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Abstract

Searching for an optimum transportation facility location with emergency equipment and

staff is essential for a specific region or a country. In this direction, this study addresses the

following problems. First, the performances of the Weiszfeld, tree–seed, and whale optimi-

zation algorithms are compared, which is the first of its kind in the literature. Second, a new

approach that tests the importance parameters’ effectiveness in searching for an optimum

transportation facility location with emergency equipment and staff is proposed. The Weisz-

feld algorithm finds viable solutions with compact data, but it may not handle big data. In

contrast, the flexibility of the tree–seed and whale optimization algorithm is literally an

advantage when the number of parameters and variables increases. Therefore, there is a

notable need to directly compare those algorithms’ performances. If we do, the significance

of extending the number of parameters with multiple weightings is appraised. According to

the results, the Weiszfeld algorithm can be an almost flexible technique in continuous net-

works; however, it has reasonable drawbacks with discrete networks, while the tree–seed

and whale optimization algorithms fit such conditions. On the other hand, these three meth-

ods do not show a fluctuating performance compared to one another based on the locating

transportation facilities, and thus they deliver similar performance. Besides, although the

value of accuracy is high with the application of the conventional technique Weiszfeld algo-

rithm, it does not provide a significant performance accuracy advantage over the meta-heu-

ristic methods.

Introduction

The meta-heuristics for engineering design problems are significantly powerful tools for

detecting optima and have been effectively used for obtaining engineering solutions. Although

optimization is used in many engineering fields, it has been used considerably less in the area

that forms the motivation of this study. The motivation for analyzing the problem in this study
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arises from the requirement of one main facility that comprises several emergency units ready

for providing services to any part of the country, rather than making significant investment in

each city. Emergency cases may include the times of pandemic diseases, such as COVID-19

(coronavirus); floods; earthquakes; and country-wide fires, such as the series of wildfires in

Greece in 2018 and the 2019–20 bushfire season in Australia. The importance of transporting

supplies during and after emergency cases associated with a wide-scale disaster is emphasized

[1]. Therefore, we focus on determining the most convenient transportation facility location

with emergency equipment and staff (TFLEE) for an intervention during or after an emer-

gency case. Additionally, the optimum TFLEE can be achieved on the basis of the importance

factors of demand points; notably, the importance factors are related to the spatial parameters

of demand points. Accordingly, we assign weights to demand points; these weights are associ-

ated with many parameters rather than a single parameter. Because weights are adjusted

according to the importance factors provided to them, the spatial position of the most appro-

priate TFLEE also shifts. This shift is also demonstrated in this study. Moreover, the optimiza-

tion methodology must be tested using other up-to-date optimization methods, to understand

the difference in the significance levels between their findings. For constructing a solution

methodology for the problem, based on this motivation, we consider establishing a TFLEE;

therefore, a single point that is related to the source points (i.e., demand points) in a network

needs to be assigned. To form a solution, several techniques in the literature can be applied.

Although the previously proposed applications can be used, they must be examined using

state-of-the-art optimization techniques.

Meta-heuristic algorithms are effective methods for solving many challenging optimization

problems, especially in engineering. For example, the tree–seed algorithm (TSA) is one of the

current meta-heuristic methods and has been successful in optimizing different design prob-

lems, including transportation. Therefore, TSA was used to solve the present problem. How-

ever, since TSA contains stochastic operations like other meta-heuristic methods, performance

fluctuations can be observed in different problems. For this reason, to better evaluate TSA’s

performance in the current problem, the whale optimization algorithm (WOA), which has

performed well in solving complex problems, and Weiszfeld algorithm (WA), which is used in

solving transportation-based optimization problems, were preferred in this study.

A renowned technique considers the weights of demand points. It minimizes the Euclidean

distances from the weighted demand points to a single location in a two-dimensional (2D)

space. It was first developed by Alfred Weber in 1909, to be subsequently called the Weber

problem (WP) [2–5]. Because the weights of the source points (i.e., demand points) in a net-

work affect the optimal location of the sink point (i.e., the final location of the facility), an itera-

tive technique can be applied to obtain the optimal location fit for the best service in the

network. One of the most accurate and reliable iterative mathematical algorithms for evaluat-

ing the optimal facility location is the Weiszfeld algorithm (WA) [6–8]. By implementing WA

for solving WP, the transportation information of a network can be analyzed to find the opti-

mal TFLEE. WA has been widely applied to solve WP. Importantly, this application can be

tested using recently proposed optimization algorithms, such as the tree–seed algorithm (TSA)

[9], and the whale optimization algorithm (WOA) [10]. Methodologies such as WA is able to

find two types of data such as X coordinate and Y coordinate. WA is really fast to find optimal

locations; however, WA has essential difficulties to process data in discrete problems. It can

find viable solutions with relatively small size data, but big data are seriously challenging for it.

As the data size increases, effectiveness of WA decreases. This shows WA is not a flexible

methodology. However, TSA and WOA are able to adapt to handle big data and large discrete

problems. Flexibility of TSA and WOA is conspicuously an advantage against the number of

parameters increase. Because of all of these characteristics, we need to directly compare WA,
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TSA, and WOA. If we do not, we would not be able to realize the importance of extending the

number of parameters for a better analysis. Thus, this comparison can let us reveal true spatial

positions of TFLEEs successfully.

Optimization is used not only for determining optimal locations but also for finding solu-

tions in various engineering fields. The optimization of properties, as well as costs, of

manufacturing products with application of methodologies is commonly used [11–14]. In spa-

tial studies, performing optimization by using powerful methodologies has recently become

common. For instance, a mathematical model to spatially optimize the positions of crew

response in an oil-spill emergency case was developed [15]. Moreover, online facility location

problem was inspected and the location of a new facility in metric space was determined [16].

Particularly, optimization and meta-heuristics have been commonly used in the area of trans-

portation for decades. Off late, for instance, optimization techniques to acknowledge the most

important combination of sensitive connections in a transportation-network topology were

used [17]. A methodology that optimized the arrangement of transportation-activity categories

was established by maintaining an optimal balance [18]. Urban transport-optimization prob-

lems, including time-dependent decision variables and differentiable constraints, were dealt

with and a model for solving dynamic optimization problems was proposed [19]. An optimiza-

tion model was introduced to evaluate the number of bicycle stations required in a large city

[20]. The meetup locations on a road network topology were optimized for multiple moving

objects or road users, by using Manhattan and network distances [21]. New retail arrange-

ments were explored between train stations by using pedestrian and traffic flow optimization,

and combined theoretical perception and empirical outputs [22]. Recently, in the domain of

air transport, an optimization model was developed to analyze the performance of an available

air service by considering the spatial characteristics [23]. The optimization of the airplane-

boarding process was researched on the basis of customer reactions [24], while a model that

minimized differences in flight hours for each aircraft in the upcoming time periods was cre-

ated by using constraints based on the crew workload [25]. Additionally, the emergency

response and evacuation policies were optimized by considering parameters including conges-

tion level, queues, and vehicle removal [26].

In addition, in the field of transportation, some researchers work on typical transport facil-

ity location problems. For example, charging facility locations are optimized according to

many criteria for electric vehicles [27–29]. Furthermore, they consider several measures such

as traffic flow, recharging vehicle battery demand, and network capacity constraints to attract

more vehicles to the charging facilities, maximize their revenue, and minimize public social

costs. Besides all these, some studies formulate techniques and models to distribute bikes or

repairable service parts and their facility locations through networks providing proper alloca-

tion strategies and spatial distribution for servicing the maximum area with minimum

resources [30–32]. Furthermore, many other techniques are commonly used for location anal-

yses. For instance, new industrial paths related to regional challenges were investigated and the

path transformation in a country was explained [33]. For locating a facility in a network,

replacing or renewing the locations of various facilities was studied by using several techniques

[34–37]. To locate a facility in a transportation network, the central median location problem

can be used. To assess a solution using the central median location problem, the sum of the

geometric planar distances from the demand points to the facility location can be minimized

[38]. Thus, the location of the final facility can be computed. Although this technique seems

straightforward and relevant, each demanding network point’s weight is not examined. Besides

the central median location problem, other types of problems have also been used in the litera-

ture. For example, the single-allocation hub median location problem was analyzed by com-

bining two heuristics–simulated annealing and ant colony optimization [39]. For emergency-
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service systems, the effect of a backup service through p-median location problems was studied

by considering different demand policies, and found the best backup service [40]. Addition-

ally, in many studies, the number of parameters, and thus, the importance of parameter

weights, were increased to demonstrate the high performance of location-analysis techniques

and discover more viable results [41, 42].

WP is an operation research problem for optimizing the location of a new node in a net-

work. Its principal purpose is to minimize the Euclidean distances from a network’s demand

nodes, which have specific weights, to a new service point, which is actually an optimal loca-

tion [2, 3, 43]. A popular and powerful iterative method of WA was applied to solve WP with

confidence [7, 8, 44, 45]. In recent years, many studies based on WP have especially addressed

WA to solve WP. For instance, WP was generalized using box constraints, and a projected

WA was applied with a fixed point for iterations [46]. The solution style of WP was improved

by introducing a parabolic approximation of the objective function, and an effective way of

solving WP was developed by using a WA structure fortified with few demand points [47]. A

geometric interpretation of WA convergence was introduced to answer the final position of a

point in a problem constructed by WP [6]. However, the results of the standard Newton’s

method on WP were compared with the ones calculated using WA [48]. Conclusion was New-

ton’s method was significantly more efficient than WA. Using WA, an appropriate location for

a cement plant was computed according to the locations of manufacturing goods [49]. A new

methodology was proposed to solve WP and the inadequate ways of WA were emphasized

while the great-circle distance was used as an input measure [50]. A precise solution algorithm

for WP was developed by using the tools of a geographic information system, and the conve-

nience of the approach was demonstrated through a practical application [51].

TSA is an iterative methodology like WA, inspired by the spreading of tree seeds in the

nature and their germination levels under appropriate conditions [9]. Various studies have

been conducted using TSA for solving many engineering problems. Models were created as

control schemes for optimization techniques with particular parameters [52–56]. Binary opti-

mization problems were solved using TSA, and it was shown that the hybrid TSA type pro-

vided satisfactory quality of results [57, 58]. A method that incorporated ordinal optimization

into TSA was proposed to solve simulation optimization problems subject to chance variation

[59]. It was compared with heuristic methods and satisfactory computing efficiency was

achieved. TSA was operated for tuning a function network for segmentation [60], while the

problem of optimal electric power flow in energy network systems was solved by applying TSA

[54]. Structural-damage-identification problems were inspected by applying a TSA that was

improved using the Gaussian bare-bone mechanism/algorithm and withering [61]. TSA was

used to solve optimization problems, including a nonlinear hysteretic parameter identification

problem, and improvements were observed in the accuracy of the findings compared to the

previous studies [62, 63]. Then a discrete version of TSA was proposed to calculate the opti-

mized solutions of permutation-coded problems [64].

WOA is based on nature and inspired by humpback whales’ bubble-net activity [10]. The

performance of this algorithm for transport facility location analysis is a matter of priority

because it offers advanced features for solving such situations. However, the minimal study

included WOA application to find solutions to real-life transport facility location problems,

although many employed the WOA technique to solve a significant number of engineering

problems [65–74].

The novelty of this study arises from addressing the following concepts. Firstly, it is the first

study comparing WA, TSA, and WOA performances in the area of transportation. Secondly, a

novel way of revealing the insight of testing the importance parameters affecting the determina-

tion of TFLEE is offered. Many studies mention the power of meta-heuristic algorithms of TSA
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and WOA techniques together in their works [75–77]. However, a comparison of WA, TSA, and

WOA methods via locating transportation facilities with weightings is made for the first time,

thanks to this study. Additionally, one of the most important concerns we wonder about in this

research is how close the meta-heuristic methods such as TSA and WOA are to WA, which is

successful for the transportation problems [49, 78–80]. In accordance with this purpose, although

this article does not offer a development of any modification or improvement of the existing

algorithms, this paper provides an important insight into the accuracy of the meta-heuristic

methods against the typical transportation location problems solving algorithm of WA.

This paper is organized as follows. The Materials and Methods section explains the optimi-

zation problem structure and the optimization methods to be applied. Then, while the dataset

and application details are introduced in the Application Instance section, the results and

related comments are discussed in the Results and Discussion part. Subsequently, the conclu-

sions are given with future work. After the reference list, a supporting table including detailed

outputs is provided.

Materials and methods

The optimization problem of this study can be introduced as follows, as proposed in the study

of Demir in 2021 [81]. However, the main difference between this study’s problem and the

problem of Demir [81] is as follows: the comparisons between different optimization tech-

niques take place in this research, while only one technique is considered for the evaluation in

the study of Demir [81]. The problem seeks the most suitable (X, Y) coordinates in such a way

as to minimize the value of d(X, Y) and satisfy the condition of X< xn, X> xs, Y< ye, and Y>
yw. The problem can be introduced in Eq 1.

Minimize d X;Yð Þ ¼
Xna

i¼1

Wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X � xið Þ
2
þ Y � yið Þ

2

q

ð1Þ

where;

d: distance value

i: airport index

na: the number of airports

xi, yi: x and y coordinates of airport i, respectively

X, Y: x and y coordinates of candidate location, respectively

Wi: the weight for airport i
xn, xs: the northernmost and southernmost airport, respectively

ye, yw: the easternmost airport and the westernmost airport, respectively

Optimization methods

Weiszfeld algorithm. To solve WPs, let us suppose n demand points in a network of Li =

(xi, yi), where i = 1, . . ., n, on the surface of Rδ, assuming n� 3 and δ = 2. Accordingly, let all

demand points have the positive weights of ai engaged with a specific demand point of i,
where ai� 0. If the position of the new facility is L = (x, y) and if the Euclidean distance (i.e.,

cost) between the facility location and demand point i is ci(L), the following cost function f(L)

can be minimized, and thus, WP can be solved. Consequently, the minimization of f(L) in Eq

2 ascertains the most appropriate place of L = (x, y) [2–8].

f Lð Þ ¼
Xn

i¼1

ai ci Lð Þ½ � ð2Þ
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The location-allocation problem is handled by WA, which iterates the optimization tech-

nique for determining a stationary point of a given objective function. Fundamentally, once

WA is applied, it minimizes the following Eq 3, and thus, the optimal location can be detected

[2–8].

f Sð Þ ¼
Xm

j¼1

oiCi ð3Þ

where f(S) denotes the final site location and ωi Ci denotes the product of the specific weight of

demand point j (e.g., customer point j) and the cost of distance (i.e., the Euclidean distance

cost) of traveling from demand point j to the final site location (Xf, Yf) on R2. The term m
denotes the number of points or customers that demand/request a service. Moreover, let the

final site location satisfy the inequality (Xf, Yf)� 0, where the final output must lie on a fixed

network topology. Besides this typical methodology, we introduce the weights of demand

points. The weights are associated with a couple of parameters related to the demand points,

rather than considering a single parameter for deciding the weight of a demand point. Con-

versely, the optimum location of the facility can be attained on the basis of importance factors

of the demand points. The importance factors are relevant to the spatial parameters of the

demand points. Accordingly, let αjk be a positive weight of demand point j according to

parameter k, and letoj ¼
Xl

k¼1
ajk, where 8j = 1,2, . . ., m and ωj� 0, where ωj 2Q. There-

fore, the weights are diversified using several parameters associated with the demand points.

The methodology of solving WP using the iterative technique of WA can then be imple-

mented. The iteration continues until the same output or a similar result is consistently pro-

duced. Thereafter, the iterations for the optimization finish, and the final outcome is reported.

Tree–seed algorithm. TSA, which is a meta-heuristic technique, is considered in this

study to appraise the results of WP that is solved using WA. The main reason for this is the

easy adaptation of the problem in this study to TSA. For example, candidate location and solu-

tion position in the problem denote candidate solution and seed position in TSA, respectively.

Meanwhile, coordinates of candidate locations represent coordinates of seed positions which

are design variables. Objective values (OVs) in the problem solution indicate performance of

TSA.

As seen in Table 1, the problem in Eq 1, in which our aim is explained, can be adapted to

the working principle of TSA [9]. Although the candidate airport in our problem is also the

candidate solution of the TSA method, the position of the tree–seed in TSA reflects the airport

location (Table 1). Moreover, the candidate airport location coordinates are the coordinates of

the tree–seed locations, which are the design variables. The performance of TSA is to find the

value of d, which is the aim of our problem.

The working principle of TSA is as follows [9]. In nature, trees grow and multiply in a

region by spreading their seeds. Via stochastic results, the seeds transfer to the regions that are

far from their mother trees. The casual agents of such seed transfers may be sometimes wind

or even animals that move or fly around. Thus, seeds can travel miles away from their mother

Table 1. Adapting the study to the TSA.

In our problem Represented in TSA

Candidate airport Candidate solution in TSA

Airport location Tree–seed location

Candidate airport location coordinates (X, Y) Tree–seed location coordinates (design variables)

d value Performance of TSA (objective)

https://doi.org/10.1371/journal.pone.0269808.t001
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trees. However, not all of them can germinate and start to grow. Only the ones that receive

ideal conditions can germinate. TSA was inspired from such seed-based occurrences. In TSA,

a tree is defined as solution vector, while a seed is called a candidate solution, and the location

phrase is described as design variables. Additionally, the performance of TSA is evaluated on

the basis of its capability of search tendency ST that is to regulate the stochastic spread rate of

the seeds. Here, the main steps involved in TSA for this study are presented, as indicated in the

work of Kiran in 2015 in Fig 1 [9].

Initialization of the algorithm is step-1, which outlines the search and problem parameters.

Npop denotes the number of trees, and smin and smax denote the minimum and maximum num-

bers of seeds on a tree, respectively. Additionally, Itermax denotes the maximum number of

iterations. Subsequently, through the application of Eq 4 satisfied by Eqs 5 and 6, the initial

solutions are haphazardly produced [9]. Subsequently, the algorithm memory stores the find-

ings of evaluations and the fitness values of the results.

Xi;j ¼ round 1þ Nsta � rnd 0; 1ð Þð Þ ð4Þ

i ¼ 1; 2; . . . ;Npop ð5Þ

j ¼ 1; 2; . . . ;Nsta ð6Þ

In Eq 4, X denotes the matrix in the algorithm memory, which contains design variable val-

ues provided by the solutions. Additionally, rnd(0,1) denotes a mathematical function that

generates a random real number between 0 and 1. Additionally, round signifies another func-

tion that rounds the real value assigned to the nearest integer value in Eq 5. Nsta in Eq 6 indi-

cates the number of stations in the network considered for the optimal solution.

Step-2 is the search using seeds, where seeds are the candidate solutions for the prob-

lem. Seeds are developed on each tree as a pool of solutions. The number of seeds on a

tree, Nseed, is between smin and smax. Accordingly, the values assigned to the seeds are

Fig 1. The pseudocode of TSA [9].

https://doi.org/10.1371/journal.pone.0269808.g001
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computed as follows [9]:

Sk;j ¼ Xi;j þ rnd � 1; 1ð Þ � Xbest;j � Xr;j

� �
ð7Þ

Si;j ¼ Xi;j þ rnd � 1; 1ð Þ � Xi;j � Xr;j

� �
ð8Þ

i; r 2 1; 2; . . . ;Npop ; i 6¼ r ð9Þ

k ¼ 1; 2; . . . ;Nseed ð10Þ

j ¼ 1; 2; . . . ;Nsta ð11Þ

If rnd< ST, then Eq 7 applies. However, if rnd� ST, then Eq 8 applies. Notably, Eqs 9–11

apply for Eqs 7 and 8. The term i denotes the index of the currently selected tree, r indicates

the index of a randomly chosen tree, and S indicates the seed matrix of the ith tree. Accord-

ingly, Xbest denotes the best solution found in the solution pool [9].

In step-3, the seeds produced by the trees are evaluated for fitness for plantation/germina-

tion. Accordingly, the best seeds replace their mother trees when they find the ideal conditions.

The evaluations in Steps-2 and -3 are processed via TSA until the total number of evaluations

becomes Itermax.

Whale optimization algorithm. Mirjalili and Lewis introduced a singular objective algo-

rithm that is a nature-inspired and stochastic population-based technique WOA [10]. The

algorithm was inspired by humpback whales’ spiral bubble-net predation approach to grab-

bing their prey. WOA is one of the powerful and fresh-built meta-heuristic techniques, whose

pseudocode is presented in Fig 2. Furthermore, the effectiveness of WOA in engineering prob-

lems such as optimizing complex frameworks has been demonstrated. Accordingly, the

robustness of WOA has already been tested in a recent study [82], and the algorithm details

are as follows.

Step-1 is ‘Generating the initial solutions’. The initial solutions in the WOA memory are

generated, calculated, and stored based on a process evaluating the opening solutions and

Fig 2. The pseudocode of WOA [10].

https://doi.org/10.1371/journal.pone.0269808.g002
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computing their fitness values [10]. Also, the unfeasible solutions and their fitness values are

kept in the algorithm memory.

Step-2 is ‘Updating the solution’. WOA determines the kind of operator to apply [10]. For

this case, either ‘encircling prey’ or ‘search prey’ are chosen, or the ‘bubble-net attacking’ oper-

ator is used (Eq 12). The parameter H in Eq 12 is computed in Eq 13, where h is linearly

decreased starting from 2.0 to the value of 0.0 during the iterations. This reduction happens

not only in the exploration phase but also in the exploitation stage.

If rand 0; 1ð Þ < 0:5

if jΗ < 1j ! use the encircling prey operator

if jΗ � 1j ! use the search prey operator

else

Use the bubble � net attacking operator

ð12Þ

Η ¼ 2h rand 0; 1ð Þ þ h ð13Þ

The solution is updated in the encircling prey period (Eq 14), where vbest
j is the jth design

variable of the optimum solution in the WOA memory, and ndv is the number of design vari-

ables. Also, K is the control parameter computed in Eq 15 [10].

vnew
j ¼ vj � Η jK vbest

j � vjj; j ¼ 1; 2; . . . ; ndv ð14Þ

K ¼ 2 rand 0; 1ð Þ ð15Þ

On the other hand, WOA shifts the solution according to randomly chosen solutions in the

search prey section (Eq 16), where vrand
j is the jth design variable of the random solution in the

memory [10].

vnew
j ¼ vj � Η jK vrand

j � vjj; j ¼ 1; 2; . . . ; ndv ð16Þ

If the previous two operators are not applied, the bubble-attacking phase takes place, where

the spiral formula is utilized to amend the solution (Eq 17) [10]. In this phase, where β is the

constant or invariable factor fixed at 1.0 to specify the logarithmic spiral shape, D is the dis-

tance vector for the distance between the whale and prey, and l is a random value between an

interval of [–1, 1].

vnew
j ¼ eblcos 2plð ÞDj þ vj; j ¼ 1; 2; . . . ; ndv; l ¼ 2rand 0; 1ð Þ � 1ð Þ ð17Þ

Step-3 is ‘Refreshing the memory’. The new solutions’ fitness values are compared to those

of prior versions. Then, they replace old versions with new ones if the new solutions own better

fitness values. After that, WOA returns to step 2, and all operations between steps 2 and 3 con-

tinue until the maximum number of iterations is achieved. At this point, an iteration is defined

as the completion of one solution assessment [10].

In addition, the design in our problem is represented in WOA as the whale (Table 2).

While the candidate airport location coordinates are the whale location coordinates, which are

the design variables, the performance of WOA is to determine the objective value of d in our

problem.

Determining the parameters and changing them according to the problem’s structure is

essential in such stochastic algorithms. Therefore, carrying out a sensitivity analysis is worth-

while in this study. However, our study did not perform this analysis because WA, TSA, and
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WOA techniques were applied to many other engineering problems. For instance, based on

the reference studies [65, 74, 82, 83], the parameters of TSA and WOA were utilized to assess

the network problem solutions. Moreover, since the parameters in WA were previously used

in the analyses [47, 80, 81], they were employed in our work based on the merit in the afore-

mentioned studies. Accordingly, in the following, the parameters involved in the outputs are

provided (Table 3).

In this study, the present work procedure is exhibited using a flowchart (Fig 3) to identify

crucial design steps and provide a larger picture of the process.

Application instance

The diversity of the weights has become an important input for many transportation analyses

and resolving optimization problems. However, the number of different weights is underesti-

mated, particularly in the analyses of aviation-transportation locations. In this section, an

empirical application for understanding the importance of the weights of demand locations.

The operability of the proposed methodology for determining a new TFLEE is presented. The

scope of this study includes various parameters not only related to local properties but also

work together. Topological properties of transportation networks are very important [84, 85].

The parameters are briefly introduced as follows. The first parameter is the number of passen-

gers that stop by the airport in 12 months, called parameter-1 (P1) in this article. The second

parameter is the airport size, called parameter-2 (P2). The third parameter is the number of

days with precipitation, such as rainfall and snowfall. It is called parameter-3 (P3), which

denotes unpleasant weather conditions for both landing and take-off. All three parameters

demonstrating topological properties decide the attractiveness of an airport and have special

weights to give priority to an airport while making decisive outputs.

For dataset P1, we use the number of airline passengers because the more the number of

passengers at an airport, the more likely are the casualties (e.g., infection in the case of pan-

demics, such as COVID-19) to occur at that particular airport in case of an event. The vulnera-

bility of airports and high risk of casualties in the case of an attack were proved [86].

Therefore, emergency services must be maximized at busy or populated airports. The time

period of the data is from October 2018 to September 2019, i.e., 12 months. In total, 55 civil

airports in Turkey are focused to gather the data. Table 4, as a sample of dataset P1, presents

the total number of passengers that visited six airports in October 2018. Accordingly, it

Table 3. Parameters involved in the results.

Optimization algorithm Search parameters

TSA Population size = 30

Search tendency = 0.5

Low number of seeds produced by a tree = 3

High number of seeds produced by a tree = 8

WOA Population size = 30

https://doi.org/10.1371/journal.pone.0269808.t003

Table 2. Adapting the study to the WOA.

In our problem Represented in WOA

Design Whale in WOA

Candidate airport location coordinates (X, Y) Whale location coordinates (design variables)

d value Performance of the whale (objective)

https://doi.org/10.1371/journal.pone.0269808.t002
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presents a sample dataset for the approximate areas of six airports, and the average number of

precipitation days of six cities to which the airports belong.

Monthly passenger counts are considered and 12-month data are summed up to obtain an

annual passenger count for a particular airport. The values for the number of passengers are

then normalized according to the highest number of passengers, among all airports. The high-

est value is set to 100 and the remaining values are assigned a value out of 100, according to

their real magnitudes. Thus, the values of P1 are weighted as a parameter of attraction for fur-

ther analysis.

The dataset P2 shows sizes of the area/land under airport use. The terrain area size of an

air-field parameter must be included in the analysis because wider airports are generally more

likely to host more passengers because of busy traffic. Thus, more casualties or deaths can be

observed in major airports or regions around them [87]. To gather dataset P2, the areas of all

55 airports are measured using an online area calculator [88]. Subsequently, the area values are

normalized as happened for P1. To indicate the attractiveness of an airport according to P2,

such example can be provided. According to Table 4, airport SAW is more attractive than air-

port DLM, as the area of the former is greater than that of the latter. Likewise, airport ADB is

less attractive than, for instance, airport AYT in terms of the airport-land-use area.

In dataset P3, the average number of precipitation days in a year observed at these airports

is important. This is because the worse is the weather condition of an airport, the higher is the

risk for an accident [89, 90]. Pleasant weather conditions are preferable over bad one for safe

landings and take-offs. Therefore, the attractiveness or importance values of the airports that

have bad weather conditions all year-round increase. The data for the average number of

Fig 3. Present work procedure flowchart.

https://doi.org/10.1371/journal.pone.0269808.g003

Table 4. Data sample for the total number of airline passengers at six airports (general directorate of state airports authority, 2019), approximate-area measure-

ments, and average number of precipitation days of six airports (Turkish State meteorological service, 2019).

Airport Code

IST SAW ESB ADB AYT DLM

Number of passengers in October 2018 57,737,038 28,882,781 14,407,609 11,570,525 29,502,441 4,409,521

Approximate area (km2) 25.022 8.561 7.530 6.782 13.229 5.760

Number of days with precipitation 128.4 128.4 103.2 78.0 74.0 93.4

https://doi.org/10.1371/journal.pone.0269808.t004
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precipitation days are provided by an official meteorological service. Subsequently, the average

number of days with precipitation is normalized according to their highest value. Thus, the

weighted values of P3 are all set in terms of their attractiveness. For example, airport ESB is

more attractive than airport DLM in terms of weather conditions, as the average number of

precipitation days for the former is more than that of the latter (Table 4).

Data assignments

There exist, for this study, three spatial parameters that affect the weight of the attractiveness

of each airport. Each parameter can be more important than the other. Therefore, we must

assign weights to the parameters to determine the final weight of a particular airport. To that

end, we prioritize the parameters using percentages. Accordingly, each parameter is assigned

some percentage weight, and the analysis can provide us results that indicate the optimal spa-

tial locations for each case.

Because there exist three parameters, their total percentage weights must always be 100%.

For instance, if the weight of P1 is 80% and that of P2 is 10%, then the weight of P3 must be

10%. Therefore, if the cases are set using this percentage distribution, there will be 66 cases

that represent the weight assignment of the parameters. All of the weight assignments of

parameters regarding the cases are depicted in S1 Table. The increment value of the percent-

age assignments will be 10%. Clearly, the increment value (i.e., presently 10%) may be smaller,

such as 5%, or larger, such as 20%; however, the increment value is not the focus of this study.

Table 5 presents a couple of sample cases that demonstrate the weight assignment of parame-

ters. According to Table 5, the 66 cases correspond to 66 different scenarios depending on the

importance weight. For instance, Fig 4 depicts the values of the three parameters for an exam-

ple scenario of Case-24 concerning the airports according to the importance percentages in

Tables 5 and S1.

As can be seen from Fig 4, while the values of P1 are significantly diverse, those of P2 and

P3 diversify less, especially the ones corresponding to P3. Moreover, P1 and P2 are not closely

related, although both have the same importance, i.e., 40% each. This might be because the

passenger crowd at an airport does not indicate the magnitude of the physical area of that air-

port, and vice versa.

Table 5. Cases established using percentage assignments.

Cases % of P1 % of P2 % of P3 Optimum location

Case-1 100 0 0 L1

Case-2 90 10 0 L2

Case-3 90 0 10 L3

Case-4 80 20 0 L4

Case-5 80 10 10 L5

Case-6 80 0 20 L6

Case-7 70 30 0 L7

Case-8 70 20 10 L8

⁞ ⁞ ⁞ ⁞ ⁞
Case-24 40 40 20 L24

⁞ ⁞ ⁞ ⁞ ⁞
Case-64 0 20 80 L64

Case-65 0 10 90 L65

Case-66 0 0 100 L66

https://doi.org/10.1371/journal.pone.0269808.t005
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Let us inspect the airport IST under Case-24 in Fig 4. The importance distribution in Case-

24 is 40% for P1, 40% for P2, and 20% for P3 (Table 5). Therefore, the airport IST has impor-

tance values of 40 points out of 40 points for P1 (because it has the highest value for the num-

ber of passengers), 40 points out of 40 points for P2 (because it has the largest size of the area

under airport use), and 16.504 points out of 20 points for P3 (because it has a high value for

the average number of precipitation days in a year) (Fig 4). Therefore, the total weight of air-

port IST in Case-24 is 96.504 points out of 100 points, given that the highest possible point that

an airport can get in a particular case is 100 points. Moreover, inspecting the airport AYT in

Fig 4 gives another pattern. For example, the airport AYT gets the following importance values

in Case-24 (Fig 4). 18.198 points out of 40 points for P1 (because it is the third busiest airport

based on the number of passengers), 21.148 points out of 40 points for P2 (which is the sec-

ond-highest value for P2 in Case-24 because it has the second largest size of the area under air-

port use), and 9.512 points out of 20 points for P3 (because it has a moderate value for the

average number of precipitation days in a year). Therefore, the total weight of airport AYT in

Case-24 is 48.858 points out of 100 points. Overall, because there are 66 cases in this study, the

charts for other cases look different than in Fig 4. Thus, various cases might demonstrate a

challenging comparison between WA, TSA, and WOA in this study.

Results and discussion

The optimal location results for each case obtained from WA, TSA, and WOA are achieved for

the 66 cases (i.e., options for siting). Furthermore, all results are recorded and verified. The

output records, for example, the digital documents of numeric data, evidently state that the

local optimal solutions are discovered with the infeasibility of 0.00 for every case. Although the

output reports for L1, L2, . . ., L66 denote that each solution is a local minimum, that local mini-

mum is actually the global minimum because the problem is convex. Consequently, in this

study, the results are verified to be the optimal solutions using the WA, TSA, and WOA

methods.

As seen from Fig 5, the effect of P1 is the highest at the beginning (i.e., 100% for Case-1)

because the other parameters have no percentage, meaning their attractiveness or importance

values are zero. Therefore, the optimum location L1 is significantly close to the busiest airport

Fig 4. For Case-24, the values of three parameters that correspond to the airports.

https://doi.org/10.1371/journal.pone.0269808.g004
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of the country, IST. The positions of the optimal locations generally move toward the south-

east of the country as the attractiveness values of parameters P2 and P3 increase. One of the

reasons for this situation is the increase in dryness in the weather with traveling south.

Another reason is that the physical area sizes of most airports in the country are almost equal;

therefore, their P2 attractiveness values are close to each other. An example shows that location

L50 is in the east of location L4 because more importance is given to P2 and P3 in Case-50 than

in Case-4. Thus, L4 can be found in the western part of the country, while L50 can be located

around the middle part of the country.

Figs 5–7 show that the locations of the cases resulting from WA, TSA, and WOA are almost

similar to each other but not the same. This clearly shows that the OVs resulting from WA,

TSA, and WOA are not equal. All of the OV regarding the cases are presented in S1 Table.

Additionally, the comparisons between the algorithms in terms of OV difference rate is dis-

cussed with the help of charts in the upcoming parts of this section.

Moreover, the means of the OVs of WA, TSA, and WOA and their standard deviations are

computed. Moreover, Table 6 depicts a comparison between the means of the OVof WA,

TSA, and WOA. The difference between the means of the result sets is tiny since the mean

OVs of WA, TSA, and WOA are 170.32, 171.02, and 170.43, respectively. In short, the maxi-

mum difference between the means is 0.70. In addition, minimum OVWA is found as 18.13,

while minimum OVTSA and OVWOA are discovered as 17.93 and 18.25, respectively. Even so,

maximum OVWA (379.14) is lower than maximum OVTSA (381.18) and maximum OVWOA

(379.23). The means (170.32, 171.02, and 170.43), the median values (157.98, 158.56, and

158.10), and standard deviations (88.10, 88.67, and 88.09) of OVWA, OVTSA, and OVWOA

respectively are significantly close to each other. However, this raises the question of whether

there is a significant difference between the results of the algorithms. Therefore, a t-test is

applied based on the variable of the application type. The analysis of the independent group of

the t-test using two samples with equal variance between the OVs from two selected algo-

rithms. For instance, the t value is computed for the WA and TSA sample couple as 0.96365

(Table 6). Additionally, while the t value for the TSA and WOA sample couple is calculated as

0.96938, it is found to be 0.99424 for the sample couple of WA and WOA. Therefore, no signif-

icant difference between the results of WA and TSA, TSA and WOA, WA and WOA is

observed, from the statistical viewpoint.

Fig 5. Optimum locations computed for 66 cases using WA.

https://doi.org/10.1371/journal.pone.0269808.g005
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Search histories of TSA and WOA for Case-10, Case-20, Case-30, Case-40, Case-50, and

Case-60 are given in Figs 8–13, respectively. Since there are 66 cases in this study, the six cases

mentioned above were chosen as a sample to show the convergence rates of TSA and WOA. In

other words, the TSA and WOA results of each situation were combined and plotted. How-

ever, the search history of WA could not be provided because packaged software was used to

achieve the WA results provided. When the search histories are examined, the TSA method

has almost completed the optimization procedure before reaching 10% of the number of itera-

tions, that is, before reaching the 20th iteration. Only in Case-40, TSA attained its final objec-

tive value before the 25th iteration (Fig 11). Therefore, it is clearly observed that TSA

converged very fast. Moreover, Figs 8–13 demonstrate that WOA converges more slowly than

TSA, however WOA achieves almost its best results as quickly as 10 iterations. The reason is

that WOA is effective in finding a starting objective value close to the final objective value

compared to TSA. Although the objective value at the first iteration in WOA is more than the

Fig 7. Optimum locations computed for 66 cases using WOA.

https://doi.org/10.1371/journal.pone.0269808.g007

Fig 6. Optimum locations computed for 66 cases using TSA.

https://doi.org/10.1371/journal.pone.0269808.g006
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first objective value of TSA in Case-60, WOA performs almost the same as TSA (Fig 13).

According to the results, while TSA has a faster convergence to the OV, WOA generally has

better outputs because it usually starts from a better place to find the OV.

The performances of the methods are very close to each other. The reason for this is the fol-

lowing. Due to the low number of parameters in the study, both TSA, WA, and WOA have

easily reached the solution. All methods achieved good results with each solution. Therefore,

the standard deviations are almost similar for every method, and a closeness appears for the

standard deviations (Table 6). That is to say, the maximum difference between the standard

deviations is 0.58. Thus, it is observed that these three methods perform well because the values

are very close to each other, and the differences are very small. In addition, according to the

results, these three methods show a very consistent behavior and find similar results each time.

In other words, when the WA, TSA, and WOA results are compared, their standard deviations

are not very high from each other, and t-test results also show that there is not much difference

between the means. Thus, these three methods do not show a fluctuating performance com-

pared to each other.

Moreover, the OVs from the techniques were compared according to the results achieved

(S1 Table). The best OV is highlighted in bold and dark blue, the second-best OV is shown in

blue, and the third-best OV is seen in light blue color in S1 Table. When we compare WA and

TSA, the following outcomes have been observed. Given minus percentage means TSA has

Table 6. Statistical information about the objective values of the algorithms.

WA TSA WOA

Mean OV 170.32 171.02 170.43

Standard Deviation 88.10 88.67 88.09

Minimum OV 18.13 17.93 18.25

Maximum OV 379.14 381.18 379.23

Median OV 157.98 158.56 158.10

t value (WA-TSA) 0.96365

t value (TSA-WOA) 0.96938

t value (WA-WOA) 0.99424

https://doi.org/10.1371/journal.pone.0269808.t006

Fig 8. Search history of TSA and WOA for Case-10.

https://doi.org/10.1371/journal.pone.0269808.g008
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less OV for the corresponding case, and thus TSA is better (Fig 14). TSA achieved better results

or OVs than WA in 11 of 66 solutions and WA compared to TSA in 55 solutions. However,

their difference is not more than 1.1% when the OV difference for a specific case is demon-

strated as a percentage. Additionally, although the number of results is small where TSA’s OVs

are lower than WA’s OVs, the difference percentage is relatively great and significant in such

cases. For example, the TSA performed better in the cases such as the 1st, 2nd, 4th, 7th, 11th,

16th, 22nd, 29th, 37th, 46th, and 56th cases. In these cases, there is a particular situation that

P3 is zero. That is, TSA performs better when P3 is zero. Accordingly, as the importance of P3
increases, the differences between the OVs of WA and TSA increase. However, although apply-

ing the WA technique is partially accurate, it does not provide a significant performance

advantage over TSA. Thus one can conclude that their performance is close to each other.

In addition, Fig 15 demonstrates the comparison of the results or OV of TSA and WOA

techniques. In Fig 15, minus percentage means WOA creates less OV than TSA achieves for

Fig 9. Search history of TSA and WOA for Case-20.

https://doi.org/10.1371/journal.pone.0269808.g009

Fig 10. Search history of TSA and WOA for Case-30.

https://doi.org/10.1371/journal.pone.0269808.g010
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the corresponding case. Accordingly, in 55 of 66 solutions, WOA achieved better results or

OVs compared to TSA. Therefore, TSA found better OVs compared to WOA in 11 solutions.

However, since the percentage difference between the OVs of both methods is less than 1.8%.

In the cases where TSA achieved less or better OVs compared to WOA’s outputs, the third

parameter (P3) is zero. In fact, when the P3 value increases, the difference rate between the

TSA and WOA outputs increases. Additionally, TSA performed better in the initial cases, such

as the 1st, 2nd, and 4th cases; that is, the OV difference rate is also higher (i.e., 1.77%, 1.20%,

and 0.70%, respectively) compared to the other OV difference rates among TSA and WOA

results. On the other hand, as the OVs of WA and WOA are compared (Fig 16), the difference

rate between the WA and WOA results descends (the opposite tendency of the situations in

Figs 14 and 15) when P3 importance in the cases increases. Although the results of the WA

technique are slightly better than the ones computed by WOA, the highest difference rate

Fig 12. Search history of TSA and WOA for Case-50.

https://doi.org/10.1371/journal.pone.0269808.g012

Fig 11. Search history of TSA and WOA for Case-40.

https://doi.org/10.1371/journal.pone.0269808.g011
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between the outputs of both methods is less than 0.7%. Thus the aftermath exhibits that perfor-

mances of WA and WOA are similar.

Conclusions

We produced a perception for the placement of an aid facility for immediate intervention dur-

ing disasters by considering several spatial parameters. Furthermore, a test was conducted for

understanding not only the influence of different parameters of the optimization problem but

also the performance of WA, TSA, and WOA. WA has considerable drawbacks to process data

as the data get larger in discrete network problems. It can achieve feasible solutions with com-

parably small size data, however big data challenge the method. Shortly, as the data size

expands, WA performance decays in discrete problems. On the other hand, WA could handle

the problem in this study with a continuous network as good as TSA and WOA did. This was

Fig 14. Comparison between WA and TSA in terms of OV difference rate.

https://doi.org/10.1371/journal.pone.0269808.g014

Fig 13. Search history of TSA and WOA for Case-60.

https://doi.org/10.1371/journal.pone.0269808.g013
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proved by the OVs purchased. More than half of the OVs found by TSA in all cases (67%) were

numerically greater than the ones computed by WA. This shows WA can be nearly flexible

methodology in continuous networks. However, TSA is able to adapt to handle big data in

both large discrete and continuous problems. Flexibility of TSA is noticeably a strength for an

increase at the number of parameters in discrete networks.

Since WA is a special algorithm developed for the cases such as the problem in this study,

WA’s performance of finding generally better outputs than the others could be predicted. In

this study, the important point we were wondering about was how close the meta-heuristic

methods are to WA. However, meta-heuristic techniques such as TSA and WOA came pretty

close to WA performance, even sometimes providing better products. Such that the OV differ-

ence remains below 1% in all results with better WA OVs. Although WA usually delivers better

OVs, algorithms such as TSA and WOA can still be recommended for the optimization prob-

lems like in this study because the differences in OVs are very small (less than 1%). The reason

Fig 15. Comparison between TSA and WOA in terms of OV difference rate.

https://doi.org/10.1371/journal.pone.0269808.g015

Fig 16. Comparison between WA and WOA in terms of OV difference rate.

https://doi.org/10.1371/journal.pone.0269808.g016
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for our recommendation is as follows. Ultimately, algorithms such as WA are suitable for spe-

cific problems as proposed in this study, also applied successfully in the other works [49, 80].

Nevertheless, the effectiveness of ready-made algorithms such as WA becomes inapplicable

when different parameters and different variables are integrated into them. On the other hand,

the flexibility of meta-heuristic algorithms is so great that even if there are substantial changes

in the problem structure and we affect many parameters, as in several studies [11, 14, 64],

these methods can be easily applied. In addition, the performance of these methods is not

affected or fluctuated much, which is compatible with the previous studies. Therefore, meta-

heuristic methods such as TSA and WOA can be applied for the type of problems in this study

as many researchers operate effectively [82, 83], and are pretty powerful to find the optimum

solutions.

Further exploration and research can be considered for future analysis by integrating new

parameters, such as regional distinctions where the airports are located specifically. Moreover,

the increment value of the importance weights of the parameters can be varied to observe the

possibility of change in optimal TFLEEs and OVs. Furthermore, by rerunning WA compared

to running a couple of contemporary algorithms, the location shifts or differences between

new and old TFLEEs can be revealed. Thus, more discussion could be made regarding the per-

formance of the algorithms.
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