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Abstract: Supercapacitors (SCs) have received a great deal of attention and play an important role
for future self-powered devices, mainly owing to their higher power density. Among all types of
electrical energy storage devices, electrochemical supercapacitors are considered to be the most
promising because of their superior performance characteristics, including short charging time,
high power density, safety, easy fabrication procedures, and long operational life. An SC consists of
two foremost components, namely electrode materials, and electrolyte. The selection of appropriate
electrode materials with rational nanostructured designs has resulted in improved electrochemical
properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight
the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode
materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various
categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy
and future improvements on metal chalcogenide materials for the application of electrochemical SCs
are also discussed.

Keywords: capacitance; electrode materials; selenides; supercapacitor; sulfides

1. Introduction

A substantial global upsurge in the depletion of fossil fuels from the rapid growth of global
economy has generated two vital concerns: the first is the exhaustion of existing fossil fuel
reserves, and the second is associated with an increase in greenhouse gas emissions, in particular,
and environmental pollution, in general. Hence, it is necessary to develop and commercialize
sustainable environment friendly energy sources and their related technologies are being developed
globally as a matter of urgency [1–6]. Also, the development of associated energy conversion
devices to gather these intermittent energy sources efficiently is in demand. In this specific backdrop,
electrochemical supercapacitors (SCs) have overriding importance because of their exceptional power
density and storage properties compared to other contemporary energy storage devices. SCs have a
number of great advantages including long life cycle, high power density, high efficiency, high specific
capacitance, flexible operating temperature, and environmental friendliness. Moreover, they are

Nanomaterials 2018, 8, 256; doi:10.3390/nano8040256 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-1518-9972
https://orcid.org/0000-0002-6293-1631
http://www.mdpi.com/2079-4991/8/4/256?type=check_update&version=1
http://dx.doi.org/10.3390/nano8\num [minimum-integer-digits = 2]{4}\num [minimum-integer-digits = 4]{256}
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2018, 8, 256 2 of 28

quickly charged with fast power delivery and are capable to bridge the gap between batteries and
conventional capacitors [7–12].

SCs are used in applications which require many charge and discharge cycles, rather than
long-term compact energy storage within hybrid vehicles and electronic systems. Depending on
the mode of energy storage in SCs, they are classified into three types, namely electrical double layer
capacitors (EDLCs), pseudocapacitors, and hybrid capacitors. EDLCs are based on the working
principle of the charge being stored electrostatically within the electric double layer formed at
the interface of two electrodes. Generally, EDLCs use carbon-based materials, such as activated
nanoporous carbon, carbon aerogel, carbon nanosheets, carbon nanotubes (CNTs), and graphene,
to store energy [13].

Pseudocapacitors are another type of SC in which electrical energy storage is based on the
working principle of faradaic charge transfer between the electrode and the electrolyte by reduction
and oxidation reactions. Metal oxides (IrO2, RuO2, NiO, MnO2, MoO, V2O5, Fe3O4, etc.), metal
chalcogenides (MS2, MSe2), metal nitrides (VN, RuN, MoN, TiN, etc.), and conducting polymers
(polyaniline, polythiophene, polypyrrole (PPy), etc.) are the electrode materials which have been
employed in pseudocapacitors [14,15]. Hybrid-type SCs are a combination of both EDLCs and
pseudocapacitors. The best electrochemical properties for high-performance SCs can be grabbed
by opting reasonable electrode materials with aptly chosen electrolytes and nanostructured designs.
An ideal electrolyte should consist of high ionic conductivity and thermal stability, high chemical
and electrochemical stability; chemical and electrochemical inertness to SC components, such as
electrodes, current collectors, and packages. In real-world terms, it is exceptionally difficult for any
electrolyte to meet all the above requirements, and each electrolyte has its own advantages and
disadvantages [16]. The electrolytes for SC strongly depends on the nature, including (a) the ion
type and size; (b) the ion concentration and solvent; (c) the interaction between the ion and the
solvent; (d) the interaction between the electrolyte and the electrode materials; and (e) the potential
window, all have an influence on the double layer capacitance and pseudocapacitance. Furthermore,
the interactions between the ion and the solvent and between the electrolyte and the electrode material
can affect the lifetime and self-discharge of SCs [17]. Hence, electrolytes are identified as one of
the most persuasive components in the performance of SCs. However, the nanostructure designs
have the ability to improve electrochemical reaction efficiency and utilization of active materials with
improved energy and power densities. This is for the reason that, despite tremendous improvements
in the material science of the electrodes, not many studies have reported metal chalcogenide-based
nanostructured electrode materials for electrochemical SCs.

The electrochemical performance of an SC is estimated by the specific capacitance, energy density,
and power density, which are evaluated according to the Equations (1)–(4) [18–20].

The electrode materials’ specific capacitance (in F·g−1) is calculated via a current-voltage
(CV) analysis:

C =

∫
Idv

2mv∆V
(1)

where m is mass of the used electrode material (g), I is the voltammetric current, ∆V is the potential
window (V), and v is the scan rate (mV·s−1), respectively. The electrode materials’ specific capacitances
are evaluated from a (CD) analysis:

C =
I∆t

m∆V
(2)

where I is the discharging current (A), t is the time (s), and V is the potential difference (V), respectively.
Furthermore, the energy and power densities are calculated by

E =
I∆V∆t

m
(3)
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and
P =

I∆V
m

(4)

respectively. In the aforementioned Equations (3) and (4), the I, ∆V, ∆t, and m are the current potential
difference, discharging time, and mass of an electroactive material, respectively.

Criteria for electrode materials selection are

(i) Multiple oxidation states
(ii) Superior electrical conductivity
(iii) High surface area & chemical stability
(iv) Electrochemical activity (electrolyte ions can freely interact into the electrode surface)

To improve the capacitance of supercapacitors, four key factors are required:

(i) Doping of the metals to increase the conductivity and redox activity
(ii) A wide potential window
(iii) High surface area for the redox reaction
(iv) High charge/discharge rate

In the present review, the recent advances in the fabrication of metal sulfides and metal
selenide-based nanostructured electrode materials for electrochemical SCs are discussed. Finally,
the benefits of both metal sulfide- and selenide-based nanostructured electrode materials in the
designing strategy for electrochemical SC applications are also systematically presented.

2. Metal Chalcogenides for Electrochemical SCs

The industrially vital and scientifically significant metal chalcogenides (MCs) (S, Se, and Te) have
received a great deal of attention in the past two decades due to their anisotropic property. In general,
transition elements of groups IV to VII B combine with VI A group elements, such as S, Se, and Te
to form binary stable layered crystalline structures [21]. These layered transition MCs possess the
general formula of MX2, where M is a transition element in groups IV B (Ti, Zr, Hf), V B (V, Nb, Ta),
VI B (Mo, W), or VII B (Tc, Re) and X is a chalcogen atom in the VI A group (S, Se, Te). The structure
and properties of most of the transition MCs almost resemble semimetal pristine graphene, except for
the band gap [22], which is nearly zero in pristine graphene whereas in transition MCs, it depends on
the elemental combination, the number of layers, and the presence or lack of adopting atoms. Hence,
their band gap values lie between 0 and 2 eV. Due to the variation in band gap, different transition MC
structures are tunable, and so have become industrially important materials [23].

In this part of the review article, we particularly describe the application of nanostructured
transition MCs in electrochemical SCs. They have gained considerable attention due to their high
specific power, and long stability and life cycle, and they offer better safety tolerance relative to
batteries in a wide range of applications in consumer electronics, electric tools, buffer powers,
hybrid electronic vehicles, and so forth [22]. On the other hand, MCs have been applied in the
fields of fuel cells, solar cells, light-emitting diodes, sensors, lithium-ion batteries, electrocatalysts,
thermoelectric devices, and memory devices, as well as being widely utilized in SCs, due to their
excellent properties. These include (i) improved life cycle; (ii) flexibility; (iii) providing additional
reactive sites and catalytic activity; (iv) improving conductivity as well as reduction of inner resistance
and ohmic loss; (v) short path lengths for electron transport; and (vi) displaying quantum-sized
effects. Furthermore, we describe the future promising areas of transition metal group sulfides and
selenide nanostructures covering both their properties and their applications in SCs. Specifically, metal
sulfides exhibit greatly improved electrochemical performance, which largely originates from their
higher electronic conductivity, higher electrochemical activity, and mechanical and thermal stability.
On the other hand, it has been well reported that the performance of electrochemical energy storage
devices depends greatly on the crystalline phase, size of the electroactive materials, structural and
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morphological features, and composition and the design of electrodes [22]. Metal selenides, as a new
class of battery-like electrode materials, have gained increasing interests as promising supercapacitor
electrode materials, not only possessing rich redox chemistry, but also better electronic conductivity,
and mechanical and thermal stability. Compared to metal sulfides, metal selenides are for less reported
than that of metal sulfides. The details are presented herein.

3. Transition Metal Sulfides

3.1. Nickel Sulfides

In recent years, nanometer-sized metal sulfides have played a significant role in the field of
electronics, especially optical and optoelectronic devices, due to their distinct excellent physical and
chemical properties. Certainly, nickel sulfide is of particular interest because of its different phases,
such as NiS, Ni3S2, NiS2, Ni3S4, Ni7S10, and Ni9S8, and its different morphologies [24]. However,
the different phases and morphologies of nickel sulfides sometimes coexist as a combination of more
than two different phases [25]. Hence, obtaining an even morphology with pure nickel sulfides is still
a challenge that has attracted a great deal of attention. Some of the important phases of nickel sulfides
and their application in SCs are briefly discussed under the following subsections.

(a) Ni3S2

In the midst of the different types of nickel sulfides, Ni3S2 has exhibited a better performance
as an electrode material for energy storage devices, due to its different types of morphology and
advantages, including its low capital cost, high specific capacitance, and simple synthesis route.
These are anticipated to help it meet the increasing necessities of energy storage systems, especially for
SCs [25]. In addition, it occurs abundantly in nature as minerals in the form of heazlewoodite. Hence,
in recent years, it has been investigated widely for SC applications. However, Ni3S2, unfortunately,
has low conductivity, which restricts the fast electron transport required for high rate capability,
and can even act as an insulator. This sort of issue has been overcome by way of incorporating highly
conductive electrode materials in the pseudocapacitive Ni3S2 material.

Chou et al. [26] first synthesized the flaky Ni3S2 nanostructure on Ni-foam by a simple
potentiodynamic deposition method and employed it for SCs. This material showed a maximum
specific capacitance of 717 F·g−1 at 2 A·g−1 rate in 1 M KOH solution with remarkable capacitance
retention of 91%. On the other hand, Karthikeyan et al. [27] used a one-pot hydrothermal synthesis
method of Ni3S2 to increase the electrochemical properties and specific capacitance of Ni3S2 further.
They grew hierarchical Ni3S2 nanostructures in a Ni foam cell and evaluated its capacitance behavior.
The cell offered a maximum specific capacitance of 1293 F·g−1 at a current density of 5 mA·cm−2.
Moreover, a different kind of preparation method has been extensively studied and reported for other
similar type of electrode materials [28,29]. Zhou et al. [30] further used a hydrothermal method to
synthesize Ni(OH)2 nanosheets coated onto single-crystal Ni3S2 nanorods grown on the surface of
three-dimensional (3-D) graphene nanosheets (Ni3S2@Ni(OH)2/3-D-GN), which were able to achieve
a relatively high capacitance of 1277 F·g−1 at 2 mV·s−1 and 1037.5 F·g−1 at 5.1 A·g−1. They also
investigated the structural evaluation of Ni3S2@Ni(OH)2/3-D-GN with respect to hydrothermal
reaction time, and concluded that as the reaction time increases from 6 h to 12 h, the evolution of the
structure from Ni3S2 nanorods to Ni3S2@Ni(OH)2 occurred, followed by conversion to pure Ni(OH)2

nanosheets. After a hydrothermal reaction time of 6 h, Ni3S2 nanorods were obtained, as exhibited in
Figure 1.
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Figure 1. Scanning electron microscopy images of Ni3S2 nanorods obtained at different hydrothermal
reaction times: (a) 6 h; (b) 12 h; and (c) 24 h (the inset in (b) is a magnified image of the
Ni3S2@Ni(OH)2/3-D-GN structure); (d) X-ray diffraction (XRD) patterns of the samples shown in (a–c);
and (e) a proposed mechanism for the growth of the Ni3S2@Ni(OH)2/3-D-GN structure. Reproduced
with permission from [31]. Royal Society of Chemistry, 2016.

Later on, Zhu et al. [32] reported the preparation of Ni3S2 nanosheets on a CNT backbone with a
specific capacitance of 514 F·g−1 at a current density of 4 A·g−1 and excellent cycling stability. Likewise,
Pan et al. [33] designed and compared the capacitance behavior between Ni3S2 and Ni3S2/graphene
on Ni-foam. Obviously, compared to pristine Ni3S2, the Ni3S2/graphene nanocomposites showed
better electrochemical behavior and achieved a specific capacitance value of around 278.3 F·g−1 for the
first 20 cycles. Afterwards, the capacitance started to decrease to 230.6 F·g−1 over 35 cycles, and finally
reached 223 F·g−1 until 50 cycles, which might have been due to the detachment of electrode material
from the Ni-foam.

To improve the specific capacitance of Ni3S2/graphene composites, a simple process controlled
by adjusting the extent of sulfidation was proposed by Ou et al. [34] who achieved the highest
specific capacitance of 1022 F·g−1. The same group also studied the one-step hydrogen reduction
synthesis of Ni3S2/graphene composites reported elsewhere [35]. Moreover, the biomolecule-assisted
hydrothermal synthesis of Ni3S2 nanospheres/reduced graphene oxide (Ni3S2/rGO) nanocomposites
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was investigated using L-cysteine as the reducing agent, and their application to SCs characterized [36].
They displayed very high specific capacitances of 1169 F·g−1 and 761 F·g−1 at 5 A·g−1 and 50 A·g−1

current rates, respectively, with good cycling stability, while bare Ni3S2/rGO on Ni-foam offered a
specific capacitance of 2188.8 F·g−1 at 2.9 A·g−1 [37].

In recent times, a series of Ni3S2 nanowires, such as Ni3S2-Ni, Ni3S2-NiS, and Ni3S2-NiS-Ni, have
been grown on nickel nanowire templates, and their capacitance behavior compared elaborately [38].
Among these, Ni3S2-NiS nanowires presented superior redox reactivity with a high specific capacitance
of 1077.3 F·g−1 at 5 A·g−1, due to their excellent aspect ratio and electrical conductivity. On the
contrary, the other two nanowire electrodes (Ni3S2-Ni and Ni3S2-NiS-Ni) possessed 100% capacitance
retention compared to the Ni3S2-NiS electrode (76.3%). A rationally designed two-step method to
fabricate self-supported Ni3S2 nanosheet arrays on a metal-organic framework has been investigated
by Chen et al. [39] who achieved a maximum specific capacitance of 200 F·g−1 at a current density of
10 A·g−1.

(b) NiS

As discussed earlier, uniform morphology with a pure phase of nickel sulfide is still a challenge,
and currently, plenty of research is focused on resolving this problem [40]. Nevertheless, few studies
have dealt with morphological control during the synthesis of the NiS and NiS2 phases with a
pyrite structure [41,42]. In addition, those consisting of nickel sulfide phases are less toxic and
highly abundant in nature, and possess high redox activity [43–46]. For instance, flower-like β-NiS
was successfully synthesized and reported by Yang et al. [47], in which the electrodes displayed a
specific capacitance of 966 F·g−1 at a current rate of 0.5 A·g−1. Similarly, Wang et al. [48] prepared
one-dimensional (1-D) (110)-oriented NiS nanorods with a high specific capacitance of 1403.8 F·g−1 at
a current density of 1 A·g−1. This high specific capacitance of the electrode material might have been
due to the designed 1-D electron-transport pathway and large specific surface area of NiS. Likewise,
successful SC performances of α-NiS and β-NiS were reported by Wei et al. [49].

However, the pure phases of these electrodes suffer from poor cycling stability owing to the
agglomeration and pulverization of NiS during consecutive cycling of the CD process. The cycling
stability of NiS electrodes has been improved by changing the experimental conditions, and including
conducting nanomaterials along with a NiS matrix, as reported earlier, some of which are listed
later. The phase-controlled synthesis of α-NiS embedded in carbon nanorods was synthesized
by Sun et al. [50]; the electrodes delivered a high electrochemical stability with 100% capacitance
retention with a specific capacitance of 1092 F·g−1 at 1 A·g−1. Similarly, NiS nanoparticles on
Ni-foam, [51–53] activated carbon, [53] N-doped carbon fiber aerogels [46], and rGO [54], have been
reported recently.

(c) Ni3S4

One of the rarely reported nickel sulfide phases, Ni3S4, exists in nature as polydymite. Still,
the scientific community is facing the challenge to obtain the purest phase of Ni3S4 by conventional
solid-state reactions for SC applications. Hence, to date, the electrochemical properties of Ni3S4 remain
hidden. Only a few studies in the literature discussed earlier are on Ni3S4 for SC applications. In recent
times, Zhang et al. [55] prepared the 3-D rigid Ni3S4 nanosheet frames by controlled solvothermal
synthesis, and evaluated their electrochemical performances for SC applications. Interestingly, the 3-D
rigid Ni3S4 nanosheet frames possessed better capacitance performances than that of flat Ni3S4. The 3-D
rigid Ni3S4 nanosheet frames achieved a maximum capacitance value of 1213 F·g−1, which was due to
high free volume and high compressive length. The proposed mechanism for both flat Ni3S4 and 3-D
Ni3S4 nanosheet frames is schematically represented in Figure 2. Furthermore, the synergistic effects
of the layered Ni3S4, MoS2, and conductive carbon fibers were analyzed by Huang et al. [56] who
reported a capacitance value of 1296 with 96.2% capacitance retention. Similarly, the Ni3S4@amorphous
MoS2 nanosphere electrodes have exhibited a high specific capacitance of 1440.9 F·g−1 at 2 A·g−1 [57].
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Easily self-assembled Ni3S4-MoS2 hetero-junction electrode materials assisted by an ionic liquid
1-butyl-3-methylimidazolium thiocyanate have been prepared for the first time with the electrode
attaining high specific capacitance of 985.21 F·g−1 at a current density of 1 A·g−1 [58]. The role
of ionic liquid in this hetero-junction electrode synthesis was that it provides a sulfur source for
the sulfidation reaction, and also influences the formation of Ni3S4-MoS2 with different precursor
reactions. Other phases of nickel sulfides, such as Ni9S8 [59] and NiS2 [24], were also produced but
rarely reported for SC applications, due to their unstable phase nature.

Figure 2. Schematic illustration for the formation of 3-D Ni3S4 nanosheet frames and Ni3S4 sheets.
Reproduced with permission from [55]. Royal Society of Chemistry, 2015.

3.2. Copper Sulfide

The inexpensive, naturally abundant functional semiconductor copper sulfide is available as
different phases, such as chalcocite (Cu2S), villamaninite (CuS2), djurleite (Cu1.95S), anilite (Cu1.75S),
and covellite (CuS) in nature [60,61]. Among these, CuS has been the extensively studied, and is used
in energy storage and conversion devices, gas sensors, and photocatalysts [62]. Furthermore, different
approaches have been adopted to synthesize CuS, including solvothermal synthesis, microemulsions,
and surfactant templating, due to its low capital cost [63,64].

In this section, we briefly discuss the salient features and potential applications of CuS in the field
of electrochemical SCs. Studies on the electrochemical behavior of CuS are very limited, and so an
investigation into its use as an electrode material is highly significant. Recently, it has been reported
as a suitable SC electrode material, due to its high theoretical capacitance [64–67]. For example,
Peng et al. [68] synthesized CuS with different morphologies using a low-temperature solvothermal
method, and employed it for SC applications. The high surface area flower-like CuS provided
a good specific capacitance of 597 F·g−1 with an excellent discharging rate and cycling stability.
The sonochemical-assisted synthesis of CuS has been studied elaborately, and yielded a specific
capacitance of 62.77 F·g−1 at 5 mV·s−1 [69].

The important metal chalcogenide CuS provides an electronic conductivity of 10−3 S·cm−1 and
theoretical specific capacity of 561 mA·h·g−1. However, this is not favorable for SC applications
because pure CuS is a semiconductor with relatively low conductivity when compared to carbon
nanomaterials and conducting polymers, and its volume change during cycling causes poor cycling
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stability [70]. Hence, it is desirable to geometrically control the preparation of CuS composites and
combine them with electronically conductive substance to enhance SC performance greatly.

Ultrafine CuS nanoneedle arrays grown on a CNT backbone have also been investigated as
electrodes for SC applications in the past. Interestingly, these reported 1-D hierarchical electrodes
offered better capacitance values with excellent cyclability, owing to the abundant surface area between
the electrode and electrolyte. A schematic illustration of the formation of CuS nanoneedles on a CNT
backbone is depicted in Figure 3. Later, Huang et al. [71] have applied a different hydrothermal
approach to synthesis CuS/MWCNT (multi-walled CNT) electrodes and analyzed its electrochemical
performance (2831 F·g−1). The CNT-incorporated porous 3-dimensional CuS microsphere composite
electrodes had peony-like microspheres with a diameter of 1 µm, and each microsphere was
composed of a few tens of bundled nanosheets of 15–30 nm thickness [72]. They showed excellent
cyclability and rate capability, with an average reversible capacitance of 1960 F·g−1 at 10 mA·cm−2.
The electrochemical SC performances of different important metal sulfides are tabulated in Table 1.

Figure 3. (A) Schematic illustration of the formation of carbon nanotube (CNT)@CuS by a
template-engaged conversion route: (I) Uniform coating of a silica layer on CNT; (II) growth of copper
silicate nanoneedles on the silica layer; and (III) chemical conversion to CNT@CuS with the silica layer
simultaneously eliminated. Reproduced with permission from [62]. Royal Society of Chemistry, 2012;
(B) SEM images of CuS (a,c); CuS/CNT composites (b,d). Reproduced with permission from [72].
Springer Nature Publishing Group, 2015; (C) FE-SEM images of CuS (a) and CuS@PPy composite
(CuS content is 16.7 wt %) in low and high magnification (b,c); TEM images of CuS (d) and CuS@PPy
composite (CuS content is 16.7 wt %) (e). Reproduced with permission from [73]. Royal Society of
Chemistry, 2014; (D) (a) Schematic representation of Synthesis process of CuS NWs; (b) XRD patterns
of the as-prepared Cu(OH)2 and CuS NWs; (c) A FE-SEM image of CuS NWs; (d) A high-magnification
SEM image of CuS NWs. The inset indicates the high-magnification SEM image of Cu(OH)2 NWs.
Reproduced with permission from [74]. Royal Society of Chemistry, 2016.
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A high-performance SC based on CuS@PPy composite has been developed by in situ oxidation
polymerization recently [73]. The composite had uniform spheres with an average thickness of 1 µm,
which in turn were composed of plenty of intertwined sheet-like subunits. The electrodes exhibited a
high specific capacitance of 427 F·g−1 at 1 A·g−1. Currently, CuS nanowires on a copper mesh have
also served as working electrode in SCs. These CuS-nanowire-based electrodes were free from the
binder and conductive material, and had well-arrayed structures with nanosized grains and a high
aspect ratio and density. In addition, the other electronically conducting substances like rGO, acetylene
black, polyaniline (PANI), and CNTs have also been combined with CuS with the resultant electrodes
showing very good capacitance performance and great retention [70,74–77].For instance, the schematic
illustration of synthesis of CuS@rGO composites was displayed in Figure 4 [70].

Figure 4. A schematic demonstration for the synthesis of CuS-GO composites. Reproduced with
permission from [70]. Elsevier, 2015.

Table 1. Electrochemical supercapacitor (SC) performances of important metal sulfides.

Electrodes Capacitance
(F·g−1)

Current Density
(A·g−1) Electrolytes % of Capacity Retention

(>1000 Cycles) Ref.

Ni3S2 717 2 1 M KOH 91.0 [26]
Ni3S2@Ni(OH)2/3D graphene nanosheet 1037.5 5.1 3 M KOH 99.1 [30]

Ni3S2/graphene 875.6 1 2 M KOH 93.6 [34]
β-NiS 857.76 2 2 M KOH 99.0 [44]

Ni3S4@amorphous MoS2 1440.9 2 6 M KOH 90.7 [57]
CuS nano-hollow spheres 948 1 6 M KOH 90.0 [51]

CuS@PANI 308.1 0.5 0.1 M Li2SO4 71.6 [76]
CoS 285 0.5 6 M KOH 99.0 [78]

CoS/graphene 435.7 0.5 6 M KOH 82.3 [79]
CoS2 microsphere 718.7 1 6 M KOH 93.0 [80]

NiCo2S4 nanosphere 1156 1 1 M KOH 82.0 [81]
NiCo2S4 nanoplates 437 1 3 M KOH 81.0 [82]

MoS2 162 0.1 1 M Na2SO4 93.0 [83]
MoS2/graphene 270 0.1 1 M Na2SO4 89.6 [83]

Bi2S3 289 (5 mV/s) 1 M Na2SO4 60.0 [84]
Bi2S3 1007 1 6 M KOH 92.0 [85]

Bi2S3/MoS2 3040 1 6 M KOH 92.6 [85]
MoS2 nanosphere 1565 1 6 M KOH 92.0 [85]

a-La2S3 256 (5 mV/s) 1M LiClO4/PC 85.0 [86]
WS2 70 (5 mV/s) 1 M Na2SO4 —– [87]

WS2/RGO 350 (5 mV/s) 1 M Na2SO4 99.9 [87]

3.3. Cobalt Sulfides

In the past decade, cobalt sulfide has received a great deal of interest, due to its applications in
versatile fields such as SCs, lithium ion batteries, alkaline rechargeable batteries, magnetic materials,



Nanomaterials 2018, 8, 256 10 of 28

and catalysts [88–91]. To date, various nanostructures of cobalt sulfide have been examined and
reported as electrode materials for SCs. However, the controlled synthesis of cobalt sulfides with
high purity and well-defined complex morphology is highly complicated. This may be due to the
following factors. (i) Since it exists in nature as different chemical compositions (Co1−xS, CoS, CoS2,
Co9S8, and Co3S4), it can easily transform from one phase to another phase; (ii) During preparation,
it is very difficult to remove impurities such as cobalt oxide and cobalt hydroxide, because cobalt ions
have a very strong affinity to oxygen; (iii) Controlling the reaction temperature is challenging for the
reason that cobalt sulfides possess a complicated phase diagram. In order to deal with these factors as
well to prepare high purity cobalt sulfide nanostructures, various types of synthetic routes have been
employed in the past. There are several reports on the synthesis and electrochemical evaluation of
nanostructured cobalt sulfides pertinent to SCs and will be discussed in this section.

(a) Co3S4

Chen et al. [92] fabricated a high-performance electrochemical SC using Co3S4 nanosheet arrays
on Ni-foam as electrodes, which were prepared by an anion exchange reaction of the Co3O4 nanosheet
arrays. Furthermore, they compared the electrochemical performances of Co3S4 nanosheet arrays with
its corresponding metal oxide analog Co3O4 nanosheet arrays. Interestingly, the specific capacitance
and cycling stability of Co3S4 nanosheet arrays electrodes were 4.1 times higher than that of Co3O4

nanosheet arrays, as shown in Figure 5, and achieved a maximum areal capacitance of 1.81 F·cm−2 at a
current density of 24 mA·cm−2. Recently, rGO nanosheets wrapped around Co3S4 nanoflake electrodes
were developed, and their electrochemical performance thoroughly investigated by Patil et al. [93];
the electrode offered a highest specific capacitance of 2314 F·g−1 at 2 mV·s−1.

Figure 5. (a) The current-voltage (CV) curves of Co3S4 nanosheet arrays on Ni-foam at different scan
rates of 5, 10, 20, and 30 mV·s−1; (b) CV comparison of the Co3S4 and Co3O4 on Ni-foam at the same
scan rate of 5 mV·s−1; (c) The charge-discharge behavior of the Co3S4 nanosheet arrays at different
current densities; (d) Comparison of the Co3S4 nanosheet and Co3O4 nanowire arrays on Ni-foam
with the same areal charge-discharge current of 24 mA·cm−2 Reproduced with permission from [92].
Royal Society of Chemistry, 2013.

(b) CoS

Due to the synergic properties of the metallic and layered characteristics of CoS, it has been
widely investigated for use in SC electrodes. Different morphologies of CoS nanostructures have been
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synthesized by various synthetic routes and have exhibited distinct electrochemical performances.
3-D flower-like hierarchical CoS nanostructure electrodes have been prepared using 6 M KOH solution
and employed in SCs, which yielded 586 F·g−1 at 1 A·g−1 after 1000 cycles [94]. Nevertheless,
one-step hydrothermally synthesized two-dimensional (2-D) CoS nanosheet electrodes exhibited
superior performance with a higher specific capacitance of around 1314 F·g−1 at 3 A·g−1 [95]. Later,
Wan et al. synthesized and reported the performance of CoS nanotubes for high performance SCs [78],
while Justin et al. studied the synthesis of CoS nanospheres using a hydrothermal method and
evaluated their applications in SCs [96], and recently, a flower-like CoS hollow sphere electrodes for
energy storage devices have been reported [97]. Accordingly, other CoS nanostructures and composites
with rGO, titania, and CNT have also been synthesized and studied for SC applications [79,98–100].

(c) CoS1.097

As with CoS, Wang et al. [101] developed a simple solvothermal method to prepare flower-like 3-D
hierarchical CoS1.097 and employed it as an SC electrode, which exhibited high specific capacitances of
555 F·g−1 and 464 F·g−1 at 5 mA·cm−2 and 100 mA·cm−2, respectively, while 1-D hierarchical CoS1.097

on CNT nanostructured electrodes delivered a remarkable specific capacitance of 640 F·g−1 at 8 A·g−1

after 3000 consecutive CD cycles [102]. Another nanostructure consisting of an ultralong CoS1.097

nanotube network provided high specific capacitance, good capacitance retention, and excellent
coulombic efficiency, due to its hollow structure and large surface area [103].

(d) CoS2

Pyrite-phase cobalt disulfide (CoS2) is intrinsically a conductive metal that has been considered
as one of the promising materials for wide potential application in SCs [104]. Moreover, it is earth
abundant and low cost, and has long-term stability under acidic operating conditions. Furthermore,
the thermal stability and Gibbs free energy (−146 kJ·mol−1) of CoS2 is much higher than that
of other metal sulfides, indicating that it has superior capacitive behavior compared to activated
carbon positive electrodes for hybrid SCs [105]. As we know, the electrochemical properties of
SC electrode materials strongly depend on particle size, shape, and porosity, as well as pore size
distribution. Superior electrochemical and pseudocapacitive properties were observed for single
phased CoS2 ellipsoids, nanoflake thin films, nanowires, octahedrons, and hollow spheres [106–108].
The hierarchical mesoporous CoS2 electrodes offered a high specific capacitance of 718.7 F·g−1 at
1 A·g−1 [80], whereas 3-D hollow CoS2 nanoframe electrodes fabricated by anion replacement had
a maximum capacitance of 568 F·g−1 at 0.5 A·g−1 [109]. Nevertheless, single component CoS2 was
intrinsically unstable, which caused several problems, such as relatively low capacitance, poor cycling
stability, and rate capability. These could be overcome by an effective synthetic strategy for direct
growth of a CoS2 active material on a conductive support, which dramatically enhanced the capacitance
performance [110]. For instance, CoS2-rGO composites which possessed better electrochemical
properties than pure individual components have been prepared and investigated recently [111].
Furthermore, a CoS2/MoS2 on carbon fiber cloth hierarchical electrode exhibited excellent long life
cycle stability and achieved a maximum capacitance value of 406 F·g−1 [112].

(e) Co9S8

Various nanostructures of Co9S8 including nanosheets, nanoneedles, nanospheres, a yolk-shell
structure, as well as various heterostructures with CNT and rGO were reported as potential anodes
for lithium-ion batteries and dye-sensitized solar cells [113–120]. However, the reports on Co9S8

nanostructured electrodes leading to SC applications are very scarce. For instance, high purity
Co9S8 thin films on Ni foam have been developed by atomic layer deposition and employed as
high-performance SC electrodes which possessed a specific capacitance of 1645 F·g−1 at 3 A·g−1 [121].
Later Ramachandran et al. [122] suggested a low cost synthetic route for Co9S8 nanoflake/graphene
composite electrodes that offered a maximum specific capacitance of 808 F·g−1 at 5 mV·s−1 in 6 M KOH
electrolyte solution. Mashikwa et al. [123] developed a new type of SC electrode consisting of Co9S8
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nanoparticle clusters embedded in an activated graphene foam structure using a microwave-assisted
hydrothermal method; the electrode was capable of delivering a specific capacitance of 1150 F·g−1

at 5 mV·s−1. Furthermore, 3-D petal-like two-mixed metal sulfide-graphene composite electrodes
(Co9S8/rGO/Ni3S2/Ni foam) fabricated for high-performance SCs exhibited superior capacitive
performance with the high capability (2611.9 F·g−1 at 3.9 A·g−1), excellent rate capability, and enhanced
electrochemical stability with remarkable capacitance retention [124].

3.4. Binary Metal Sulfides

Although many transition metal sulfides have been investigated as electrodes for SCs, binary metal
sulfides are quite interesting, due to their higher active redox sites, as well as mechanical and thermal
stability compared to that of their corresponding single component counterparts. Most binary metal
sulfide nanostructures have been synthesized by applying the Kirkendall effect [125], and recently,
various binary metal sulfides have been prepared based on it [82]. In brief, the Kirkendall effect is based
on the mutual diffusion process of two metals through an interface so that vacancy diffusion occurs to
compensate for the inequality of the material flow and that the initial interface moves. Nevertheless,
reports on binary metal sulfides as SC electrode materials are still limited.

(a) NiCo2S4

The urchin-like porous NiCo2S4 nanotubes have been synthesized and employed as
pseudocapacitor electrodes with excellent electrochemical performance in the past [107,108].
Later Pu et al. [82] successfully synthesized hollow hexagonal NiCo2S4 nanoplates, which exhibited a
high specific capacitance of 437 F·g−1 at 1 A·g−1 using 3 M KOH electrolyte solution. CoNi2S4 electrode
materials were successfully fabricated by Du et al. [126]. Self-templating synthesized NiCo2S4 hollow
spheres have shown excellent electrochemical properties, such as an intrinsic electronic conductivity
hundreds of times higher than that of its corresponding binary metal oxides [127]; an electrode
cell made with it achieved a maximum capacitance of 1263 F·g−1 at 2 A·g−1 with remarkable
rate capability. In the meantime, NiCo2S4 nanostructures prepared by, for instance, hydrothermal,
solvothermal, and polyol methods also exhibited high specific capacitance with fabulous capacitance
retention, and were reported as potential pseudocapacitor electrodes for SC applications [81,128,129].
Recently, the NiCo2S4 on carbon fiber cloth and carbon fiber paper have been investigated, and their
electrochemical performances compared to SC applications. NiCo2S4 carbon fiber paper demonstrated
favorable charge-transfer kinetics and fast electron transport compared to NiCo2S4 carbon fiber cloth,
and thus showed superior electrochemical performance compared to its counterpart [130].

(b) Manganese Cobalt Sulfides (MCS)

Great attention has been paid to MCS-based electrodes in the past three years, due to its
eco-friendly nature and high redox properties. As with NiCo2S4, reports on MCS are very few.
Previously, Chen et al. [131] synthesized hollow tubular MCS for pseudocapacitor applications.
Currently, the ultrathin mesoporous MCS nanosheets have been grown on Ni foam using an
electrodeposition technique and characterized for its applications in SCs [132]. Very recently, a high
specific capacitance of 1938 F·g−1 at 5 A·g−1 with long-term cycling stability and capacitance retention
have been reported for nano honeycomb-like MCS/3 D-graphene on Ni-foam electrodes [133].

Apart from the above binary metal sulfides, there has only been one report on a 3-D yolk-shell
NiGa2S4 structure confined with nanosheets for high-performance SC applications [134].

3.5. Molybdenum Disulfide

In the past decade, MoS2 has received a great deal of attention, due to its unique physical and
chemical properties and find applications in various fields including electrochromic devices hydrogen
storage, catalysis, capacitors, lubricants, and batteries [135–137]. In brief, MoS2 is a graphene-like 2-D
material in which the middle layer of molybdenum is sandwiched between two sulfur layers. All three
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layers are stacked over each other and held together by weak van der Waals forces [138,139]. In recent
times, researchers have focused on the utilization of MoS2 to develop high-performance SCs, due to its
higher theoretical capacitance (1000 F·g−1) than graphite and fast intrinsic ionic conductivity [140,141].

Ajayan and co-workers [142] prepared 2-DMoS2 film-based micro-SCs by a low-cost spray
painting process and subsequent laser printing. The prepared SCs exhibited a better electrochemical
performance than graphene-based micro-SCs and delivered a high voltammetric capacitance of
178 F·cm−3 with better cycling performance. Later on, several groups have also reported the same range
of capacitance values for hydrothermally synthesized MoS2 at current density rate of 1 A·g−1 [143–146].
In another typical case, Soon et al. [147] investigated MoS2 nanosheets as potential electrodes for
SCs, and reported that the SC performance of the electrodes was comparable to that of CNT array
electrodes. Recently, chemically deposited MoS2 thin films have been synthesized by Pujari et al. [148]
using 1 M Na2SO4 as an electrolyte solution. They showed a specific capacitance value of 180 F·g−1

with 82% capacitance retention. Karthikeyan et al. [149] reported MoS2-based electrodes prepared
using a ball-milling process, and employed them in wire type solid-state SCs. However, in practice,
the electronic conductivity of MoS2 (10−5 Ω−1·cm−1) is still lower compared to graphene and the
specific capacitance of MoS2 is very limited when used on its own in SCs [150,151], a deficiency
which has been overcome by combining it with other conducting materials (as discussed earlier for
metal sulfides).

Huang et al. [152] fabricated a new class of PANI/MoS2 composites in which the short rod PANI
was anchored onto the surface of MoS2. The resultant electrode offered a specific capacitance of
575 F·g−1 at 20 mV·s−1. The same group extended their research on MoS2-graphene nanocomposites
and concluded that the capacitance behavior of MoS2-graphene composite (243 F·g−1) was quite
higher than that of bare MoS2 (120 F·g−1) and bare graphene (35 F·g−1) at 1 A·g−1, and was
comparable with other reported results on MoS2-graphene electrodes [83,153–157]. Recently, MoS2

decorated laser-induced graphene on polyimide foil-based flexible electrodes [158] have been reported,
and showed excellent electrochemical performance. Furthermore, Mandal et al. [159] reported a
high specific capacitance value of 253 F·g−1 for MoS2/rGO composites at 1 A·g−1 current density
rate, which implies the superiority of MoS2 nanocomposites for SCs as high-performance electrodes.
Meanwhile, multi-walled CNT/MoS2 composites have shown a better specific capacitance and
achieved a maximum of (452.7 F·g−1) compared to bare MoS2 (149.6 F·g−1) and bare MWCNT
(69.2 F·g−1) at a current density rate of 1 A·g−1 [160].

Moreover, the utilization of a conducting template along with molybdenum sulfide also improved
the surface area and electrochemical performance, and a few classical references are discussed herein.
Porous tubular C/MoS2 composites using porous aluminum oxide as a template were prepared
for the first time by Hu et al. [161], and the prepared electrodes delivered a high capacitance of
210 F·g−1 at 1 A·g−1 with a very good cycling rate. In another typical case, hydrothermally synthesized
C/MoS2 having flower-like morphology exhibited a capacitance value of 201.4 F·g−1 at 1 A·g−1 [162].
Kumuthini et al. [163] prepared MoS2@C nanofiber electrodes using an electrospinning process,
and achieved high capacitance with 100% life cycle, due to their prominent electrochemical properties
with improved stability. In addition, conducting templates like Mo foil, PANI, and PPy have been used
along with MoS2 as binder-free electrodes for SCs in recent years [164–166], but the cycling stability
and performances of the MoS2-based SCs are not satisfactory and are still a challenge.

3.6. Other Transition Metal Sulfides

(a) Bi2S3

Bi2S3 is a direct band gap (1.4 eV) layered semiconductor material, and exists mostly in
orthorhombic form. In recent years, more attention has been paid to it due to its specific electrical and
optical properties, and it has found potentially applicable in the fields of SCs, photocatalysis, sensors,
and batteries [167,168]. The important properties of Bi2S3 leading to SC applications are discussed
herein. Rod-like Bi2S3 micro flowers have been synthesized and characterized for their application in



Nanomaterials 2018, 8, 256 14 of 28

SCs; they provided a maximum specific capacitance of 185.7 F·g−1 at 1 A·g−1 [169]. Similarly, a recent
report on hetero-structured Bi2S3 nanorod/MoS2 nanosheet electrodes showed a specific capacitance of
1258 F·g−1 at 10 A·g−1 with 92.6% of capacitance retention [85]. Later on, Raut et al. synthesized Bi2S3

thin films on stainless steel using a successive ionic layer adsorption and reaction (SILAR) method,
which improved capacitance performance with long-term cyclability [84].

(b) La2S3

Due to its stable transition state, the rare earth element lanthanum-based chalcogenides
are considered as promising for use in SC electrodes in the current era. Depending on the
experimental conditions, lanthanum sulfide exists in different forms, including LaS, La2S3, and La3S4,
which possess excellent pseudocapacitive behavior and high electronic conductivity similar to other
metal sulfides [170]. However, reports on these electrode materials are highly limited, due to their
synthetic routes [171]. Most of the reported results on La2S3 leading to asymmetric SCs have been
synthesized using the SILAR method. For instance, Patil et al. [172] prepared La2S3 thin films on
a stainless steel substrate using the SILAR method and studied its electrochemical performance.
The resultant electrode delivered a specific capacitance of 256 F·g−1 using LiClO4/PC electrolyte,
while the same La2S3 electrodes in aqueous electrolytes, such as KOH and Na2SO4, offered a maximum
capacitance of 358 F·g−1 at 5 mV·s−1 [86]. Later on, they extended their studies to the effect of
annealing on these La2S3 electrodes prepared using chemical bath method, which improved the
specific capacitance of the electrodes drastically [173]. Their air-annealed La2S3 electrodes achieved a
maximum of 294 F·g−1 at 0.5 mV·s−1, which was much higher than bare La2S3 electrodes.

(c) WS2

WS2-based electrode materials are receiving increased attention for applications in SCs, owing to
their high specific surface area and adaptable electronic structures. In brief, naturally occurring WS2

possesses a hexagonal crystal structure with space group P63/mmc. Each WS2 monolayer consists of
an individual layer of W atoms with six-fold coordination symmetry, which is then hexagonally packed
between two trigonal atomic layers of S atoms [87]. Though it possesses a number of advantages, it
did not have electronic conductivity as high as zero band gap graphene, which hampers the direct
stand-alone application of WS2 in SCs. Quite a few reported results are displayed herein. Ratha and
coworkers [87] reported the fabrication of WS2/rGO electrodes using a one-step hydrothermal method;
these electrodes were capable of delivering 350 F·g−1 at 2 mV·S−1. Furthermore, the mechanism
of WS2/rGO nanosheet electrodes was explained by Tu et al. [174]. In the short-term, the charges
were stored in the pseudocapacitor via the redox reactions of W6+ and W4+ on WS2, as well as by the
O-containing surface functionality on the surface of rGO. It showed excellent specific capacitance with
remarkable capacitance retention. Later on, a series of 2-D transition metal carbides (TMCs) , including
WS2, were investigated, and their strong influence on capacitance studied by Martinez et al. [175].
Bissett et al. [176] analyzed liquid-phase exfoliated WS2 electrodes for SCs that offered a maximum
specific capacitance of 3.5 F·g−1 at 10 mV·S−1.

4. Transition Metal Selenides

The charge storage mechanism and electrochemical properties of transition metal sulfides for SC
applications were discussed in the previous section. This section is purely devoted to a discussion
on selenium-based metal chalcogenides for SC applications. Selenium, the nearest neighbor of
sulfur in the VI A group, possesses the same valence electrons and oxidation number as sulfur [177].
Hence, the chemical and electrochemical activities of metal selenides almost resemble a metal sulfide,
which indicates that the metal selenides may also have promising applications in SCs [178]. Some of
the important metal selenides are discussed herein.
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4.1. Nickel Selenide

Among the transition metal chalcogenides studied, nickel selenides are of particular interest
due to their tunable electronic configuration and multiple oxidation states. In addition, they possess
resistivity below 10−3 Ohm·cm−1, due to their paramagnetic nature, which makes them suitable
candidates for energy storage devices, especially for SCs [179]. To date, reports on NiSe2-based SCs
are very limited, due to their highly complicated synthetic routes. The synthesis of NiSe2 involves
multiple steps, which has led to more expensive capital cost in bulk scale preparations.

Recently, Wang et al. [180] synthesized truncated cube-like NiSe2 single crystals using a simple
hydrothermal approach, and deeply studied its electrochemical performance. These electrodes offered
a maximum specific capacitance of 1044 F·g−1 at 3 A·g−1 with an excellent rate capability. Similarly,
hexapod-like two-dimensional NiSe2 single crystals have been investigated; their electrode delivered a
maximum capacitance value of 75 F·g−1 at a current density of 1 mA·cm−2 with a capacitance retention
rate of 94% [181].

4.2. Copper Selenide

Inexpensive, semiconducting CuSe has been applied in the fields of optoelectronics,
thermoelectrics, and solar cells [182,183]. Due to its variable oxidation states and high electrical
conductivity, it is capable of delivering good electrochemical properties. Nevertheless, no reports have
hitherto become available on the electrochemical properties of CuSe and only a few studies have been
published on CuSe-based SCs. The binder-free pseudo capacitive CuSe2/Cu electrodes have been
synthesized using a simple hydrothermal method, and the reported electrodes delivered a high specific
capacitance of 1037.5 F·g−1 at 0.25 mA·cm−2 [184]. Moreover, vertically oriented CuSe nanosheet
films have recently been developed, and their use in solid-state flexible SCs explored; they exhibited
a specific capacitance value of 209 F·g−1 [185]. Shinde et al. [186] reported Cu2Se nanodentrites as
electrodes for high-performance SCs. However, the electrochemical properties of CuSe have not yet
been fully identified, and future research is likely to be in the direction of developing high-performance
SCs using CuSe electrodes.

4.3. Molybdenum Diselenide

In MoSe2, the molybdenum atom is squashed between two selenium atoms by means of
strong covalent bonds that characterize the Se-Mo-Se interaction. It has high theoretical capacitance
and comprises low-cost and abundant elements. The stacked layers are held together by weak
van der Waals forces responsible for ion migration during the CD process. To the best of our knowledge,
only very few studies have become available on MoSe2 for SC applications.

Balasingam et al. [187] reported layered MoSe2 in a two-electrode configuration using H2SO4

electrolyte, in which the electrodes possessed very good specific capacitance of 199 F·g−1 at 2 mV·s−1.
The electrode cell’s specific capacitance was increased further by combining MoSe2 with rGO to attain
a maximum of 211 F·g−1 with excellent cyclability. Later on, Haung et al. [188] studied and reported
the electrochemical performances of MoSe2/graphene composites for SC applications, and the same
group recently grew MoSe2-based electrodes on Mo-foil and reported their capacitance behavior [189].
Furthermore, low-cost MoSe2/MWCNT electrodes have been prepared recently using dip and dry,
followed by a chemical bath deposition method [190]. The remarkable performance of the electrodes
implies that they would be a potential candidate for high-performance SCs.

4.4. Cobalt Selenides

In recent years, cobalt selenide-based materials have been a new research hot spot in the field of
electrochemical SCs, due to their cost-effectiveness and highly reversible nature. There are a variety of
compounds including CoSe2, CoSe, Co0.85Se, Co3Se4, and Co2Se3 [191], which have been synthesized
using various synthetic routes. To date, very few pleasing results for cobalt selenides and their
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composites in electrochemical energy storage systems have been published in this regard, which is
discussed in this section.

(a) Co0.85Se

Polycrystalline Co0.85Se nanotubes having a hollow nanostructure were successfully prepared
and investigated by Wang et al. [191]. They also compared the electrochemical and cycling properties
of Co0.85Se nanotubes with Co0.85Se nanoparticles [192], the obtained results indicating that the
specific capacitance, cycling stability, and rate capability of Co0.85Se nanotubes were superior to
those of Co0.85Se nanoparticles. Additionally, Co0.85Se hollow nanowires have been previously
efficaciously synthesized and used as efficient pseudocapacitive electrodes for SCs [193]. Interestingly,
Peng et al. [194] employed Co0.85Se nanosheets as the positive electrode, and nitrogen-doped porous
carbon network as the negative electrode, to fabricate asymmetric SCs, which yielded an energy
density of 21.1 W·h·kg−1 at a power density of 400 W·kg−1 with excellent capacitance retention of
93.8%. Later on, Zhao et al. [195,196] used activated carbon as the negative electrode instead of
nitrogen-doped porous carbon network, and reported an energy density of 17.8 W·h·kg−1 at a power
density of 3.57 kW·kg−1 for Co0.85Se/AC asymmetric SCs. Meanwhile, Gong et al. [197] replaced
Co0.85Se nanosheet positive electrodes with Co0.85Se nanosheet/Ni-foam, which provided a significant
increase in energy density with outstanding cycling stability (39.7 W·h·kg−1 at a power density of
789.6 W·kg−1).

(b) CoSe2

There has hardly been any investigation into using CoSe2 as an electrode material for SCs,
and up until now, very few studies have reported using it. However, systematic investigations on the
electrochemical performances of metal chalcogenides, such as CoSe2 and CoTe2, have successfully
analyzed and studied their applicability as high performance SCs [198,199]. The CoSe2 electrodes
delivered a maximum specific capacitance of 951 F·g−1 at 5 mV·s−1, which is three times higher
than that of CoTe2. Later on Zhang et al. [200] assembled solid state asymmetric SCs using N-doped
CoSe2/C as pseudocapacitive electrode whose electrochemical properties have not yet been fully
studied. Hence, much effort will be focused on developing these electrodes in the near future.

Other metal selenides such as Ni-Co-Se, WSe2, SnSe2, and La2Se3, have been studied for flexible
solid-state SC electrodes, but rarely reported [201–204]. Table 2 represents the electrochemical SC
performances of some important metal selenide electrodes.

Table 2. Electrochemical SC performances of metal selenides.

Electrodes Capacitance
(F·g−1)

Current Density
(A·g−1) Electrolytes % of Capacity Retention

(>1000 Cycles) Ref.

NiSe2 single crystal 1044 3 4 M KOH 87.4 [180]
CuSe2/Cu 1037.5 (0.25 mA·cm−2) 1 M NaOH 104.3 [184]

CuSe nanosheet 209 0.2 1 M Na2SO4 90.0 [185]
Cu2Se 688 (5 mV/s) 1 M Na2SO4 86.0 [186]

MoSe2 nanosheet 1114.3 1 6 M KOH 104.7 [189]
MoSe2/MWCNT 232 1.4 1 M KOH 93.0 [190]

Porous CoSe2 951 (5 mV/s) 1 M KOH 52.0 [198]
Co0.85Se nanosheet 1378 1 3 M KOH 95.5 [199]

CoSe2/C dodecahedra 726 2 2 M KOH 48.3 [199]
SnSe2 nanodisks 168 0.5 6 M KOH — [200]
SnSe nanosheets 228 0.5 6 M KOH — [200]

Ni-Co-Se 86 1 2 M KOH 100.0 [201]

4.5. Binary Metal Selenides

The binary metal selenides are currently highly fascinating, and only a scarce number of reports
on their use in SC applications are available, and their electrochemical performance has not yet
been fully studied. Nevertheless, some classical examples are presented here. Xia et al. [204]
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showed that (Ni, Co)0.85 Se was able to deliver a highest areal capacitance of 2.33 F·cm−2 at
4 mA·cm−2 current rate. This super-hydrophilic electrode had metal-like electronic conductivity
and offered a maximum conductivity of 1.67 × 106 S·cm−1. Similarly, Ni-Co-Se nanowires have
shown a high specific capacitance of 86 F·g−1 at a current density of 1 A·g−1 and excellent
cycling stability, with virtually no decrease in capacitance after 2000 continuous CD cycles [201].
More recently, Peng et al. [205,206] prepared two different selenide nanosheet-array electrodes
comprising NiSe@MoSe2 and Ni0.85Se@MoSe2, using a hydrothermal method, and studied their
use in asymmetric SC applications.

5. Summary and Outlook

Currently, the development of SCs as electrochemical energy storage devices is of major
importance, with the spotlight on their high power density. A typical SC is composed of electrode
material and electrolyte. In an assessment of electrochemical SC devices other than those with a long
lifecycle, both their energy and power densities are the two most essential properties. In view of this,
current major research focused on SCs is on increasing these characteristics and their life cycle to
decrease the cost of the electrode materials. The choice of suitable electrode materials with rational
nanostructured designs has resulted in improved electrochemical properties for high performance and
cost reduction of SCs. In this review, we conferred recent progress in the advancement of non-metallic
oxides, transition metal sulfides and selenides were especially highlighted for SC applications.

The major advantages of electrochemical supercapacitors are high power density (1–10 Kw/kg),
lifetime (estimated to be up to 30 years), cycle efficiency (98–100%), operating temperatures
(−40 to 70 ◦C), environmental friendliness, and safety. However, the challenges to be focused on
supercapacitor are

(i) Energy density: For practical application, high energy density electrochemical system is required.
In view of this, the energy density of electrochemical supercapacitors is less than less than
of batteries.

(ii) Cost efficiency: The commonly employed electrode materials such as high porous surface area
carbon materials and RuO2 are more expensive. Also, the cost of organic electrolytes is far
from negligible.

(iii) Self-discharge rate: Electrochemical supercapacitors have high in self discharge rate 10–40%/day.

Nanostructured transition metal chalcogenides have gained huge consideration due to their
distinctive chemical stability, electronic properties, and remarkable structure. Among these, transition
metal sulfides have been proven to exhibit superior electrochemical performance compared to their
bulk counterparts, because of their novel properties associated with decreased size, unique shape,
and defective nature.

Nanoscale structures can effectively improve electrochemical reaction efficiency and utilization
of active materials with improved energy and power densities. Extraordinary investigation ought to
be done to construct novel electrode materials for SCs, and new ideas and/or design strategies are
required in this field. While designing and constructing electrode materials, the researcher ought to
take into consideration that they should be abundant, cheap, and eco-friendly for clean technology
and potentially be of use in a broad selection of applications.
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Abbreviations

SCs Supercapacitors
EDLCs Electric double layer capacitors
CNTs Carbon nanotubes
MCs Metal chalcogenides
KOH Potassium hydroxide
3-D-GN Three dimensional graphene nanosheet
AC Activated carbon
rGO Reduced graphene oxide
MWCNT Multi-walled carbon nanotubes
PANI Poly aniline
SILAR Successive ionic layer adsorption and reaction
LiClO4 Lithium perchlorate
PC Propylene carbonate
TMCs Transition metal carbides
EC Ethylene carbonate
CD Charge-discharge
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