV1, and LAST?2, but not of the mutant
3’ UTR of WWC1, SAV1, and LAST2 (Figures 6E and 6F). Therefore,
our results demonstrated that WWC1, SAV1, and LAST?2 are direct
targets of miR-424-5p in thyroid cancer cells.

miR-424-5p Promotes Anoikis Resistance and Lung Metastasis
via Inactivating Hippo Signaling

To investigate the functional role of Hippo signaling in miR-424-5p-
induced anoikis resistance of thyroid cancer cells, we further applied
a constitutively activating YAP1,*® YAP1-S127A, in miR-424-5p-
silenced thyroid cancer cells, and found that YAP1-S127A dramatically
reversed the HOP-Flash activity repressed by downregulation of
miR-424-5p (Figure 7A). The pro-apoptotic role of miR-424-5p
downexpression in thyroid cancer, as well as the inhibitory effect of
potential and
anchorage-independent growth capability, was significantly reversed
by YAPI1-S127A (Figures 7B-7D). Furthermore, silencing YAP1
reduced the anchorage-independent growth induced by miR424-5p
overexpression in thyroid cancer cells (Figure 7E). Importantly,
silencing YAP1 remarkably repressed the lung metastatic ability in
miR-424-5p-overexpressing thyroid cancer cells in vivo. Conversely,
overexpressing YAP1 reversed the inhibitory effects of anti-miR-424-
5p in lung metastasis of thyroid cancer cells in vivo (Figures 7F-7H).
Taken together, our results indicated that miR-424-5p promotes anoi-
kis resistance and lung metastasis via inactivating Hippo signaling in
thyroid cancer.

miR-424-5p downexpression on mitochondrial

miR-424-5p Negatively Correlates with WWC1, SAV1 and LAST2,
and YAP1

As shown in Figures S1A and S1B, miR-424-5p expression was
increased in clinical thyroid cancer tissues; conversely, WWCI,
SAV1 and LAST2, and YAP1 expression levels were differentially

after injection with the indicated cells. (H) Tumor volumes were measured every 5 days. Each bar represents the median values + quartile values. (I) Average weight
of excised tumors from the indicated mice. Each bar represents the median values + quartile values. (J) The effects of miR-424-5p on anchorage-independent ability
in the indicated thyroid cancer cells via anchorage-independent growth assay. Each bar represents the mean values + SD of three independent experiments.

*p < 0.05.
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Figure 4. miR-424-5p Promotes Anoikis Resistance in Thyroid Cancer Cells

(A) The effects of miR-424-5p on apoptotic ratio in the indicated thyroid cancer cells via annexin V-FITC/PI staining. Error bars represent the mean + SD of three independent
experiments. (B) The effects of miR-424-5p on mitochondrial potential in the indicated thyroid cancer cells via JC-1 staining assay. Error bars represent the mean + SD of
three independent experiments. (C and D) Analyses of the activities of caspase-3 (C) and caspase-9 (D) were detected by the cleaved forms of these two proteins. Error bars
represent the mean + SD of three independent experiments. (E) Western blotting analysis of BAX, BAD, BCL2L1, and BCL2 expression in the indicated thyroid cancer cells.
a-Tubulin served as the loading control. (F and G) The effects of miR-424-5p on migration (F) and invasion (G) ability in the indicated thyroid cancer cells. Error bars represent
the mean + SD of three independent experiments. *p < 0.05.
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Figure 6. miR-424-5p Targets WWC1, SAV1, and LATS2

(A) Predicted miR-424-5p targeting sequence and mutant sequences in 3 UTRs of WWC1, SAV1, and LATS2. (B) Western blot analysis of WWC1, SAV1, LATS2, p-MST1/2,
MST1, p-LATST, LATS1, p-YAP, YAP, and TAZ expression in the indicated cells. «-Tubulin and p84 were used as total and nuclear loading controls, respectively. (C and D)
microribonucleoprotein (MiIRNP) IP assay showing the association between miR-424-5p, and WWC1, SAV1, and LATS2 transcripts in B-CPAP (C) and K1 (D) cells. Pulldown
of IgG antibody served as the negative control. Each bar represents the mean values + SD of three independent experiments.(E and F) Luciferase assay of cells transfected
with pmirGLO-3" UTR reporter of WWCT1, SAV1, and LATS2 in the miR-424-5p-overexpressing and -silencing B-CPAP (E) and K1 (F) cells. Each bar represents the mean
values + SD of three independent experiments. *p < 0.05.

reduced. Furthermore, miR-424-5p expression was dramatically up-  and YAP1 expression levels were robustly reduced (Figures
regulated in the tumor tissues of the mice inoculated with K1 cells sta- S1C-S1F). The tumor tissues inoculated with miR-424-5p down-
bly transfected with pri-miR-424 compared with those in the vectorat  expressing K1 cells displayed an opposite expression pattern (Figures
the end of the experiments; conversely, WWC1, SAV1 and LAST2, S1C-S1F). Taken together, miR-424-5p expression levels were
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mean values + SD of three independent experiments. “p < 0.05. (B) YAP1-S127A reversed the pro-apoptotic role of miR-424-5p downregulation on thyroid cancer cells.
Each bar represents the mean values + SD of three independent experiments. *p < 0.05. (C and D) YAP1-S127A reversed the inhibitory effects of miR-424-5p downregulation
on mitochondrial potential (C) and anchorage-independent growth capability (D) in thyroid cancer cells. Each bar represents the mean values + SD of three independent
experiments. *p < 0.05. (E) Silencing YAP1 attenuated the stimulatory effects of miR-424-5p overexpression on colony formation capability in thyroid cancer cells. Each bar
represents the mean values + SD of three independent experiments. *p < 0.05. (F) Representative images of the lung metastases formed from the indicated cells in the mice
(n =6, each group). (G) The numbers of lung tumor nests in each group were counted under a low-power field and are presented as the median values + quartile values.
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bars, 200 um (original magnification x100); 50 um (original magnification x400).

negatively correlated with WWC1, SAVI and LAST2, and YAP1
expression in thyroid cancer.

DISCUSSION

In this study, our results revealed overexpression of miR-424-5p in
thyroid cancer tissues, which was significantly correlated with distant
metastasis of thyroid cancer. Gain- and loss-of-function assays
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demonstrated that upregulating miR-424-5p promoted, whereas
silencing miR-424-5p inhibited, anoikis resistance and lung metas-
tasis of thyroid cancer cells in vitro and in vivo. Our results further
showed that miR-424-5p promoted anoikis resistance and lung
metastasis by inactivating Hippo signaling via simultaneously target-
ing WWCI1, SAV1, and LAST2. Therefore, our findings elucidate a
critical role of miR-424-5p in lung metastasis of thyroid cancer, as
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well as unravel a novel mechanism underlying a pro-metastatic role of
miR-424-5p in thyroid cancer.

A number of publications in literature have reported that miR-424-5p

. . 26 :
was upregulated in cutaneous squamous cell carcinoma,”” gastric can-
o

cer,” and hepatocellular carcinoma,”® which contributed to the
tumorigenesis and metastasis in these cancer types. Conversely,
miR-424-5p was reduced in endometrial cancer,””>*® and upregula-
tion of miR-424-5p produced a repressive effect on proliferation,
growth, invasion, migration, or radioresistance in these cancer
cells.””*>* These studies have indicated that miR-424-5p plays a par-
adoxical role in different types of cancer dependent on cellular
context or functional relevance. Of note, overexpression of
miR-424-5p was positively correlated with the metastasis of colorectal
cancer.”! Importantly, our previous study has reported that
miR-424-5p overexpression has been identified to be associated
with aggressive clinical features in thyroid cancer patients.”” These
findings supported the notion that miR-424-5p may play an impor-
tant role in malignant progression or metastasis of cancers. In the
current study, we found that miR-424-5p was upregulated in thyroid
cancer, which predicted a high distant metastatic potential in thyroid
cancer patients. In a lung metastasis model of mouse, our results
found that upregulating miR-424-5p promoted, whereas silencing
miR-424-5p inhibited, lung metastatic ability of thyroid cancer cells
in vivo. Functional experiments further revealed that miR-424-5p
promoted lung metastasis of thyroid cancer dependent on ability of
anoikis resistance, but not on the proliferation ability. Further mech-
anistic investigation revealed that miR-424-5p promoted anoikis
resistance and lung metastasis by inactivating Hippo signaling via
directly targeting WWCI1, SAV1, and LAST2. Therefore, our results
determine an oncogenic role of miR-424-5p in lung metastasis of
thyroid cancer depending on the resistance of thyroid cancer cells
to anoikis.

Several lines of evidence have reported that loss or downregulation of
the core kinase, such as MST1/2 or LATS1/2, contributed to inactiva-
tion of Hippo signaling. For example, heat shock protein 70-induced
downregulation of LAST1 promoted cisplatin resistance in prostate
cancer cells;"* downexpression of SAV1 by hypermethylation pro-
moted invasion and migration of pancreatic ductal adenocarcinoma
cells via inactivating Hippo signaling;** and furthermore, inactivation
of Hippo signaling by epigenetic silencing of the WWC1 promoted
the tumorigenesis of breast cancer.’® However, how these core kinases
of Hippo signaling are simultaneously disrupted in cancers, which
constitutively inactivates Hippo signaling, remains not clarified. In
this study, our results revealed that miR-424-5p inactivated Hippo
signaling via concomitantly targeting WWCI1, SAV1, and LAST2,
as demonstrated by the increased luciferase reporter activity of
HOP-Flash; the decreased phosphorylated levels of MST1, LATSI,
and YAP; the increased nuclear expression of YAP and TAZ; and
the elevated expression levels of multiple downstream genes of the
Hippo pathway in thyroid cancer cells. Therefore, our findings un-
ravel a novel mechanism responsible for inactivation of Hippo
signaling in thyroid cancer.

Several lines of evidence have demonstrated that cancer cells have the
capacity to survive under suspension conditions, namely, anoikis
resistance, which is a major hallmark of metastasis in cancer, greatly
promoting the distant metastatic ability of cancer cells. Haemmerle
et al.’’ have reported that platelet-induced resistance to anoikis is
critical for liver metastasis of colon cancer cells in vivo; in addition,
upregulation of miR-133a-3p attenuated anoikis resistance of pros-
tate cancer cells and repressed bone metastasis of prostate cancer
cells in vivo.”” In this study, our results revealed that upregulating
miR-424-5p promoted anoikis resistance in vitro and lung metastasis
in vivo; conversely, silencing miR-424-5p improved anoikis resistance
and repressed the lung metastasis ability of thyroid cancer cells.
Furthermore, our results further demonstrated that gain or loss of
miR-424-5p had no effect on the proliferation and growth of thyroid
cancer cells in vitro. Therefore, our results implied that miR-424-5p
promotes lung metastasis of thyroid cancer in an anoikis resistance-
dependent and proliferation-independent manner.

In summary, our results indicate that miR-424-5p inhibits activity of
Hippo signaling via targeting WWCI1, SAV1, and LAST2, which
further promotes lung metastasis of thyroid cancer. Therefore, our re-
sults present novel findings to improve our understanding of the
molecular mechanisms underlying lung metastasis of thyroid cancer,
which will provide novel visions into facilitating the development of
anti-lung metastasis therapeutic strategies in thyroid cancer.

MATERIALS AND METHODS

Cell Lines and Cell Culture

The normal primary thyroid follicular epithelial (PTFE) cells and thy-
roid duct cell carcinoma cells TT were purchased from Procell, and all
thyroid cancer cell lines, including papillary thyroid cancer (PTC) cell
lines, B-CPAP and BHT101, and anaplastic thyroid cancer (ATC) cell
lines, CAL-62 and 8305C, were obtained from Shanghai Chinese Acad-
emy of Sciences cell bank (China). PTFE cells were cultured in medium
(CM-H023; Procell, China), and thyroid cancer cell lines were cultured
in RPMI-1640 medium (Life Technologies, Carlsbad, CA, USA) supple-
mented with penicillin G (100 U/mL), streptomycin (100 mg/mL), and
10% fetal bovine serum (FBS; Life Technologies). All cell lines were
cultured at 37°C in a humidified atmosphere with 5% CO.

Patients and Tumor Tissues

A total of 10 paired fresh thyroid cancer tissues with the matched
adjacent normal tissues were obtained during surgery at the China-
Japan Union Hospital of Jilin University (Changchun, China) be-
tween January 2017 and December 2018 (Table S1). Patients were
diagnosed based on clinical and pathological evidence, and the spec-
imens were immediately snap frozen and stored in liquid nitrogen
tanks. For the use of these clinical materials for research purposes,
prior patients’ consents and approval from the Institutional Research
Ethics Committee were obtained.

RNA Extraction, Reverse Transcription, and Real-Time PCR

RNA from tissues and cells was extracted (TRIzol; Life Technologies)
according to the manufacturer’s instructions. mRNA, long noncoding
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RNA (IncRNA), and miRNA were reverse transcribed from the total
RNA using the Revert Aid First Strand cDNA Synthesis Kit (Thermo,
USA) according to the manufacturer’s protocol. cDNA was amplified
and quantified on ABI 7500HT system (Applied Biosystems, Foster
City, CA, USA) using SYBR Green I (Applied Biosystems). The
primers used in the reactions are listed in Table S2. Primers for
miR-424-5p were synthesized and purified by RiboBio (Guangzhou,
China). U6 or glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as endogenous controls for miRNA or mRNA, respectively.
Real-time PCR was performed, and relative fold expressions were
calculated with the comparative threshold cycle (272*“") method as
described previously.*’

Plasmid and Transfection

The human miR-424-5p gene was PCR amplified from genomic DNA
and cloned into a pMSCV-puro retroviral vector (Clontech, Japan).
Pathway Profiling System, including pAP1-luc, pCRE-luc, pE2F-
TA-luc, pERE-luc, pGRE-luc, pHSE-luc, pISRE-TA-luc, pMYC-luc,
PNF-kB-TA-luc, pp53-TA-luc, pSRE-luc, and pSTAT3-TA-luc, was
purchased from Clontech (PT3286-1). HOPFlash (Catalog [Cat.]
83467), HIPFlash (Cat. 83466), TOPFlash (Cat. 12456), and
FOPFlash (Cat. 12457) were purchased from Addgene. The 3’
UTRs of WWCI, SAV1, and LATS2 were PCR amplified from
genomic DNA and cloned into pmirGLO vectors (Promega, USA),
and the list of primers used in cloning reactions was provided in
Table S3. Anti-miR-424-5p was synthesized and purified by
GENECHEM (China). The primers of the mutant plasmid for
WWC1, SAV1, and LAST2 were synthesized and purified by HDbio
(Guangzhou, China). Transfection of plasmids was performed as
previously described.*®

Western Blotting Analysis

Western blot was performed according to a standard method, as
described previously.”” Antibodies against BAX, BAD, BCL2L1,
BCL2, p-MST1/2, MST1, p-LATS1, LATS1, p-YAP, and YAP were
purchased from Cell Signaling Technology, and TAZ from Abcam.
The membranes were stripped and reprobed with an anti-a.-tubulin
antibody (Cell Signaling Technology) as the loading control.

Anchorage-Independent Growth Assay

Five hundred cells were trypsinized and resuspended in complete me-
dium containing 0.3% agar (Sigma). This experiment was performed
as previously described*® and carried out three times independently
for each cell line.

Cell Counting Kit-8 Analysis

A total of 2 x 10 cells were seeded into 96-well plates, and the specific
staining process and methods were performed according to the
previous study.*’

Colony Formation Assay

The cells were trypsinized as single cell and suspended in the media with
10% FBS. The indicated cells (300 cells/well) were seeded into a six-well
plate for ~10-14 days. Colonies were stained with 1% crystal violet for
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10 min after fixation with 10% formaldehyde for 5 min. Plating effi-
ciency was calculated as previously described.”® Different colony mor-
phologies were captured under a light microscope (Olympus).

Cell-Cycle Analysis

Pretreatment and staining was performed using Cell Cycle Detection
Kit (KeyGEN, China) as previously described.”’ In brief, cells (5 x
10°) were harvested by trypsinization, washed in ice-cold PBS, and
fixed in 75% ice-cold ethanol in PBS. Before staining, cells were gently
resuspended in cold PBS, and ribonuclease was added into the cell
suspension tube incubated at 37°C for 30 min, followed by incubation
with propidium iodide (PI) for 20 min at room temperature. Cell
samples (2 x 10*) were then analyzed by FACSCanto II flow cytom-
eter (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), and
the data were analyzed using FlowJo 7.6 software (Tree Star, Ashland,
OR, USA).

Anoikis Induction Assay

Cell culture plates were coated with poly-HEMA (P3932; Sigma-
Aldrich, St. Louis, MO, USA), a non-adhesive substratum, and allowed
to evaporate to dryness at room temperature. Cells were kept in suspen-
sion by using poly-HEMA-coated plates to prevent adhesion. After
48 h of suspension, cells were harvested for cell viability analysis by
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(MTT) assay and cell apoptosis analysis by flow cytometry.

Flow Cytometric Analysis

Flow cytometric analyses of apoptosis were done using the Fluores-
cein Isothiocyanate (FITC) Annexin V Apoptosis Detection Kit I
(BD, USA) and were performed as previously described.” The cell’s
inner mitochondrial membrane potential (Aym) was detected by
flow cytometry using MitoScreen JC-1 staining kit (BD) and was pre-
sented as a protocol as described. In brief, cells were dissociated with
trypsin and resuspended at 1 x 10° cells/mL in assay buffer and then
incubated at 37°C for 15 min with 10 pL/mL JC-1. Before analysis by
flow cytometer, cells were washed twice by assay buffer. Flow cytom-
etry data were analyzed using Flow]Jo 7.6 software (Tree Star, USA).

Caspase-9 or Caspase-3 Activity Assays

Activity of caspase-9 or caspase-3 was analyzed by spectrophotometry
using Caspase-9 Colorimetric Assay Kit or Caspase-3 Colorimetric
Assay Kit (Keygen, China), and the protocol was presented as
described. In brief, 5 x 10° cells or 100 mg fresh tumor tissues was
washed with cold PBS, resuspended in lysis buffer, and incubated
on ice for 30 min; then mixed with the 50 pL cell suspension,
50 pL reaction buffer, and 5 pL caspase-3/-9 substrate; and then incu-
bated at 37°C for 4 h. The absorbance was measured at 405 nm, and
BCA protein quantitative analysis was used as the reference to normal
in each experiment group.

Immunofluorescence

Immunofluorescence was conducted as previously described.”® Pri-
mary antibodies against YAP (Cat. 14074; Cell Signaling Technology)
and CytoPainter Phalloidin-iFluor 488 Reagent (Cat. abl76753;
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Abcam) were used. After counterstaining with DAPI (Invitrogen), the
slide was observed under a confocal microscope (Zeiss).

Tumor Xenografts

Four- to six-week-old BALB/c-nu mice were purchased from the
Experimental Animal Center of the Guangzhou University of Chinese
Medicine and housed as previously described.”* The mice were
randomly divided into three groups (n = 6 per group), and the indi-
cated K1 cells (1 x 10°) were injected into mice via tail vein. Lungs
were fixed in formalin and embedded in paraffin using a routine
method. H&E staining was performed on sections from paraffin-
embedded samples for pathologic examination of lung nodules. The
number of lung tumor nests in each group was counted under 10
random low-power fields (LPFs).

Luciferase Assay

Cells (4 x 10*) were seeded in triplicate in 24-well plates and cultured
for 24 h, and the luciferase reporter assay was performed as previously
described.” Cells were transfected with 100 ng HOP-Flash (Cat.
#83467; Addgene) or HIP-Flash luciferase reporter plasmid (Cat.
#83466; Addgene), plus 5 ng pRL-TK Renilla plasmid (Promega) us-
ing Lipofectamine 3000 (Invitrogen) according to the manufacturer’s
recommendation. Luciferase and Renilla signals were measured 36 h
after transfection using a Dual Luciferase Reporter Assay Kit (Prom-
ega) according to the manufacturer’s protocol.

miRNA Immunoprecipitation

Cells were co-transfected with hemagglutinin (HA)-Ago2, followed by
HA-Ago2 immunoprecipitation using anti-HA-antibody, as previously
described.”’ Real-time PCR analysis of the IP material was performed
to test the association of the mRNA of WWC1, SAV1, and LAST2 with
the RNA-induced silencing complex (RISC) complex.

Statistical Analysis

All values are presented as means + SD. Significant differences were
determined using GraphPad 5.0 software (USA). Student’s t test
was used to determine statistical differences between two groups.
One-way ANOVA was used to determine statistical differences be-
tween multiple testing. Survival curves were plotted using the
Kaplan-Meier method and compared by log-rank test. p < 0.05 was
considered significant. All the experiments were repeated three times.
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