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Abstract

Small insertions and deletions (INDELs; �50 bp) are the most common type of variability after single nucleotide poly-
morphism (SNP). However, compared with SNPs, we know little about the distribution of fitness effects (DFE) of new
INDEL mutations and how prevalent adaptive INDEL substitutions are. Studying INDELs has been difficult partly because
identifying ancestral states at these sites is error-prone and misidentification can lead to severely biased estimates of the
strength of selection. To solve these problems, we develop new maximum likelihood methods, which use polymorphism
data to simultaneously estimate the DFE, the mutation rate, and the misidentification rate. These methods are applicable
to both INDELs and SNPs. Simulations show that they can provide highly accurate results. We applied the methods to an
INDEL polymorphism data set in Drosophila melanogaster. We found that the DFE for polymorphic INDELs in protein-
coding regions is bimodal, with the variants being either nearly neutral or strongly deleterious. Based on the DFE, we
estimated that 71.5–83.7% of the INDEL substitutions that took place along the D. melanogaster lineage were fixed by
positive selection, which is comparable with the prevalence of adaptive substitutions at nonsynonymous sites. The new
methods have been implemented in the software package anavar.
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Introduction
New mutations can have a range of effects on an organism’s
fitness, ranging from being strongly harmful, through being
only slightly deleterious, to being neutral, and finally on to
being either mildly or highly beneficial. The relative frequen-
cies of mutations with different selective effects is known as
the distribution of fitness effects (DFE). The DFE is an impor-
tant parameter as it is required for addressing many funda-
mental questions (Eyre-Walker and Keightley 2007). Examples
include understanding determinants of the efficacy of natural
selection (Galtier 2016; Corcoran et al. 2017), the genetic basis
of polygenic traits (Zuk et al. 2014), and the evolutionary
advantage of sex and recombination (Hartfield and
Keightley 2012).

Taking advantage of the massive increase in data availabil-
ity, many methods have been proposed for estimating the
DFE using polymorphism data (Eyre-Walker et al. 2006;
Keightley and Eyre-Walker 2007; Eyre-Walker and Keightley
2009; Kousathanas and Keightley 2013; Kim et al. 2017; Tataru
et al. 2017). Their development in turn allows more reliable
inferences about other important quantities such as a, the
proportion of adaptive substitutions (Eyre-Walker and
Keightley 2009). However, all these methods are concerned
with estimating the DFE for single nucleotide polymorphisms
(SNPs). Consequently, much less is known about the DFE and
a for other types of genetic variation such as small insertions
and deletions (INDELs;�50 bp), despite the fact that INDELs

are the second most common type of variants (e.g.,
Montgomery et al. 2013), and hence represent an important
source of raw materials for selection to act on.

A major difficulty in studying INDELs lies with ancestral
state identification. This requires multispecies genome align-
ments. However, INDELs occur disproportionately in repeti-
tive genomic regions (Ananda et al. 2013; Montgomery et al.
2013), where alignment algorithms perform poorly (Earl et al.
2014). Furthermore, there is evidence that homoplasy is a
significant issue outside repetitive regions, probably due to
the existence of cryptic INDEL mutation hotspots (Kvikstad
and Duret 2014). Thus ancestral state identification can be
expected to be particularly error prone for INDELs. It is well
established that misidenfication of ancestral states can lead to
severely biased estimates of the strength of selection using the
site-frequency spectrum (SFS) (Hernandez et al. 2007). For
SNPs, this difficulty can be avoided by using the folded SFS
(e.g., Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007).
However, to determine whether a length variant is an inser-
tion or a deletion, we have to know what the ancestral state is,
meaning that the issue of polarisation error is inherent for
INDELs. As a result, applying existing methods for estimating
the DFE to INDEL data may be liable to biases.

Another challenge is that the SFSs for insertions and dele-
tions may be affected by polarisation errors to different
extents. This is because when the ancestral state of an inser-
tion segregating at low frequency is misidentified, it will be
incorrectly inferred as a deletion segregating at high frequency
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(and vice versa). There is direct experimental evidence that
the deletion mutation rate is higher than the insertion mu-
tation rate (Keightley et al. 2009; Schrider et al. 2013;
Besenbacher et al. 2015; Yang et al. 2015). This mutational
bias means that there are more deletions segregating in the
population than insertions. The larger number of deletions
may lead to the SFS for insertions being disproportionally
affected by polarisation errors (fig. 1). This asymmetry can
cause the insertion SFS to have a more pronounced, but
artificial, uptick at the high-frequency end, which can be
misinterpreted as stronger positive selection on insertions
over deletions. As pointed out by Kvikstad and Duret
(2014), this methodological issue can, at least in principle,
compromises the results of previous studies, which suggest
that insertions are more likely to be under positive selection
than deletions to prevent the genome size from uncon-
strained contraction caused by the mutational bias toward
deletions (Parsch 2003). Similarly, it will make it difficult to
test the possibility that insertions have a higher fixation prob-
ability because they are favored by insertion-biased gene con-
version (Leushkin and Bazykin 2013).

Toward resolving the confounding efforts ancestral state
misidentification have on the study of INDELs, we propose
new maximum likelihood methods for inferring the DFE using
polymorphism data. These methods are based on recent
studies on SNPs which show that polymorphism data contain
enough information for simultaneous estimation of the mu-
tation rate, the DFE, and the polarisation error rate (Gl�emin
et al. 2015; Tataru et al. 2017). Our methods are more general
than the existing methods in the following aspects. First, they
can handle both INDELs and SNPs. Second, insertions and
deletions can have different polarisation error rates, mutation
rates, and DFEs. Third, for both INDELs and SNPs, the new
methods allow the mutation and polarisation error rates to
vary across the genome. Incorporating these heterogeneities
may be particularly important for INDELs (Kvikstad and
Duret 2014). We carried out extensive simulations to examine
the performance of the new methods. As an example, we
applied the methods to an INDEL polymorphism data set in
Drosophila melanogaster we obtained by reanalysing the raw
short-read data published by the Drosophila Population
Genomics Project (Pool et al. 2012). Through model compar-
isons, we tried to find the DFE that best described the ob-
served pattern of INDEL polymorphism within protein-
coding regions of the genome. Finally, using the best-fitting
DFE, we estimated the proportion of INDEL substitutions
fixed by positive selection (a).

New Approach
For ease of presentation, we will start with a description of the
SNP models. The INDEL models will be presented later as an
extension.

The SNP Models
Consider a diploid population with effective size Ne. The size
of the genomic region of interest is m base pairs, and the
sample size is n.

The Discrete Model
Assume that there are C different classes of sites in the focal
region. These sites can be different with respect to their mu-
tation rates, the fitness effects of new mutations, and polar-
isation error rates. This discrete model has several advantages.
First, it does not assume that the DFE follows a specific prob-
ability distribution, and is therefore able to accommodate
complex scenarios such as a multimodal DFE (Kousathanas
and Keightley 2013). Second, by allowing the mutation and
polarisation error rates to vary freely between site classes, the
method can include situations whereby these two variables
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FIG. 1. The SFSs for insertions and deletions may be affected to different
extents by polarisation errors. We assume that the population size is
constant, that INDELs are neutral, and that the sample size is 10. In the
genomic region under consideration, the total scaled mutation rate
toward insertions, 4Neum, is 10, where Ne is the effective population size
u is the insertion mutation rate per site per generation, and m is that
size of the focal region. The total scaled mutation rate toward deletions
is 20. The expected SFSs were generated using standard neutral theory.
The SFSs with polarisation errors were generated by assuming that the
ancestral state of an INDEL was wrongly identified with probability 0.1.
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covary (e.g., hypermutable regions may have a higher polar-
isation error rate).

We assume that the mutation process can be approxi-
mated by the infinite-sites model. Let the total scaled muta-
tion rate for sites of class c be mhc, where c 2 f1; 2; . . .; Cg
and hc ¼ 4Neuc. To understand uc, consider an alternative
formulation whereby the mutation rate for the cth class of
sites is vc per site per generation, and sites of class c account
for a fraction pc of all sites in the focal region (i.e.,

P
c pc ¼ 1).

We have mhc ¼ mpc4Nevc, which leads to uc ¼ pcvc. By
using hc, we can perform searches for maximum likelihood
estimates (MLEs) of the parameters without having to deal
with the constraint

P
c pc ¼ 1. Define:

h ¼
XC

c¼1

hc ¼ 4Ne

XC

c¼1

pcvc: (1)

Thus, h is the average scaled mutation rate per site, and the
total scaled mutation rate is mh. If the per-site mutation rate
is uniform across the focal region (i.e., vi ¼ vj for i 6¼ j and
1 � i; j � C), then hc=h ¼ pc.

To model selection, we assume that, for mutations arising
at sites of class c, the fitnesses of the wild-type, heterozygote,
and mutant homozygote genotypes are 1, 1þ sc, and 1þ 2sc,
respectively. The corresponding scaled selection coefficient cc

is defined as 4Nesc. Positive and negative cc values signify
beneficial and deleterious mutations, respectively.

The site-frequency spectrum (SFS) for the cth site class,
which is defined as the expected number of polymorphic
sites of size i (i.e., sites where the derived allele is represented
i times; 1 � i < n), is given by:

Wc;i ¼ mhcsiðccÞ (2)

where

siðcÞ ¼
ð1

0

n

i

 !
xið1� xÞn�i 1� e�cð1�xÞ

xð1� xÞð1� e�cÞ dx: (3)

Polarisation errors distort the SFS. Specifically, when the
ancestral state of a polymorphic site of size i is mis-identified,
it will be regarded as a polymorphic site of size n�i. To model
polarisation errors, we let �c be the probability that the ances-
tral state of a polymorphic site of class c is incorrectly identified
(Gl�emin et al. 2015). The final SFS for sites of class c is then:

wc;i ¼ ð1� �cÞWc;i þ �cWc;n�i: (4)

In what follows, we refer to the SFS with and without the
correction of polarisation errors as the corrected and uncor-
rected SFS, respectively. The corrected SFS for the focal region
is simply the sum of all the contributions from the sites in
different classes:

wi ¼
XC

c¼1

wc;i: (5)

Existing models either do not model polarisation error
(Keightley and Eyre-Walker 2007; Eyre-Walker and Keightley

2009; Kim et al. 2017) or assume that the error rate is constant
across the focal region (Gl�emin et al. 2015; Tataru et al. 2017).
The model described here is therefore more general. Allowing
variation in the polarisation error rate can be important. For
instance, sites under stronger selective constraints tend to
evolve slower, and are less likely to be polarised incorrectly
due to homoplasy. It should, however, be noted that, when
cc � c for 8c 2 f1; 2; . . .; Cg, not all the parameters are
identifiable. To see this, we rewrite equation (5) as:

wi ¼ m
XC

c¼1

ð1� �cÞhcsiðcÞ þm
XC

c¼1

�chcsn�iðcÞ: (6)

Appealing to equation (1) and defining �� such that

��h ¼
XC

c¼1

�chc (7)

we can rewrite equation (6) as

wi ¼ ð1� ��ÞmhsiðcÞ þ ��mhsn�iðcÞ: (8)

Thus, when there is no difference in fitness effects between
mutations arising at sites of different classes, we cannot detect
variation in the scaled mutation rate and polarisation error
rate because the model reduces to one that depends on h, c
and ��. This result has important implications for data
analysis by pointing out that a model with a small number
of site classes may provide an adequate description of the
data even when the underlying biological process features
complex variation in the mutation rate across the genome.

The Continuous Model
Instead of assuming that the focal region is composed of
several classes of sites, we can assume that the fitness effects
of new mutations follows a continuous distribution charac-
terised by parameters X. Let h be the scaled mutation rate
per site, and � be the polarisation error rate. The uncorrected
SFS becomes:

Wi ¼ mh
ð

siðcÞfðcjXÞdc (9)

where fðcjXÞ is the probability density function. The cor-
rected SFS is analogous to equation (4) with c in the sub-
scripts omitted.

Although the modeling framework allows the DFE to fol-
low arbitrary probability distribution (including those mixture
distributions considered by Galtier 2016), here we only con-
sider the reflected C distribution, that is, �c � Cða; bÞ,
where c � 0 and a and b are the shape and scale parameters,
respectively.

Parameter Estimation
Let X¼ (x1, x2,. . ., xn�1) represent the observed SFS, where xi

is the number of polymorphic sites of size i in the sample. Let
H denote all the parameters in the model (i.e., hc, cc, and �c

for c 2 f1; 2; . . .; Cg for the discrete model and h, X, and �
for the continuous model). To obtain MLEs of H, we use the
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Poisson random field model (Sawyer and Hartl 1992;
Bustamante et al. 2001). Omitting constants that have no
effects on the shape of the likelihood surface, the log likeli-
hood function is defined as:

LðHjXÞ ¼
Xn�1

i¼1

ð�wi þ xi lnðwiÞÞ: (10)

Controlling for Demography
We have so far assumed that the population is panmictic and
of constant size Ne. To control for demography, we employ
the method of Eyre-Walker et al. (2006). Take the continuous
model as an example. First, we define augmented SFSs as:

W�i ¼ riWi ð11aÞ

w�i ¼ ð1� �ÞW�i þ �W�n�i ð11bÞ

(

Next, a set of neutral variants is added to the model, which
introduces two additional parameters hð0Þ and �ð0Þ, which are
the scaled mutation rate per site and the polarisation error
rate, respectively, for the neutral sites. Let Hð0Þ denote these
new parameters and Xð0Þ denote the neutral SFS. The log
likelihood of the observed data can be calculated as:

LðH;Hð0Þ; RjX; Xð0ÞÞ ¼ LðH; RjXÞ þ LðHð0Þ; RjXð0ÞÞ (12)

where R¼ (r2, r3,. . ., rn�1) and the two log likelihood func-
tions on the right-hand side are calculated in the same way as
equation (10) with wi replaced by w�i .

The above method for controlling for demography has
been used extensively (Eyre-Walker et al. 2006; Muyle et al.
2011; Gl�emin et al. 2015; Galtier 2016; Jackson et al. 2017;
Tataru et al. 2017). These previous efforts have gathered clear
theoretical and empirical evidence that the method is robust
against a wide range of demographic processes, as well as the
effects caused by selection at linked sites (e.g., background
selection and/or selective sweeps). For instance, in a recent
analysis of selection on codon usage bias in Drosophila,
Jackson et al. (2017) showed that the estimates of c produced
by an estimation method that corrects for demography using
the r parameters as set out above closely matched those
produced by another estimation method that considers an
explicit one-step change in population size (see figure 4 A in
Jackson et al. 2017).

It should be noted that equation (12) accommodates the
possibility that the focal region and the neutral region have
different mutation rates. This is more general than several
previous models (Keightley and Eyre-Walker 2007; Eyre-
Walker and Keightley 2009; Kim et al. 2017; Tataru et al.
2017). However, it may be challenging to distinguish this
model from one in which the two regions have the same
mutation rate, but a proportion of new mutations in the
focal region are so strongly deleterious that they make neg-
ligible contributions to the observed SFS.

The INDEL Models
The Discrete Model
First consider insertions. Assume that there are Cins different
classes of sites. The total scaled mutation rate toward inser-
tions for sites of class c is mhins

c , and the fitness effect and
polarisation error rate are cins

c and �ins
c , respectively

(1 � c � Cins). The uncorrected SFS for insertions of class

c can be calculated using equation (2), and is denoted by Wins
c;i .

For deletions, we can similarly assume that there are Cdel

different classes of sites. The associated parameters are

hdel
d ; cdel

d , and �del
d , and the uncorrected SFS is denoted by

Wdel
d;i (1 � d � Cdel).

When the ancestral state of a derived insertion of size i is
misidentified, it will be wrongly identified as a deletion of size
n�i, and vice versa for deletions (note that size in this context
refers to the frequency of the derived allele, not the number
of base pairs inserted or deleted). Thus, the corrected SFSs for
insertions and deletions are:

wins
i ¼

XCins

c¼1

ð1� �ins
c ÞWins

c;i þ
XCdel

d¼1

�del
d Wdel

d;n�i ð13aÞ

wdel
i ¼

XCdel

d¼1

ð1� �del
d ÞWdel

d;i þ
XCins

c¼1

�ins
c Wins

c;n�i ð13bÞ

8>>>>><
>>>>>:

The Continuous Model
For insertions, define the per-site scaled mutation rate and
the polarisation error rate as hins and �ins, respectively. The
DFE for insertions is determined by parameters Xins. For dele-
tions, we similarly define the following parameters: hdel, Xdel

and �del. Finally, the corrected SFSs are:

wins
i ¼ ð1� �insÞWins

i þ �delWdel
n�i ð14aÞ

wdel
i ¼ ð1� �delÞWdel

i þ �insWins
n�i ð14bÞ

(

where Wins
i and Wdel

i are the uncorrected SFSs for insertions
and deletions, respectively, and are calculated in the same
way as equation (9). As in the SNP case, we only consider
cases where the DFE follows a reflected C distribution. The
shape and scale parameters for insertions and deletions are
denoted by ains, bins, adel, and bdel, respectively.

Parameter Estimation
Let Xins¼ (xins

1 ; xins
2 ,. . ., xins

n�1) and Xdel¼ (xdel
1 ; xdel

2 ,. . ., xdel
n�1)

be the observed SFSs for insertions and deletions, respectively.
The log likelihood of the data is calculated as:

LðHjXins; XdelÞ ¼
X

z2fins;delg

Xn�1

i¼1

ð�wz
i þ xz

i lnðwz
i ÞÞ: (15)

Controlling for Demography
Take the continuous model as an example. The augmented
SFSs are:
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Wins;�
i ¼ riW

ins
i ð16aÞ

Wdel;�
i ¼ riW

del
i ð16bÞ

wins;�
i ¼ ð1� �insÞWins;�

i þ �delWdel;�
n�i ð16cÞ

wdel;�
i ¼ ð1� �delÞWdel;�

i þ �insWins;�
n�i ð16dÞ

8>>>>>><
>>>>>>:

As for the neutral reference, we can in principle use any
combinations of SNPs, insertions, and deletions collected
from putatively neutrally evolving regions. Assume that we
have access to both neutral insertions and neutral deletions,
and the observed SFSs are denoted by Xins;ð0Þ and Xdel;ð0Þ,
respectively. The additional parameters needed to model
the neutral variants include hins;ð0Þ; �ins;ð0Þ; hdel;ð0Þ, and
�del;ð0Þ, which are denoted collectively by Hð0Þ. The log likeli-
hood is:

LðH;Hð0Þ; RjXins; Xdel; Xins;ð0Þ; Xdel;ð0ÞÞ

¼ LðH; RjXins; XdelÞ þ LðHð0Þ; RjXins;ð0Þ; Xdel;ð0ÞÞ
(17)

where the two terms on the right are calculated using equa-
tion (15) with wz

i replaced by wz;�
i (z 2 fins; delg).

Results and Discussion

Simulation Results
We evaluate the statistical properties of the new models using
computer simulations. Unless stated otherwise, the sample
size (n) is 50 and the results are based on 100 replicates. In all
cases, we assume the population size is constant and only
analyse data from the selected region (see Materials and
Methods for justification). For the SNP models, we only pre-
sent results for the discrete SNP model with C > 1 site classes,
because both the C¼ 1 case and the continuous model have
been analysed before (Gl�emin et al. 2015; Tataru et al. 2017).

Properties of the Discrete SNP Model
First consider a model with C¼ 2 site classes. As can be seen
from table 1, there is information in the SFS for simulta-
neously estimating all the parameters to a high degree of
accuracy. Before discussing more simulation results, it should
be pointed out that, when C > 1, the order of the site classes
is arbitrary. That is, the model considered in table 1 is equiv-
alent to one with parameters h1 ¼ 0:01; c1 ¼ �20;
�1 ¼ 0:01; h2 ¼ 0:005; c2 ¼ �5, and �2 ¼ 0:05. For both
cases shown in table 1, all the MLEs can be sorted such that
ĥ1 < ĥ2 and ĉ1 > ĉ2. In other words, the MLEs can be
assigned unambiguously to site classes according to the order
given in the “True value” row. However, if we were to reduce
the amount of data, parameter estimates will become more
uncertain, and cases such as those with ĥ1 < ĥ2 and ĉ1 <
ĉ2 will occur, which makes assigning the MLEs to site classes
impossible. Thus, presenting mean and SD of the MLEs may
give misleading information about the performance of the
model.

In light of the earlier discussion, we investigate the statis-
tical properties of the model using two alternative methods.
First, we compare the full model to the following reduced
models using the v2 test: “Equal �” (all site share the same
polarisation error rate), “�¼ 0” (no polarisation error), and
“C� 1”(a model with C� 1 site classes, where C is the true
number of site classes). Second, we assess how well these
various models predict the average fixation probability �l
(see eq. 18 in Materials and Methods), which is essential
for estimating the prevalence of adaptive substitutions (i.e.,
a and xa).

Considering the two pairs of cases in table 2, and focusing
on the data presented under “Percent significant,” we make
the following observations. First, as the amount of data
reduces, the ability of the model to infer separate � for differ-
ent site classes drops more rapidly than its ability to detect

Table 1. Maximum Likelihood Estimates (MLEs) of the Parameters of Discrete SNP Models with C¼ 2 Classes of Sites.

m h1 c1 �1 h2 c2 �2

True value – 0.005 25 0.05 0.01 220 0.01
Mean (SD) of MLEs 106 0.0050 (0.0007) 25.0 (0.4) 0.051 (0.006) 0.010 (0.001) 220.2 (1.9) 0.009 (0.006)
Mean (SD) of MLEs 105 0.0044 (0.0017) 24.4 (1.5) 0.042 (0.022) 0.011 (0.001) 220.0 (5.7) 0.016 (0.014)

NOTE.—Simulated data were generated using the parameter values shown in the “True value” row, with two different region sizes, m. For each parameter combination, 100
samples of size 50 were simulated and analysed to obtain MLEs.

Table 2. Statistical Properties of the Discrete SNP Model.

Case Parameters m Percent Significant �l

Equal � �¼ 0 C� 1 True Full Equal � �¼ 0 C� 1

1 Same as table 1 106 93 100 100 0.0113 0.0114 0.0171 >1 0.0022
2 Same as table 1 105 15 92 100 0.0113 0.0158 0.0204 >1 0.0022
3 See notes below 107 3 100 100 0.2204 0.2267 0.2613 >1 0.1755
4 Same as Case 3 23106 0 33 55 0.2204 0.2271 0.2580 >1 0.1768

NOTE.—The parameters used in Case 3 were h1 ¼ 0:002; c1 ¼ 0; �1 ¼ 0:05; h2 ¼ 0:006; c2 ¼ �5; �2 ¼ 0:02; h3 ¼ 0:002; c3 ¼ �30; �3 ¼ 0:01, and n¼ 100. A large
sample size was used for Cases 3 and 4 due to the inclusion of strongly deleterious mutations (i.e., c3 ¼ �30). Values under “Percent significant” show how often the full
model fitted the data better than the three reduced models (see the main text for more details). The �l (see eq. 18 in Materials and Methods) obtained under the �¼ 0 model are
large because ignoring polarisation error results in the inference of a site class with a strongly positive c.
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the existence of either polarisation error or more than one
site class. This suggests that estimating heterogeneity in �may
be challenging. Considering all four cases, it appears that the
tests for detecting the presence of polarisation error (i.e., the
full model vs. “�¼ 0”) and for detecting the existence of more
site classes (i.e., the full model vs. “C� 1”) are more powerful,
especially the latter. It should be noted that the likelihood
surface appears to be rather flat when C¼ 3 such that differ-
ent parameter combinations may produce very similar log
likelihoods. This is particularly evident when the amount of
data is limited (Case 3 vs. Case 4), leading to a reduction in
power of the tests. A similar observation was made by
Keightley and Eyre-Walker (2010), who also showed that it
can be partly alleviated by increasing the sample size.
Nonetheless there may well be a limit as to how many site
classes can be included. This identifiability problem is analo-
gous to that discussed extensively in the context of using
SNP-based methods for estimating past demographic
changes (e.g., Myers et al. 2008).

Interestingly, the reduced model “Equal �” makes worse
predictions of �l than the full model in all cases presented in
table 2, even when the full model does not normally provide a
better fit to the data (Cases 2 and 4). The same applies to the
other two reduced models. Thus, despite the statistical diffi-
culties discussed earlier, fitting the full model to the data may
be important for obtaining accurate estimates of a and xa.

Properties of the INDEL Models
Table 3 contains simulation results based on a discrete model
(with Cins ¼ Cdel ¼ 1) and two continuous models (differing
from each other in terms of the size of the focal region m).
The mutation rates are �10 times lower than those used in
the SNP cases (tables 1 and 2), and polarisation error rates are
�2 times higher. These choices are to reflect the fact that
INDELs are generally less prevalent than SNPs, and are poten-
tially more difficult to polarise. As can be seen, with a reason-
able amount of data, all the parameters can be reliably
estimated. Comparing the two continuous models, we notice
that, with limited data, the scale parameter b of the C distri-
bution may be overestimated, but estimates of the shape
parameter a and the polarisation error rate remain unbiased.

The true values of �lins and �ldel for the discrete model are
0.0339 and 4:59� 10�6, respectively. The mean (SD) of the
estimates is 0.0345 (0.0055) for �lins, and 5:27� 10�6

(2:91� 10�6) for �ldel. Thus, the true values are well within

the observed ranges of variability. The true values of �lins and
�ldel for the two continuous cases are 0.384 and 0.429, respec-
tively. The mean (SD) of the estimates for the case with more
data is 0.382 (0.012) for �lins and 0.429 (0.008) for �ldel.
Encouragingly, for the continuous case with less data, despite
the tendency to overestimate the scale parameter, estimates
of the average fixation probabilities are still highly accurate:
0.388 (0.050) for �lins and 0.418 (0.028) for �ldel, suggesting that
the reliability of estimates of a and xa is unlikely to be
compromised.

Application to D. melanogaster Data
A Summary of the Data
Using the variant calling pipeline detailed in Materials and
Methods, a total of 370, 217 INDELs (�50 bp) and 1,789,367
SNPs were identified from the 17 Rwandan individuals. Our
analysis primarily focuses on INDELs because SNPs have been
analysed extensively before (Keightley and Eyre-Walker 2007;
Eyre-Walker and Keightley 2009; Schneider et al. 2011). Similar
to previous reports (e.g., Ptak and Petrov 2002), smaller
INDELs are more prevalent than larger ones (supplementary
fig. S1, Supplementary Material online). INDEL diversity is�30
times lower in protein-coding (CDS) regions than in either
intronic or intergenic regions (table 4). Additionally, frame-
shift INDELs are rarer than nonframeshift ones (table 4 and
supplementary fig. S1, Supplementary Material online).
Interestingly, nonsense mutations are somewhat rarer than
frameshift INDELs, an observation also made by Leushkin
et al. (2013). These results indicate strong purifying selection
against INDELs in protein-coding regions. INDEL diversity
patterns appear to be similar between intronic and intergenic
regions. They are combined and referred to as noncoding
INDELs in what follows to increase statistical power.

Comparing between INDELs and SNPs, we notice that
INDEL diversity in noncoding regions is �10 times lower
than p4 (4-fold site diversity; table 4), consistent with the
fact that the INDEL mutation rate is lower than the point
mutation rate (Haag-Liautard et al. 2007; Schrider et al. 2013).
However, Tajima’s D calculated on noncoding INDELs is more
negative than that calculated on 4-fold sites (table 4), prob-
ably reflecting the fact that many noncoding DNA in the D.
melanogaster genome are under selection (Andolfatto 2005).
Furthermore, p0 (0-fold site diversity; table 4) is only �10
times smaller than p4. This level of reduction is much smaller
than the 30-fold difference observed between CDS and non-
coding INDELs. This suggests that, in protein-coding regions,

Table 3. MLEs of the Parameters of Several INDEL Models.

Model m Parameters

Discrete 23106 Name hins
1 cins

1 �ins
1 hdel

1 cdel
1 �del

1

True 0.0005 25 0.02 0.001 215 0.02
Mean MLE 0.00050 25.0 0.021 0.0010 215.0 0.020

Continuous 23107 Name hins ains bins �ins hdel adel bdel �del

True 0.0005 0.5 10 0.08 0.001 0.25 50 0.04
Mean MLE 0.00050 0.51 10.4 0.080 0.0010 0.251 51.2 0.040

Continuous 23106 Name hins ains bins �ins hdel adel bdel �del

True 0.0005 0.5 10 0.08 0.001 0.25 50 0.04
Mean MLE 0.00054 0.51 144.7 0.082 0.0010 0.253 93.2 0.041

Inferring the DFE for INDELs and SNPs . doi:10.1093/molbev/msy054 MBE

1541

Deleted Text: versus 
Deleted Text: versus
Deleted Text: versus
Deleted Text: above
Deleted Text: m
Deleted Text: :
Deleted Text: about 
Deleted Text: about 
Deleted Text: <IMG_FOUND/> 
Deleted Text:  
Deleted Text:  
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy054#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy054#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy054#supplementary-data
Deleted Text: about 
Deleted Text: -
Deleted Text: ;
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy054#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy054#supplementary-data
Deleted Text: -
Deleted Text: -
Deleted Text: about 
Deleted Text: -
Deleted Text: -
Deleted Text: about 


INDEL mutations are under much stronger purifying selection
than 0-fold mutations, which is consistent with the more
negative Tajima’s D value calculated on CDS INDELs (table 4).

To further investigate the data, we calculated dN, substitu-
tion rate at nonsynonymous sites, using PAML and the ref-
erence genomes of D. simulans and D. yakuba (see Materials
and Methods). The genes were then divided into 20 equal-
sized bins. For each bin, we calculated average p0 and pINDEL.
Both statistics decrease as dN decreases (supplementary fig.
S2, Supplementary Material online), consistent with the ex-
pectation that mutations are on average more deleterious in
more conserved genes (Jackson et al. 2015). The results in this
and the preceding paragraphs suggest that our INDEL data set
is of high quality.

Inferring the DFE and � Using Noncoding INDELs as the

Neutral Reference
To infer the DFE for INDELs in CDS regions, we used non-
coding INDELs as the neutral reference. Following previous
efforts in estimating the DFE for SNPs (Keightley and Eyre-
Walker 2007; Eyre-Walker and Keightley 2009; Schneider et al.
2011; Galtier 2016; Tataru et al. 2017), we also assumed that
the mutation rate toward insertions and deletions, respec-
tively, were the same between the neutral and selected
regions. The best-fitting DFE is one with C¼ 2 classes of se-
lected sites (table 5 and supplementary table S1,
Supplementary Material online). The MLEs of c suggest
that polymorphic INDELs are either nearly neutral or are so
strongly deleterious that they contribute little to

polymorphism. This seems to be consistent with the 30-
fold difference in INDEL diversity level between CDS and
noncoding regions, which is more substantial than the 10-
fold difference between 0-fold and 4-fold sites (table 4). Fitting
the data to a discrete model with C¼ 3 classes of sites also
reveals a bimodal DFE, suggesting that the conclusion is ro-
bust (supplementary table S1, Supplementary Material on-
line). With a larger sample containing hundreds or even
thousands of alleles, and by fitting a DFE with more site clas-
ses, it should be possible to obtain further details of the rel-
ative frequencies and fitness effects of strongly selected
variants, which tend not to segregate in our current sample
of size 17. However, this additional information about the
strongly selected end of the DFE is unlikely to affect our es-
timation of a (see below) because these variants make effec-
tively no contribution to divergence.

To better understand the effects of length, we separated
the INDELs in CDS regions into the following length catego-
ries: 1 bp, 2 bp, 3 bp, frameshifting (�4 bp), and nonframe-
shifting (�6 bp). We analysed the data in each category
separately. As above, noncoding INDELs with the same length
were used as the neutral reference and the mutation was
assumed to be constant across neutral and selected sites.
Considering the dearth of variants, we only fitted a DFE
with C¼ 1 class of selected sites. Viewing the c in this model
as the “average” selection coefficient, frameshift INDELs are
consistently more deleterious than nonframeshift INDELs
(supplementary fig. S3, Supplementary Material online).
Consistent with a prevous study (Leushkin et al. 2013), there
is no obvious evidence that longer INDELs are under stronger
selection.

Using the best-fitting DFE (table 5), the proportion of
INDEL substitutions in the CDS regions fixed by positive se-
lection in the D. melanogaster lineage, a, is 83.7% (100% for
insertions and 81.8% for deletions). These a estimates are
comparable with previous estimates for SNP substitutions
in CDS regions (Andolfatto et al. 2011; Schneider et al. 2011).

As mentioned earlier, some noncoding INDELs are proba-
bly nonneutral, as suggested by the negative Tajima’s D value
(table 4). Our use of these variants as the neutral reference are
for several practical reasons. Although using INDELs in

Table 4. Summary Statistics for the INDEL and SNP Data.

Data Type Diversity (p) Tajima’s D

INDELs CDS 5:20310�5 21.208
Frameshift 2:06310�5 21.253
Nonframeshift 3:14310�5 21.177
Intron 0.0016 20.729
Intergenic 0.0017 20.704
Noncoding 0.0017 20.718

SNPs Nonsense 5:83310�6 21.510
0-fold degenerate sites 0.0016 20.868
4-fold degenerate sites 0.0165 20.210

Table 5. Results Based on the Best-Fitting Models for INDELs in the CDS Regions of the D. melanogaster Genome.

Neutral Ref/DFE/Mutation Rate Parameters for CDS INDELs a

Noncoding INDELs Name hins
1 cins

1 �ins
1 hdel

1 cdel
1 �del

1 83.7%
Discrete C 5 2 MLE 1:8310�5 1.98 0.023 5:3310�5 21.69 0.016
Uniform mutation rate Name hins

2 cins
2 �ins

2 hdel
2 cdel

2 �del
2

MLE 7:2310�4 21566.4 3:6310�5 0.0011 2642.5 1:6310�5

4-fold degenerate sites Name hins
1 cins

1 �ins
1 hdel

1 cdel
1 �del

1 71.5%
Discrete C 5 2 MLE 1:6310�5 21.31 0.0092 4:9310�5 23.77 0.0082
Fixed mutation ratios Name hins

2 cins
2 �ins

2 hdel
2 cdel

2 �del
2

MLE 1:9310�4 2284.1 1:2310�4 0.0010 2454.8 6:2310�5

NOTE.—The DFE for polymorphic INDELs in the CDS regions were inferred using either noncoding INDELs or 4-fold sites as the neutral reference. A series of different DFEs were
fitted to the data, and the best-fitting models presented above were determined by using the Akaike information criterion (AIC) (see supplementary tables S1 and S5,
Supplementary Material online). When noncoding INDELs were used as the neutral reference, a was estimated using INDEL divergence in noncoding regions. When 4-fold sites
were used as the neutral reference, the mutation rate ratio between SNPs and INDELs, and that between deletions and insertions, were fixed at values obtained from a mutation
accumulation experiment (Schrider et al. 2013). a was estimated using a method based on divergence in the 8–30 bp region of short introns< 66 bp long (see the main text).
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“dead-on-arrival” transposable elements as neutral reference
may be preferable (Petrov 2002), calling variants from repet-
itive regions using short-read data is highly prone to error (Li
2014). Using data from the 8–30 bp region of short introns
�65 bp, which are also putatively neutral (Parsch et al. 2010),
is also problematic because of evidence for selection main-
taining intron size (Ptak and Petrov 2002; Parsch 2003;
Leushkin et al. 2013). Note that Tajima’s D is more negative
for INDELs in CDS regions than for those in noncoding
regions, suggesting that the latter are probably under weaker
purifying selection (table 4). If this is the case, our method
tends to underestimate the strength of purifying selection on
INDELs in CDS regions, as suggested by the simulation results
presented in supplementary table S2, Supplementary
Material online. This should lead to an overestimation of �l,
the average fixation rate (eq. 18), which should in turn put a
downward pressure on the estimation of a (eq. 19). However,
biases in a also depend on the way selection on noncoding
INDELs alters divergence. For example, if fixations of beneficial
noncoding INDELs are so common that dS is greater than the
divergence level expected under neutral evolution, then this
combined with the overestimation of �l can lead to a sub-
stantial underestimation of a. In contrast, if most noncoding
INDELs are selected against and dS is much smaller than the
neutral expectation, it may offset the effect caused by the
overestimation of �l and result in an overestimation of a.

Inferring the DFE and � Using 4-Fold Degenerate Sites as the

Neutral Reference
To check the robustness of our results, we conducted a sec-
ond set of analyses without using noncoding INDELs. We
extended our model such that it can infer the DFE for
INDELs in CDS regions using 4-fold sites as the neutral refer-
ence. We chose 4-fold sites instead of the 8–30 bp region of
short introns �65 bp because 4-fold sites are probably not
under ongoing selection on codon usage in D. melanogaster,
and are similar to short introns in multiple aspects of poly-
morphism patterns (Jackson et al. 2017). Considering the pa-
rameter richness of the models, using 4-fold SNPs as the
neutral reference should help statistical inference because
they are much more numerous than short-intron SNPs.

We used the following approach to obtain neutral diver-
gence for INDELs along the D. melanogaster lineage. The nu-
cleotide divergence in the 8–30 bp region of short introns
�65 bp is 0.0674 (Jackson B, personal communication). In a
mutation accumulation experiment (Schrider et al. 2013), it
was found that the rate to point mutations is 12.2 times
higher than that to short INDELs, and that the rate to dele-
tions is 5 times higher than that to insertions (averaging
across the two genetic backgrounds considered therein).
Thus, an estimate of neutral INDEL divergence can be
obtained as 0:0674=12:2 ¼ 0:0055, and the corresponding
estimates for insertions and deletions are 9:2� 10�4 and
0.0046, respectively.

Due to the use of 4-fold sites as the neutral reference, it is
no longer appropriate to assume that the mutation rate is the
same between the selected and neutral regions. Given the

evidence that the DFE for INDELs probably features a class of
strongly deleterious mutations that make little contribution
to polymorphism, allowing the selected and neutral regions
to have their separate mutation rates is likely to cause the
model to underestimate both the mutation rate in the se-
lected region and strength of purifying selection, as confirmed
by simulation results presented in supplementary table S3,
Supplementary Material online. An underestimation of the
strength of purifying selection is likely to cause an underesti-
mation of a. We observed this in our data set—a for all
INDELs obtained from the best-fitting DFE for this analysis
(supplementary table S4, Supplementary Material online) is
only 21.7%, much smaller than the value of 83.7% when non-
coding INDELs were used as the neutral reference (table 5).

To resolve the above problem, we again made use of the
information reported in the aforementioned mutation accu-
mulation experiment (Schrider et al. 2013). Specifically, we
further extended our model, so that the mutation rate ratio
between SNPs and INDELs, and that between deletions and
insertions, were fixed at 12.2 and 5, respectively. As shown in
table 5 (see also supplementary table S5, Supplementary
Material online), the best-fitting DFE has C¼ 2 class of sites,
with one under weak selection, and the other being strongly
deleterious. The a estimates for all INDELs, insertions, and
deletions are, respectively, 71.5%, 59.7%, and 81.3%.

To make sure that the above results are not dependent on
our use of the mutation rate ratios estimated by Schrider et al.
(2013), we repeated the analysis using ratios obtained by ei-
ther Petrov and Hartl (1998) (SNP/INDEL¼ 6.9 and deletion/
insertion¼ 8.7) or Haag-Liautard et al. (2007) (SNP/
INDEL¼ 4.2 and deletion/insertion¼ 3.0) (supplementary ta-
ble S6, Supplementary Material online). In both cases, the
best-fitting DFE has C¼ 2 classes of selected sites, under
weak and strong selection, respectively (supplementary tables
S7 and S8, Supplementary Material online). Furthermore, esti-
mates of the strength of purifying selection acting on sites in
the weakly selected class are almost identical regardless of the
choice of mutation rate ratios (supplementary table S9,
Supplementary Material online). Thus, unsurprisingly, all
three analyses also produce very similar a estimates (supple-
mentary table S9, Supplementary Material online). Overall,
these results are consistent with those based on noncoding
INDELs and suggest that a substantial fraction of INDEL sub-
stitutions were fixed by positive selection.

Materials and Methods

Numerical Details
We used numerical routines provided by the GNU Scientific
Library (GSL; https://www.gnu.org/software/gsl/; last accessed
April 6, 2018) to perform the integration in equation (3)
numerically. For the continuous model (e.g., eq. 9), the inte-
gral was evaluated using Gaussian quadrature, which was
implemented based on a routine included in the R package
statmod (https://cran.r-project.org/web/packages/stat-
mod/index.html; last accessed April 6, 2018). Maximum
likelihood estimates of the model parameters were
obtained by both gradient-based and derivative-free
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optimization algorithms implemented in the NLopt pack-
age (http://ab-initio.mit.edu/wiki/index.php/NLopt; last
accessed April 6, 2018). To ensure the global maximum was
found, we initialised the search algorithm using multiple ran-
domly selected starting points.

Simulations
We performed parameter estimation using our program, ana-
var, on random samples simulated using Mathematica
(http://www.wolfram.com/; last accessed April 6, 2018).
Because the generation of simulated data is separate from
the numerical routines we used to implement anavar, this
set-up can help verify the numerical robustness of anavar.
Note that, in all simulations, we only used the models to
analyse variants from selected regions because we wanted
to find out how much information we could obtain by ana-
lysing them alone. Including neutral variants, as routinely
done in real data analysis, may help to increase the accuracy
of parameter estimation. Therefore, our choice should give us
a rather conservative assessment of the methods’
performance.

In addition to testing whether the data contained enough
information for all the parameters to be estimated, we also
assessed how well a model could predict the average fixation
rate, �l (expressed in units of 2Ne generations). As an example,
if nonsynonymous polymorphism data are fitted to the dis-
crete SNP model, �l can be estimated as:

�l ¼ 1

ĥ

XC

c¼1

ĥcĉc

1� e�ĉc
(18)

where Ẑ signifies the MLE of parameter Z and h is defined by
equation (1). Understanding the ability to accurately estimate
�l is important because it is needed for estimating a, the
proportion of substitutions fixed by positive selection, which
can be written as:

a ¼ dN � dS�l
dN

(19)

where dN and dS are the numbers of selected (e.g., nonsynon-
ymous) and neutral (e.g., synonymous) substitutions per site,
respectively (Eyre-Walker and Keightley 2009).

We did not generate simulated data from models with
demographic changes and selection at linked sites because
the effectiveness of the method of Eyre-Walker et al. (2006) in
controlling for these confounding factors have been studied
extensively (Eyre-Walker et al. 2006; Muyle et al. 2011; Gl�emin
et al. 2015; Galtier 2016; Jackson et al. 2017; Tataru et al. 2017).

The Drosophila melanogaster Data Set
This data set consisted of 17 Rwandan individuals as de-
scribed in Jackson et al. (2015, 2017) and made available by
the Drosophila Population Genomics Project (Pool et al.
2012).

Variant Calling
INDEL realigned BAM files were obtained from Jackson et al.
(2017). Initial genotype calling was performed with the
HaplotypeCaller and GenotypeGVCF (with the -
includeNonVariantSites flag to output genotype calls at
both variant and nonvariant positions) tools from GATK
3.7 (DePristo et al. 2011; Van der Auwera et al. 2013).
Variant quality score recalibration (VQSR) requires one
“truth set” for SNPs and one for INDELs. To generate the
truth sets, we intersected the raw variants called from
GATK with variants called from SAMtools (version 1.2) (Li
et al. 2009). The consensus data were further filtered using the
GATK best practice hard filters (for SNPs: QD< 2.0,
MQ< 40.0, FS> 60.0, SOR> 3.0, MQRankSum<�12.5,
ReadPosRankSum<�8.0; for INDELs: QD< 2.0,
ReadPosRankSum<�20.0, FS> 200.0, SOR> 10.0; see
https://software.broadinstitute.org/gatk/guide/article? id¼3,225;
last accessed April 6, 2018). Variants with coverage more than
twice, or less than half, the mean coverage of 20�were excluded,
along with variants falling into regions identified by
RepeatMasker (http://www.repeatmasker.org). Multiallelic sites
were excluded along with SNPs falling within INDELs and
INDELs >50 bp. We ran VQSR separately for SNPs and
INDELs, retaining variants that fell within the 95% tranche cut-
off as in Jackson et al. (2017). The passing variants were then
refiltered as above with the exception of the GATK hard filters
which were not reapplied.

Multispecies Alignments and Polarisation
Multispecies alignments were generated between D. mela-
nogaster (v5.34), D. simulans (Hu et al. 2013), and D. yakuba
(v1.3) using D. melanogaster as reference. Firstly pairwise
alignments were created using LASTZ (Harris 2007). These
were then chained and netted using axtChain and chainNet,
respectively (Kent et al. 2003). Single coverage was ensured for
the reference genome using single_cov2.v11 from the
MULTIZ package (Blanchette et al. 2004) and the pairwise
alignments were aligned with MULTIZ.

Variants were polarised using the whole genome multi-
species alignment and a parsimony approach, where either
the alternate or the reference allele had to be supported by all
outgroups in the the alignment to be considered ancestral.
The site-frequency spectra for insertions and deletions in dif-
ferent genomic regions are presented in supplementary figure
S4, Supplementary Material online.

Annotation
Variants were annotated as either intronic, intergenic, or CDS
using the D. melanogaster GFF annotation file (version 5.34,
available from: ftp://ftp.flybase.net/genomes/Drosophila_mel-
anogaster/dmel_r5.34_FB2011_02/gff/). Four-fold degenerate
and 0-fold degenerate SNPs in CDS regions were annotated
using coordinates obtained from the D. melanogaster CDS
fasta sequences (version 5.34, available from: ftp://ftp.fly-
base.net/genomes/Drosophila_melanogaster/dmel_r5.34_
FB2011_02/fasta/dmel-all-CDS-r5.34.fasta.gz).
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Summary Statistics
Nucleotide diversity (p) (Tajima 1983), Watterson’s h
(Watterson 1975), and Tajima’s D (Tajima 1989) were calcu-
lated for variants in noncoding (intronic and intergenic) and
coding regions, as well as for 0-fold and 4-fold degenerate
SNPs. The numbers of callable sites used to obtain per-site
estimates was taken to be the number of sites in each region
that were called in the “all sites” VCF file and passed the filters
described previously. Additionally for polarised variants the
number of callable sites was reduced to those that could be
polarised by our parsimony approach.

To obtain rates of divergence at nonsynonymous and syn-
onymous sites, denoted by dN and dS, CDS regions were
extracted from the multispecies alignment using the coordi-
nates from the D. melanogaster CDS fasta alignment file. CDS
alignments were removed if they were not in frame, did not
start with a start codon, did not end with a stop codon or
contained premature stop codons. Additionally any codons
with missing data were dropped. For each gene, we retained
only the longest transcript. These data were then analysed
using codeml in PAML (Yang 2007) with a one ratio model to
obtain dN and dS.

Software Availability
The new models have been implemented in a user-friendly
package anavar, which is freely available at http://zeng-lab.
group.shef.ac.uk. In addition to the models developed herein,
anavar also contains implementations of several other
widely-used models for estimating the DFE (Eyre-Walker
et al. 2006) and for studying GC-biased gene conversion
(gBGC) (Gl�emin et al. 2015). All scripts used for the anavar
simulation analyses are available at https://github.com/
henryjuho/anavar_simulations. Additionally, all scripts used
in the D. melanogaster analyses can be found at https://
github.com/henryjuho/drosophila_indels.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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