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Abstract

The detection of genomic regions involved in local adaptation is an important topic in current

population genetics. There are several detection strategies available depending on the kind

of genetic and demographic information at hand. A common drawback is the high risk of

false positives. In this study we introduce two complementary methods for the detection of

divergent selection from populations connected by migration. Both methods have been

developed with the aim of being robust to false positives. The first method combines haplo-

type information with inter-population differentiation (FST). Evidence of divergent selection is

concluded only when both the haplotype pattern and the FST value support it. The second

method is developed for independently segregating markers i.e. there is no haplotype infor-

mation. In this case, the power to detect selection is attained by developing a new outlier

test based on detecting a bimodal distribution. The test computes the FST outliers and then

assumes that those of interest would have a different mode. We demonstrate the utility of

the two methods through simulations and the analysis of real data. The simulation results

showed power ranging from 60–95% in several of the scenarios whilst the false positive rate

was controlled below the nominal level. The analysis of real samples consisted of phased

data from the HapMap project and unphased data from intertidal marine snail ecotypes. The

results illustrate that the proposed methods could be useful for detecting locally adapted

polymorphisms. The software HacDivSel implements the methods explained in this

manuscript.

Introduction

Current population genetics has an important focus on the detection of the signature of natu-

ral selection at the molecular level. The detection of the selection effect in a given DNA region

is important because it may connect that region with a key functionality, or past or ongoing

selective events, to have a deeper understanding of the evolutionary processes. Indeed, it may

also help to understand the evolutionary mechanisms allowing the species adaptation to local

conditions. The study of local adaptation processes implies that some genetic variant is favored
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by the environmental conditions. The positively selected locus increases in frequency and the

pattern of variation around that locus will change, a process known as selective sweep [1, 2].

There are many tests designed for detecting different kinds of effects produced by selective

sweeps. Such effects can involve skewed site frequency spectra, high linkage disequilibrium or

high rates of genetic divergence [3, 4]. The information required by those tests is variable: they

could need knowledge about candidate adaptive loci, their haplotypic phase, their recombina-

tion rates, or the ancestral/derived status at each segregating site. This kind of information is

often available for model organisms and so, in previous years, most of the effort was focused in

humans and other model species.

For non-model organisms, the most useful methods for studying local adaptation have

been those based on measuring genetic differentiation between populations. The idea behind

these methods is that the loci involved in local adaptation would be outliers, i.e. would have

unusually large values of FST. From its original formulation (LK test [5]), this technique has

been improved in several ways depending on the summary statistic’s -the FST or any other dif-

ferentiation index—expected neutral distribution. That is, in order to account for more realis-

tic situations, the different methods change the assumptions of the null demographic model

(reviewed in [6]).

However, one of the main drawbacks of the outlier-based methods is the difficulty of defin-

ing an accurate null model since there are several historical events and demographic scenarios

(other than local selection) that can produce similar FST patterns. Even in the presence of local

adaptation, we can expect different FST patterns. This is because the involved populations may

be more or less connected by migration, and this event will influence the structure of the

genetic variation both at intra and inter-population levels. Consequently, the outlier based

methods tested against the deviation over an expected demographic null model, always face

the risk of having an excess of false positives [7–10].

Another problem concerning outlier-based methods is that they have low power when the

overall FST is high as it can happen when the genetic basis of the adaptation is polygenic (since

each particular gene may not have a strong difference with the overall FST, hindering the detec-

tion of outliers), or when the populations under study are subspecies [6, 11]. Fortunately, over

recent years, the amount of information available on the genomes of several species has

increased [12] and consequently new and more sophisticated methods can now be applied to

detect local adaptation in non-model organisms.

As mentioned above, the linkage disequilibrium (LD) is the basis for several computational

methods used in the detection of selective sweeps (reviewed in [13]). Some LD-based methods

try to identify maximized LD regions [14, 15] while others explore the pattern of LD decay

from different candidate SNPs [16, 17]. However, only a few LD-based methods have consid-

ered structured populations as the evolutionary scenario of interest. Still, there are different

scenarios that can be evaluated under structured populations [18]. Therefore, although LD-

based tests can be powerful and robust for detecting selective sweeps (in isolated or simple

structured population scenarios) with low migration rate, they fail to detect it, under several

other realistic scenarios [3, 13, 18, 19].

In addition, the possibility of observing local adaptation with gene flow depends on the

demography, and on the genetic basis of the traits involved [20]. This decreases the perfor-

mance of the methods under moderate-to-high migration scenarios which may result into

high rate of false positives [18]. Thus, even if haplotype phase information is at hand, specific

methods should be developed to detect local adaptation under structured population scenarios

[19].

The aim of this paper is to present two complementary methods (for linked and unlinked

markers) specialized for detecting divergent selection in pairs of populations with gene flow.
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The main advantage of both methods proposed here over the existing ones is that they were

especially designed to be robust to false positives. Both methods are suitable for working with

non-model species, although the first (linked markers) requires an approximate knowledge of

the phase of the SNPs under study. Notably, this method still performs quite well under 10–

40% of phasing error depending on the marker density. If the SNPs under evaluation are not

linked, then the second method should be applied. Our working definition of non-model spe-

cies includes those for which we could have partial information about the haplotypic phase but

a) no estimates of recombination rates, b) no information on potentially adaptive loci and c)

knowledge the ancestral/derived status at each segregating site. This definition also implies

that we barely know the demography of the populations under study, and if so, we cannot reli-

ably use a simulated neutral distribution to assess significance.

The first method (nvdFST) combines haplotype-based information with a diversity-based

FST measure. It is a sliding-window approach that uses automatic decision-making () to apply

different window sizes. On the other hand, the second method (EOS) is not haplotype-based

but performs a two-step FST outlier test. The first step of the algorithm consists of a heuristic

search for different outlier clusters, while the second step is just a conditional LK test that takes

place only if more than one cluster is found. In this latter case, the test is applied through the

cluster with the higher FST values.

The design of the work is as follows: in the first part of the article the rationale of the meth-

ods is explained. After that, we give the results of the application of both methods to the simu-

lated scenarios. This permits to appreciate their performance in terms of power and number of

false positives. Finally, the nvdFST method is applied to genome-wide phased data from the

HapMap project [21]. This allows to check its performance compared with other methods pre-

viously applied to the same data. Additionally, the EOS test is applied to a recently published

data set of Littorina saxatilis species. More extensive details and a full mathematical description

of the methods is given in the S1 Appendix.

Models and methods

The nvdFST model

In this section we improve a previous haplotype-based method to detect divergent selection

[19, 22]. The new statistic is called nvdFST because it combines a normalized variance differ-

ence (nvd) with the FST index. The nvd part performs a sliding-window approach to identify

sites with specific selective patterns. When combined with the FST, it allows the significance of

the candidate sites to be assessed without the need of simulating neutral demography scenar-

ios. Before developing the nvd formula, we review some concepts related to haplotype allelic

classes.

Generalized HAC variance difference. A major-allele-reference haplotype (MARH) is a

haplotype that carries only major frequency alleles [22]. Therefore, we can define the muta-

tional distance between any haplotype and MARH as the number of sites (SNPs) carrying a

non-major (i.e. minor) allele. Each group of haplotypes having the same mutational distance

will constitute a haplotype allelic class (HAC). Therefore (with some abuse of notation) we

also call HAC to the value of the mutational distance corresponding to each haplotype allelic

class. That is, every haplotype having the same number of minor alleles belongs to the same

HAC class and its HAC value corresponds to the number of minor alleles it carries.

Given the definitions above, consider a sample of n haplotypes of length L SNPs. For each

evaluated SNP i (i 2 [1,L]) we can perform a partition of the haplotypes (and their HAC clas-

ses) into P1, the subset carrying the most frequent (major) allele at the SNP i and P2 the subset

with the remaining haplotypes carrying the minor allele at i. That is, let ‘0’ to be the major allele

HacDivSel: Detection of divergent selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0175944 April 19, 2017 3 / 25

https://doi.org/10.1371/journal.pone.0175944


for the SNP i and ‘1’ the minor. Then, P1 includes every haplotype carrying the allele ‘0’ for the

SNP i and P2 the remaining haplotypes carrying ‘1’ for that SNP. In P1 we have different HAC

values depending on the distance of each haplotype from MARH and similarly in P2. Within

each subset we can compute the variance of the HACs. Thus, in P1 we have the variance S2
1i

and correspondingly variance S2
2i in P2 where i refer to the SNP for which we have performed

the partition.

The rationale of the HAC-based methods relies on the sweeping effect of the selectively

favored alleles. Therefore, if the SNP i is under ongoing selection then the variance in the parti-

tion 1 (S2
1i) will tend to be zero because the allele at higher frequency (i.e. the allele of the SNP

i in the partition 1) is being favored and the sweeping effect will make the HAC values in this

partition to be lower (because of sweeping of other major frequency alleles) consequently pro-

voking lower variance values [22]. The variance in the second partition (S2
2i) should not be

affected by the sweeping effect because it does not carry the favored allele. So, the difference

S2
2i - S2

1i would be highly positive in the presence of selection and not so otherwise. For a win-

dow size of L SNPs, the variance difference between P2 and P1 can be computed to obtain a

summary statistic called Svd [22] that can be generalized to

gSvdi ¼
S2

2i � S2

1i

L
� fið1 � fiÞ

a
� b:

Where fi is the frequency of the derived allele of the SNP i, and the parameters b and a permit

to give different weights depending on if we need to detect higher frequencies (a = 0) or more

intermediate ones (a> 0) of the derived allele. If a = 0 and b = 1 the statistic corresponds to

the original Svd and if a = 1 and b = 4 it corresponds to the variant called SvdM [19]. Note that

when using a = 1, it is not necessary to distinguish between ancestral and derived alleles

because fi and 1- fi are interchangeable.

A drawback in the gSvd statistic is its dependence on the window size as it has already been

reported for the original Svd [19, 22]. Although gSvd is normalized by L, the effect of the win-

dow size on the computation of variances is quadratic (see S1 Appendix, section A-1) which

explains why the normalization is not effective in avoiding a systematic increase of the statistic

under larger window sizes. This bias, due to the change in the window size, is important

because the partitions P1 and P2 may experience different scaling effects, which would increase

the noise in the estimation. The change in the scale due to the window size will also be depen-

dent on the recombination and selection rates. Thus, it is desirable to develop a HAC-based

statistic that does not increase with the window size. Following, the between-partition variance

difference is reworked in order to develop a new normalized HAC-based statistic, specially

focused on detecting divergent selection in local adaptation scenarios with migration.

Normalized variance difference (nvd). We have seen that in a sample of n haplotypes, we

can compute the statistic gSvd which basically is the difference between the HAC variances of

partitions P1 and P2. The corresponding HAC means and variances at each partition are

related via the general mean and variance in that sample. Considering, for any candidate SNP,

m the mean HAC distance of the sample, andm1 andm2 the means of the partitions P1 and P2,

respectively. We have the following relationships for the meanm and the sample variance S2

(the subscripts 1 and 2 identify their corresponding partitions P1 and P2; see the S1 Appendix,

section A-2 for details)

m ¼
n1m1 þ n2m2

n
; S2 � �S ¼

n
n � 1

D ð1Þ
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With �S ¼ ðn1i � 1ÞS2
1iþðn2i � 1ÞS2

2i
n� 1

; n1 and n2 are the sample sizes at each partition and

D ¼
n1n2

n2 ðm1 � m2Þ
2
.

Using the relationships in Eq (1), it is possible to compute the variance difference as appears

in gSvd. However, we can substitute the parameters b and a by a = 1 and b = 4 as these are the

values that permit to ignore the allelic state while maximizing the frequency product. It is also

possible to consider the difference between means term (delta) in order to engage it in the

detection of selection (see details in the S1 Appendix). Thus, we finally obtain a new statistic

for the variance difference of the candidate SNP i

vdi ¼ vdi0 þ 4fið1 � fiÞðS
2

2i � S
2

1iÞ ð2Þ

where vdi0 ¼ nD

n2 � 1
� 4fið1 � fiÞ

The effect of selection upon vdi is two-fold. The first term of the sum in Eq (2) corresponds

to the effect upon the difference between means and the second term between variances.

Increasing S2i or decreasing S1i, as expected under selection, will increase the value of the statis-

tic. If S1i and S2i are equal, then the value of vdi is independent of the variances and only relies

on the term vdi0 corresponding to the partitions’ mean (m1 andm2) and the candidate SNP

frequencies.

It is worth mentioning that the two parts of vdi are not independent. If we have an extreme

value for the HAC mean in the selective partition, for examplem1 = 0, this implies that S1
2 = 0

since every haplotype has to have a HAC of 0 to get that mean value. Note however, that the

opposite is not true: a value of S1
2 = 0 does not imply necessarily thatm1 = 0.

At intermediate frequencies, an upper bound of Eq (2) is (see S1 Appendix, section A-2 for

further details)

dmax ¼
nL2

2ðn � 2Þ
ð3Þ

If we divide Eq (2) by dmax, we have a normalized variance difference

nvdi ¼
vdi0 þ 4fið1 � fiÞðS2

2
� S2

1
Þ

dmax
ð4Þ

In a two-populations setting, it is possible to combine the sequences from the two popula-

tions in a unique sample and so the quantity from Eq (4) can be computed for each SNP in

that sample. The SNP yielding the maximum nvdmay be considered as a candidate for diver-

gent selection. When pooling both populations, the SNP frequencies tend to be intermediate

in the divergent selective sites.

Therefore, the calculation of nvd consists of merging the shared SNPs from the two popula-

tion samples, and then computing the normalized variance difference using Eq (4). Because

selection acts at the intrapopulation level the reference haplotype (MARH) is defined just from

one of the populations. The nvd neutral distribution so calculated under different window

sizes can be viewed in the supplementary Fig A in S1 Appendix. Under low window size, nvd
has higher variance and is slightly biased toward positive values. The effect of increasing the

window size is a slight reduction of the nvdmean value and variance.

Provided that the sample size is the same in both populations, the choice of the reference

does not have an appreciable effect either in the power or in the false positive rate of the test

(Fig B and Table A in S1 Appendix). However, if the sample sizes are different, then the refer-

ence should come from the population with the highest sample size; if not, the method can suf-

fer an important loss of power.
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We have still pending the problem of choosing an optimal window size. A possible solution

is to automate its choice by selecting the size which gives the maximum value for the statistic

[19], or alternatively, by trying different window sizes and giving the corresponding results for

each window at the output. We have opted for the latter and so, under a given window size,

the accompanying program evaluates all the SNPs and selects the ones that have the maximum

nvd (one or more depending on the proportion of candidates we are interested in evaluating)

and then, repeats the process for a different window size.

At this point we already have a HAC-based statistic, nvd, that does not increase with the

window size and should produce higher positive values for pairs of populations undergoing

divergent selection (see Fig B in S1 Appendix). However, even if there is no selection, the max-

imum nvd value could also be positive (see Fig A in S1 Appendix).

Unfortunately, the neutral distribution still depends on the combined effect of window size,

marker density, and recombination. Besides, we ignore the theoretical distribution of the sta-

tistic and cannot decide if a given maximum is supporting the hypothesis of selection or not.

In addition, we might not have enough information on the species to simulate its evolution

under a given neutral demography. Therefore, we still need to identify whether the value

obtained for a given sample is due to the effect of selection, particularly because we want to put

a great emphasis on avoiding false positives.

Consequently, we incorporate two more measures before giving a diagnosis about the pres-

ence of divergent selection. The first is a sign test based on the lower bound of nvd, the second

is the comparison between the FST of the SNP having the maximum nvd and the overall FST.

Sign test. In our definition of nvd the term vdi0 cannot be negative. For that reason, under

some scenarios and window sizes, nvd is biased toward positive values. In such cases, a nega-

tive (or null) variance difference could be linked to a high positive vdi0 term provoking a posi-

tive nvd in a clearly neutral case. Therefore, we use a lower bound of nvd to derive the quantity

called selection sign, ssig (see S1 Appendix, section A-3) that would have negative values when

the HAC values in the first partition are high which is not expected under selection

ssig ¼
4ðn � 1ÞS2 � 2

P
hhac2

1h

nL2
ð5Þ

where hac1h are the HAC values measured at each haplotype h in the partition 1 and the sum is

over the n1 sequences in that partition. A negative sign in Eq (5) suggests that the value of nvd
is not the result of divergent selection (see Fig B in S1 Appendix). Indeed, we require Eq (5) to

be positive to count a given candidate as significant.

Finally, even if we have a candidate position identified by its high nvd value and by the posi-

tive sign in ssig, we still lack a method for obtaining p-values associated to the sites chosen by

the nvd algorithm. We can solve this problem by combining the information on the selective

candidate SNP, as given by nvd, with the FST interpopulation differentiation index at that site.

The joint use of these methods produces the combined measure nvdFST.
Combined method: nvdFST. First, it is important to note that when computing nvd, we

considered only the SNPs shared between both populations in order to avoid low informative

loci with high sampling variance (reviewed in [6]). Thus, we have an nvd value that may indi-

cate the presence of divergent selection in a pair of populations connected by migration. The

rationale of the nvdFST approach is that if divergent selection acts on a specific site then the FST

at that site would be higher when compared to the overall FST. Therefore, we proceed as fol-

lows, let i be the candidate site chosen because it has the maximum nvd value, then we calculate

the index Ii = FSTi−FST that compares the FST measured at that site with the overall. The FST

values were computed following the algorithm in Ferretti et al [23]. To obtain the p-value, we
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do not perform an LK test [5] because first, the candidate was not chosen for being an outlier

and second, we are considering linked rather than independent sites.

To get the p-value for a given index Ii, the data is resampled several times (500 by

default, and 100 when we evaluate more than 104 SNPs) to generate an empirical distribu-

tion. The expected frequency of each SNP is obtained as its mean frequency between popu-

lations, as this is the expectation under the homogenizing effect of migration [24]. If the

sample sizes are different, the mean is weighted by the sample size. Then, for each resam-

pling iteration, the probability of a given allele at each population is obtained from a bino-

mial B(p,n), where p is the mean allelic frequency at that site, and n the local population

sample size. The p-values correspond to the proportion of times that the resampled indexes

(I’i = FSTi_resample iteration−FST_resample iteration) were larger than the original index Ii.
We have computed the p-values for all the SNPs. If we inspect all of them and ignore the

sign test, the above procedure is just testing the hypothesis of panmixia for each SNP. How-

ever, we are not doing so, i.e. we are not choosing the most significant p-values and so we are

not targeting SNPs that reject panmixia. On the contrary, we are selecting some candidate

SNPs based on their high nvd value and positive sign test. Only then, we check if such SNPs

reject panmixia; if so, this adds evidence for divergent selection since it is well-known that

divergent selection rejects that hypothesis for the selective genes [25, 26]. Regarding the num-

ber of candidates ranked by their high nvd value, we can decide to consider just the best one, a

few, or a given percentage (say 0.1%) of candidates.

For candidates with similar frequencies at both populations, we expect low values for the

index Ii and correspondingly high p-values. When their pooled frequency is intermediate; two

situations are possible: first, each population has a similar intermediate frequency which again

implies high p-values; or second, the frequencies can be extreme and opposite at each popula-

tion. In the latter, Ii is high and its p-value low. Note that, for each site, the resampling proce-

dure has a variance p(1-p)nwhich is large at intermediate pooled frequency values. Thus, this

method has the desired property to be more conservative at intermediate pooled frequencies,

which minimizes the possibility of false positives.

Significance, effective number of independent SNPs and q-value estimation. The com-

putation of nvdFST required as many tests as the candidates considered under the different

window sizes (Nw) assayed. Thus, it is appropriate to apply a multiple testing correction for the

number of candidates (NC).

The Šidák correction [27, 28] can be applied to get the adjusted significance level sL =

1 –(1 - γ)1/C with nominal γ (= 0.05 by default). The value of C is C =max{(θπmax−θπ)/

(θπmax−θπmin)(Lmin, (NC + Nw)} where θπ is the average number of differences between pairs of

sequences computed for a given window size. If sample size n is even then θπmax = n/(2�(n-1))

and θπmin = 2�maf�(n-maf) / [n�(n-1)]maf. The rationale for that C value is that in the case of

low diversity samples it could happen that there are only one window size above the minimum

(Lmin). Low window sizes are precisely those where the nvd statistic is more biased toward pos-

itive values (Fig A in S1 Appendix). To avoid false positives in the case of only one candidate

and low diversity, we correct by the minimum window size, as this involves the minimum

number of SNPs tested but weighted them by (θπmax−θπ)/(θπmax−θπmin) which tends to 1 when

diversity is very low or, 0 if high.

Thus, the algorithm nvdFST would finally suggest a candidate as significant only when the

sign, as computed in Eq (5), was positive, and the p-value (as obtained in the previous section)

is lower than sL.

In addition, it could be of interest to have information about the number of independent

SNPs included between the left and right-most candidate positions. To roughly estimate the

number of independent SNPs, we calculated the linkage disequilibrium measure D’ [29, 30] at
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each pair of consecutive sites, and then store the quantity r' = 1 –|D’| for each pair. The effec-

tive number of independent SNPs (Meffs) between site wini and wend is then obtained as one

plus the summation of the r' values in the interval [wini, wend).

The q-values [31] can be seen as multiple testing analogs of p-values. They have been pro-

posed as a useful approach for evaluating method performance in terms of false discoveries

[11]. Accordingly, we estimate the q-values (see reference [32] and S1 Appendix, section A-4

for details on the calculation) and provide those corresponding to each inspected p-value. In

order to obtain the q-values we must compute the p-values for all the SNPs (shared SNPs at fre-

quency higher thanmaf). Thus, all the p–values and the corresponding q–values are calculated.

Only those corresponding to the desired number of candidates, ranked by their highest nvd
values, are given. For example, consider that the highest p-value is 0.99 and the lowest is 10−6.

If we select just one candidate is because it has the highest nvd value and we concern only a

posteriori about its p-value. If the associated p-value happens to be 0.2, we give both the p-
value and its corresponding q-value, producing an output of this as a non-significant result.

The Extreme Outlier Set test (EOS)

The nvdFSTmethod assumes the existence of linked genetic markers. If the data consists mostly

of independent markers this would provoke a failure to detect the selection pattern because

the HAC-based information does not exist. To deal with this situation, a second method was

implemented consisting of a two-step heuristic procedure that performs a conservative test for

identifying extreme outliers.

As already mentioned, the variance of the FST distribution is quite unpredictable under a

variety of scenarios. This provokes high rates of false positives associated with the FST outlier

tests. Our heuristic strategy takes advantage that independently of the demographic scenario,

the involved regions under divergent selection may produce extreme outliers that would be

clustered apart from the neutral ones. The subsequent LK test is performed only when this

kind of outliers is detected. As FST estimator we use GST [33].

The rationale of the algorithm is as follows: the first step consists of computing the extreme

positive outliers in the sense of Tukey, i.e. those sites having a FST value higher than 3 times the

interquartile range [34]. The second step identifies different classes inside the extreme outlier

set. This is done by a k-means algorithm [35, 36]. The algorithm permits to classify all the ele-

ments of the outlier set in one of the k classes. Once all the elements are classified, the class

with lower values is discarded. Only the elements, if any, in the upper classes having values

higher than a cutoff point are maintained in the set. For the sake of computational efficiency,

we use k = 2 and consider two modes {0, FSTu} for computing the cutoff. The modes corre-

sponding to lower (0) and upper (FSTu) bounds for the FST estimator (see S1 Appendix, section

A-5). The cutoff point is defined as the overall FST + σFSTu / 3, i.e. the mean plus sigma times

the square root of the upper-bound for the FST variance under an asymmetric unimodal distri-

bution [37]. The value of sigma was set by default to σ = 1.25. Finally, for each of the candidates

remaining in the EOS after the cutoff, the LK test [5] is performed to compute its p-value. The

Šidák correction [27, 28] for the number of remaining outliers in the set is applied to get the

significance level. Each p-value is accompanied by its corresponding q-value (computed as

explained in the previous section).

Software description

Both nvdFST and the EOS test have been implemented in the program HacDivSel. Complete

details of the software and extensive explanations for its use can be found in the accompanying

manual. The input program files for the haplotype-based test can be in the SNPs × haplotypes
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HapMap3, MS [38] or Fasta formats. If the data does not include haplotype information, then

the Plink [39] flat file (map/ped), Genepop [40] or BayeScan [41] formats can be used. When

using the Fasta format, the sample size should be the same for both populations. A typical com-

mand line for calling the program in order to analyze a MS format file named sel.txt containing

100 sequences, 50 from each population, would be

HacDivSel � input sel:txt � sample 50 � sample2 50 � candidates 10 �

SL 0:05 � output anyname � format ms � maf 4

Where the label, “-candidates 10”, indicates that the ten highest nvd values should be included

in the output. The program analyze the file and produce as output the highest 10 values and

their significance at the 0.05 level for different window sizes. It also performs the EOS test and

gives the resulting outliers, if any, and their significance. Only the SNPs shared by the two pop-

ulations are considered. This implies that there are at least 4 copies of each SNP in the metapo-

pulation (maf = 4). The set of command-line options utilized for the different analyses, both

for simulated and real data in the next sections is available in the S1 Sim file.

Simulations

There are several examples of adaptation to divergent environments connected by migration,

e.g. the intertidal marine snail L. saxattilis [42], some wild populations of Salmo salar [43],

Coregunus species [44], etc. To perform simulations as realistic as possible, we use some rele-

vant demographic information from L. saxatilis, such as migration rates and population size as

estimated from field data [42]. Concerning selection intensities, we considered moderate selec-

tion pressures and few loci with large effects [45]. Therefore, a model resembling the most

favorable conditions for the formation of ecotypes under local adaptation with migration was

implemented.

Two populations of 1000 facultative hermaphrodites were simulated. The selective scenario

(α = 4Ns) is divergent so that the allele favored in one population is the deleterious in the

other. Each individual consisted of a diploid chromosome of length 1Mb. The contribution of

each selective locus to the fitness was 1-hs with h = 0.5 in the heterozygote or h = 1 otherwise.

The selection coefficient for the ancestral allele was always s = 0 while s = ± 0.15 for the derived.

That is, the ancestral was the favored allele in one population (positive s in the derived) while

the derived was the favored in the other population (negative s, see Table B in S1 Appendix).

In the polygenic case the fitness was obtained by multiplying the contribution at each locus.

This simulation model involves low and high mutation rate (θ = 4Nμ 2 {12, 60}) and different

recombination rates (ρ = 4Nr 2 {0, 4, 12, 60, unlinked}) and extends previous work [19] by

adding new parameter values and demographic scenarios. At the end of each run, 50 haplo-

types were sampled from each population. The whole setting is fully explained in the S1

Appendix (section A-6). The simulations were performed using the last version of the program

GenomePop2 [46].

Results

We present here the results for both simulated and real data. The power of a test (true positive

rate, TPR) is measured as the percentage of runs in which selection was detected from simu-

lated selective scenarios, and the false positive rate (FPR) is measured as the percentage of runs

in which selection (at any position) was detected from simulated neutral scenarios. The q-
value [31] is estimated from the results (see S1 Appendix, section A-4).

The simulated data is also utilized for comparing nvdFST with the related statistic SvdM

(that needs a simulation step to assess significance) while the EOS test is compared with
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PLOS ONE | https://doi.org/10.1371/journal.pone.0175944 April 19, 2017 9 / 25

https://doi.org/10.1371/journal.pone.0175944


BayeScan 2.1 [41]. We chose BayeScan because it is one of the main state-of-the-art outlier-

based programs. The parameters for BayeScan were the default ones as this is a conservative

setting and we were interested in comparing the false positive rates. Only SNPs shared between

populations and with a minimum allele frequency (maf) of 2 per population (4%) were

considered.

Precision

The precision or positive predictive value (PPV) is a useful measure for answering the question

of how well a positive result in the test predicts the real existence of selection. It is calculated as

the proportion of true positives (TPR) out of all positive results (TPR + FPR).

Recall that one of the main focus of the proposed methodologies is to have low false positive

rate (FPR) and, from this point of view, the PPV measure is very informative since the higher

the PPV, the lower the possibility that a positive result be a false one.

However, if a test has very low false positives, it could have high PPV but low power. In this

case, the high PPV is hiding the low performance of the test. Thus, we are interested in both,

the PPV as shown in the Fig 1, but also in the specific values in terms of power (TPR) and false

positives (FPR), as given in the text and in the tables following.

Concerning the PPV measure, the rate of true positives with respect to the total positives is

above 90% for the haplotype based methods nvdFST and SvdM [19], as shown in Fig 1 (left

panel). The simulated scenarios were different combinations of mutation and recombination

rates using α = 600 and Nm = 10 (S1 Appendix, section A-6).

The individual TPR and FPR values for nvdFST are given in Table 1. For SvdM, the TPR had

a minimum of 43% and a maximum of 94%. The FPR is fixed to 5% since this was the critical

threshold used by the authors in the neutral simulations for assessing significance. The values

used for computing the SvdM points in the Figure correspond to those in Tables 2 and 3 in

[19]. The general performance of SvdM was slightly worse than for nvdFST.
The non haplotype-based methods, EOS and BayeScan (BS), have no power when the

markers are linked, so they are compared only under independent and weak-linkage (ρ = 60;

1.5 cM/Mb) scenarios (right panel in Fig 1). As it can be seen in Fig 1, the EOS method has the

best performance in terms of the proportion of true positive results from the total positives.

For EOS, the TPR was about 60% with a very low FPR that provokes that almost 100% of

positives are true ones. The TPR for BS with Bayes factor of 3 (BSBF3) was 47% under weak

Fig 1. Positive predictive values for nvdFST, SvdM, EOS and BayeScan (Bayes factor 3: BSBF3 and Bayes factor 100: BSBF100)

methods. There are 6 points (2 mutation x 3 recombination) in the curves corresponding to the haplotype-based method (left panel) and 2

points (high recombination and independent markers) in the outlier-based method (EOS and BayeScan, right panel).

https://doi.org/10.1371/journal.pone.0175944.g001
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linkage and 93% with independent markers. However, both settings had high rate of false posi-

tives with FPR of 26 and 57% respectively. The TPR of BS with Bayes factor of 100 was only

13% (FPR 3%) under weak linkage but was 82% (FPR 8%) under independent markers.

The above results are observations from 1,000 runs. Within each run, we have also mea-

sured the number of sites falsely detected per genome, as well as the FDR (the proportion of

falsely detected sites from the total detected). As these quantities were low and do not have any

significant impact on power (TPR) and FPR (as defined above), we will postpone the mention

of the within-run measures until the discussion section.

In the following sections, we detail the results for nvdFST and EOS under different simulated

scenarios.

Combined method (nvdFST)

Under a single locus architecture with selection α = 4Ns = 600 and migration Nm = 10, the

power of nvdFST vary between 79–94% for both medium (60 SNPs/Mb) and high density (250

SNPs/Mb) maps (Table 1). These results can be compared to published analyses [19] with the

methods Svd and SvdM for which slightly worse performance (42–94%) were obtained for the

same mutation and recombination (Tables 2 and 3 in [19]). However, as mentioned elsewhere,

the methods Svd and SvdM oblige the user to perform simulations of the neutral demography

to obtain the p-values for the tests, and consequently, the results in the Rivas and coworkers

study [19], were obtained having the exact neutral demography available. As it can be appreci-

ated from rows 1 to 6 in Table 1 —that matches the scenarios in [19]—the nvdFST performs

well without the need of performing additional neutral simulations. Also, the false positive rate

and the q-value (mean q-value through significant runs) are low in all the scenarios. The

shown results are for 10,000 generations; the cases with 5,000 generations were similar.

Under the polygenic architecture (n = 5 in Table 1) at least one candidate is found 99% of

the time, and more than one, 80% of the time. However, the number of correctly identified

sites is quite variable ranging between 1 and 3.

The last row in Table 1 corresponds to the case when all SNPs segregate independently. In

this case, the method fails to detect selection. This is not surprising because the information

from the haplotype allelic classes is absent under linkage equilibrium; the adequate patterns

are not found, which provokes both a negative in the sign test and a candidate with low FST

index measure.

Table 1. Performance of the combined method (nvdFST) with n = 1 selective site located at the center of the chromosome or n = 5 (see S1 Appen-

dix, section A-6). Selection was α = 4Ns = 600 and migration Nm = 10. Mean localization is given in distance (kb) from the real selective position.

∑ θ ρ n %Power %FPR (γ = 5%) q-value Localization (kb)

65 12 0 1 87 2.1 0.0058 ±458

63 12 4 1 94 2.7 0.0008 ±200

60 12 12 1 90 1.0 0.0003 ±33

251 60 0 1 79 1.8 0.0048 ±60

232 60 4 1 84 6.2 0.0011 ±17

249 60 60 1 86 2.4 0.0002 <±1

282 60 60 5 99 2.4 0.0002 <±1

318 60 1 1 0 0 - -

∑: Mean number of shared SNPs per Mb. θ: Mutation rate. ρ: Recombination rate. FPR: false positive rate. q-value: mean estimated q-value for the

significant tests.1: Independently segregating sites.

https://doi.org/10.1371/journal.pone.0175944.t001
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Phasing accuracy. We have tested the impact of phasing error by introducing different

percentage of random error in the allele imputation. At each sequence, 10–50% of imputation

errors were introduced in random positions. This process was performed for the selective

cases α = 600 with θ = 60 and ρ = {0, 4, 60} corresponding to the same cases (with 100% accu-

racy) from rows 4–6 in Table 1. The obtained data were analyzed with nvdFST under different

window sizes (automatic mode). The best performing window size was L � {55,75}.

From Fig 2 it seems that nvdFST is robust up to 10% of imputation error (90% accuracy).

The explanation is that a given error rate will affect more at specific window sizes (higher win-

dow sizes), because the automatic window size selection method tries different lengths so that

the shortest window maintain the power. Coherently with this explanation the more affected

cases correspond to a higher recombination rate and window size.

Still, when the recombination rate is not high, nvdFST seems to be robust under imputation

error as high as 20 to 30%. Finally, a phasing error of 50% provokes the method failure, inde-

pendently of the linkage relationship. Thus, under imputation error of 10–30%, the more

dense the map of markers is, the more robust the method. Hence, under high-medium density

maps, as those we have assayed, the performance is also reliable when using different subsets

of SNPs provided that the linkage relationships are not completely broken (see Fig C in S1

Appendix).

Short-term strong selection and long-term weak selection scenarios. The performance

of nvdFST under the strong selection scenario (α = 6000) in the short-term (500 generations)

varies between 44%, for fully linked, to 67%, for weak linked markers (Table 2). Not surpris-

ingly, the number of segregating sites is considerably reduced. In fact the minimum window

size allowed by the program had to be shortened from 51 to 25 to perform the analyses. Nota-

bly the false positive rate (FPR) was 0.

Concerning weak selection in long-term scenarios (Table 2, α = 140), the power varies

between 36–17% with false positive rates between 1 and 2%.

Fig 2. Effect of % phasing accuracy on the power of the nvdFST test.

https://doi.org/10.1371/journal.pone.0175944.g002
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Extreme Outlier Set test (EOS)

We applied the EOS test under the single locus architecture with selection α = 600 and migra-

tion Nm = 10. As desired, the test is very conservative with false positive rate below the nomi-

nal 0.05 in every case (Table 3). Not surprisingly for an outlier-based method, the test has no

power if markers are strongly linked (ρ from 0 to 12) or under a polygenic setting (row with

n = 5 in Table 3). However, in the cases of independent SNPs, and also with recombination of

1.5 cM/Mb in maps with 250–300 SNPs/Mb, the power rises up to 60%. Therefore, the EOS

test is complementary to nvdFST in the sense that EOS has the maximum power when nvdFST
has the minimum one. This behavior is expected because nvdFST requires some linkage among

markers, while EOS requires the contrary.

Concerning false positives, note—in the last three rows of Table 3— the low false positive

rates (FPR) that indicate the low percentage of outliers detected as selective in the correspond-

ing neutral scenario. Indeed, in the scarce runs where false positives occur their number was

very low (1 false outlier in 1.2% of the runs for independent markers and 1 to 4 false outliers in

0.4% of the runs for linked markers). Thus, the test worked correctly by avoiding false selective

sites under the neutral setting.

However, the q-value estimates varied a lot depending on the linkage between markers. It

can be appreciated that the q-value is very low (3×10−6) for independently segregating sites,

but rise up to 0.5 for the same scenario when markers are linked. The reason behind this lies in

the way the q-values are computed: the algorithm assumes that a number of independent S

Table 2. Performance of the combined method (nvdFST) with a single selective site in the short-term strong (α = 6000) and the long-term weak (α =

140) selection scenarios. Nm was 10. Mean localization is given in distance (kb) from the real selective position.

∑ θ ρ α t %Power %FPR (γ = 5%) q-value Localization (kb)

112 60 0 6000 500 44 0 0 ±66

32 60 4 6000 500 63 0 0.0014 ±5

62 60 60 6000 500 67 0 0.0008 ±93

165 60 0 140 5,000 36 1 0.007 ±2

156 60 4 140 5,000 30 1.5 0.003 ±13

135 60 60 140 5,000 17 2 0.000 ±1

∑: mean number of shared SNPs per Mb. θ: Mutation rate. ρ: recombination rate. t: number of generations. FPR: false positive rate. q-value: mean

estimated q-value, the mean is computed only through the significant tests.

https://doi.org/10.1371/journal.pone.0175944.t002

Table 3. Performance of the extreme outlier test (EOS) with n = 1 selective site located at the center of the chromosome or n = 5. Selection was α =

600 and Nm = 10. Mean localization is given in distance (kb) from the real selective position.

∑ θ ρ n %Power EOS %FPR (γ = 5%) q’-value Localization (kb)

65 12 0 1 0 0 - -

63 12 4 1 0.2 0 0.46 ±3

60 12 12 1 1.1 0 0.45 ±77

251 60 0 1 0.7 0 0.10 0

232 60 4 1 1.3 0 0.20 ±150

249 60 60 1 58 0.4 0.5 <±1

282 60 60 5 1.6 0.4 0.49 ±5

318 60 1 1 61 1.2 3×10−6 ±7

∑: mean number of shared SNPs per Mb. θ: mutation rate. ρ: recombination rate. FPR: false positive rate. q’-value: mean corrected (see S1 appendix,

section A-4) estimated q-value in the significant tests.1: independently segregating sites.

https://doi.org/10.1371/journal.pone.0175944.t003
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tests were performed and corrects for S tests under this assumption (see S1 Appendix, section

A-4). However, in the case of linked markers, the number of independent tests is smaller and

this generates inflated q-values.

Position effect

The ability to locate the physical position of the selective site increases with the marker density

and the recombination rate (Table 1). The given localizations are away (in kilobases) from the

correct position and averaged through the runs. Standard errors are omitted since they were

low (in the order of hundreds of bases or below 5 kb in the worst scenario of fully linked mark-

ers). The nvdFSTmethod performs well when a) the target site is located at the center of the

studied region, b) the selection is not too strong (α� 600) and c) the overall recombination

rate is at least 0.3 cM/Mb (ρ� 12). In this case, the selective location is estimated, at worst,

within 33 kb of distance from the true location (Table 1). In the case with strong selection, the

localization is still wrongly assigned under high recombination (Table 2, α = 6000). However,

this could be due to the low number of segregating sites (only 62 in Table 2).

In addition, it should be noted that the proportion of detected sites that lies at, or close to,

the true selective position depends on the linkage relationships among the markers, which is

obviously influenced by the recombination rate. Thus, if we consider the distance in centimor-

gans (cM), our results are not so different between the distinct recombination rates. This

means that all detected sites lay within 1 map unit from the true selective position. For exam-

ple, if we require that any detected SNP should be within 0.15 map units from the true posi-

tion, then under a recombination rate of 0.3 cM/Mb we accept any detected site that is no

more than 500 Kb away from the correct position. The same requirement in the cases under

recombination rate of 1.5 cM/Mb implies that we only accept sites that are closer than 100 Kb.

Importantly, the localization is also dependent on where the selective site is placed within

the chromosome. The farther from the center, the worse the ability to correctly localize the

selective positions (Table 4). In this case, with recombination of 1.5 cM/Mb, the inferred loca-

tion changes from an almost perfect localization (<1 kb from Table 1) to distances of 10–122

kb, as the target is shifted away from the center. This issue has already been shown for other

HAC-based methods [19].

Table 4. Performance of nvdFST and EOS with a single selective site located at different positions. Selection was α = 600 and Nm = 10. Mean localiza-

tion is given in distance (kb) from the real selective position. FPRs are the same as in Table 1. q-value refers to the mean q-value for the significant nvdFST

tests.

∑ θ ρ %Power nvdFST, EOS Position (kb) nvdFST q-value Localization (kb) nvdFST, EOS

259 60 0 81, 1 0 0.0044 +483, +457

255 60 0 81, 1.5 10 0.0049 +433, +496

256 60 0 82, 0.9 100 0.0041 +350, +413

255 60 0 78, 0.6 250 0.0039 ±194, ±185

230 60 4 75, 2.5 0 0.0014 +324, +127

226 60 4 77, 3.5 10 0.0016 +326, +142

233 60 4 80, 1.8 100 0.0017 +227, +140

229 60 4 83, 1.6 250 0.0009 ±123, ±20

262 60 60 63, 93 0 0.0014 +122, +40

261 60 60 68, 91 10 0.0014 +113, +34

257 60 60 81, 84 100 0.0006 ±44, ±6

252 60 60 87, 67 250 0.0004 ±10, ±0.06

∑: Mean number of shared SNPs per Mb. θ: Mutation rate. ρ: Recombination rate. Position: real position of the selective site.

https://doi.org/10.1371/journal.pone.0175944.t004
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At high recombination rates (1.5 cM/Mb), this problem is partially solved by using the EOS

test (Table 4). In this case, the test has high power (67–93%) and localizes well the selective

position. In fact, the position of the selective site is almost perfectly estimated (few bases or kb)

when the true position is not at the extremes. Even if the target sites are at the extremes, the

localization is within 40 kb (see cases with ρ = 60 in Table 4).

In the case of independent markers with the selective site located at the center (Table 3) the

localization by EOS was good.

Other demographic scenarios

Bottleneck-expansion scenarios. Bottleneck-expansion scenarios are known to leave sig-

natures that mimic the effect of positive selection. We tested the robustness of the tests by look-

ing for false positives when applying the methods to a bottleneck and expansion scenario

under a neutral setting. The bottleneck was simulated by a reduction of one of the populations

to 1% of the original size (N from 1000 to 10). Afterwards, the population expansion was

implemented by increasing the population size following a logistic growth model (see S1

Appendix, section A-6). The methods performed well: the false positive rate is maintained

below the nominal level with 4.6% and 1% for nvdFST and EOS tests, respectively.

High migration scenario. Scenarios with high migration rate are intrinsically difficult for

detection of selection. Under the short-term (500 generations) scenario with Nm = 50 (5%),

nvdFST is still able to detect the effect of selection in spite of the homogenizing effect of migra-

tion. The detection power ranges between 31–57% with a false positive rate of 0–0.1%

(Table 5).

Concerning the EOS test, the power was below 10% with no false positives under this set-

ting (see Discussion).

HapMap data

In order to check how the nvdFSTmethod works under real data, we have analyzed phased

haplotypes from human chromosome 2. This chromosome has been widely analyzed by sev-

eral methods, so we can also compare the performance of nvdFST in this way. Concretely, we

analyzed the chromosome 2 from northern and western European (CEU), East Asian (ASN:

CHB + JPT), and Yoruba (YRI) human populations from Phase III of the International Hap-

Map Project [21]. The data consisted in 116,430 SNPs in the unrelated samples downloaded

from the project page (http://hapmap.ncbi.nlm.nih.gov/, last accessed May 29, 2016). The orig-

inal data files, and the command line options for the analysis with HacDivSel, jointly with the

obtained output files, are available in the S1 HapMap file.

The HacDiveSel program automatically filters the data, using only SNPs shared between

each pair of populations. Therefore we analyzed 86,483 SNPs under the ASN-CEU compari-

son; 79,272 under the ASC-YRI, and 74,582 for the CEU-YRI. We set the program to select the

Table 5. Performance of nvdFST in the short term (500 generations) with a single selective site. Selection was α = 600 and Nm = 50. Mean localization

is given in distance (kb) from the real selective position.

∑ θ ρ %Power %FPR (γ = 5%) q-value Localization (kb)

116 60 0 47 0 0.0098 ±152

180 60 4 57 0 0.0042 ±123

178 60 60 31 0.1 0.0096 ±4

∑: Mean number of shared SNPs per Mb. θ: Mutation rate. ρ: Recombination rate. FPR: false positive rate. q-value: mean estimated q-value for the

significant tests.

https://doi.org/10.1371/journal.pone.0175944.t005
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0.1% highest nvd values within each assayed window size. For these candidates, we only con-

sidered those having a positive value under the sign test Eq (5), jointly with a significant p-
value under the FST test.

In Table 6 (see also S1 HapMap file), we provide the genomic regions in which we found

significant SNPs, and their corresponding genes within these regions. The estimated q-values

were below 0.01 in every case. We found some of the highest nvd values, involving more than

40 SNPs, within the region 135–136 Mb in CEU-YRI comparison. This includes SNPs in a

quite precise localization (135.78–135.83) of the lactase (LCT) gene jointly with some well-

known linked candidates for recent selective sweeps as RAB3GAP1, ZRANB3, MCM6 and

R3HDM1 genes [16, 17, 47]. The SNPs in this region showed high FST values (Table 6).

This result was expected as it is known that Yoruba does not show signature of selection at

LCT while the signature is strong in CEU [16]. Recall however, that nvdFST has no required

any a priori information on candidate sites but just computed the nvd statistic for every SNP,

performed the sign and FST tests and finally return those from the highest 0.1% nvd values that

passed the sign test and had a significant FST value.

Table 6. Top significant divergent selection regions of the human chromosome 2 based on the nvdFST test for the 0.1% highest nvd values.

Populations # significant

SNPs

Positions

(Mb)

FST Genes

ASN-CEU 67

15.49–15.54 0.12–

0.17

NBAS

27.95–28.1 0.21 RBKS, MRPL33, BRE

63.6–63.98 0.15–

0.21

WDPCP, UGP2, ACA59

83.23–83.24 0.16 Intergenic

ASN-YRI 46

27.98–28.09 0.25 MRPL33, BRE

56.89 0.16 intergenic

135.69–

135.72

0.23–

0.35

ZRANB3

203.4–203.9 0.18–

0.29

ICA1L, WDR12, CARF, CYP20A1

117.28–

117.30

0.22–

0.36

intergenic

210.26 0.19 MAP2

218.99–219.2 0.29–

0.53

CTDSP, VIL1, AK302678, NHEJ1-XLF, SLC23A3, piR-39082, ABCB6, AK091345, ATG9A

CEU-YRI 116

15.52–15.53 0.29 NBAS

27.9 0.25 RBKS-MRPL33

122.02–

122.04

0.22–

0.23

CLASP1

135.4–136.9 0.29–

0.63

ACMSD, CCNT2-AS1, MAP3K19, RAB3GAP1, ZRANB3, LCT, MCM6, R3HDM1

178.08 0.41 AGP

218.8–219.4 0.28–

0.43

ARPC2, LINC00608, VIL1, USP37, NHEJ1-XLF, RQCD1, SLC23A3, IL34, ZNF142, BCS1L,

GLB1L, STK36, TTLL4, PTPRN, CYP27A1

The positions correspond to the minimum and maximum locations for each given region. The FST range corresponds to the minimum and maximum FST for

each region.

https://doi.org/10.1371/journal.pone.0175944.t006
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Another strong signal also occurred for the 218.9–219.4 region which includes genes previ-

ously reported under divergent selection as TTLL4 [17], as well as genes related to growth and

immune maturation as NHEJ1 [48]. This region also presents some significant signal in the

ASN-YRI comparison. Also within this region, and still under the CEU-YRI comparison, we

detected the IL34 gene, which has been previously reported as giving strong signature of selec-

tion in the YRI population [49]. Another interesting signal in this region is at the SNP

rs613539 which corresponds to SLC23A3 gene, which has been claimed to be a candidate for

schizophrenia susceptibility in the Japanese population [50]. This SNP has been significant in

CEU-YRI and ASN-YRI comparisons but not in the ASN-CEU one (Table 6 and S1 HapMap

file).

Two more regions, including NBAS and CLASP1 genes, were detected under the CEU-YRI

comparison. NBAS has also been detected in the ASN-CEU pair (see below). The CLASP1

gene is close to GLI2, already reported as a top region by the XP-CLR method [51]. In the

ASN-YRI comparison, the region detected was 203.4–203.9, which is close to the NIF3L1 gene

and includes a SNP previously reported under non-synonymous differentiation in these popu-

lations [17].

Finally, the significant nvd candidates with lowest FST values, correspond to the regions

detected in the CEU-ASN comparison (this case also involves a lower number of regions). In

this comparison, the highest nvd occurred in the NBAS region that had also the strongest sig-

nal in the CEU-YRI pair. Another interesting region is the 27.9–28.1 which includes the BRE

gen (Table 6).

Littorina saxatilis data

To check the performance of the EOS test with real data, we provide an example with the aim

of checking if even under its conservativeness is able of detecting some outliers on an already

published dataset from the marine gastropod L. saxatilis. Recall that under the wide variety of

scenarios assayed, EOS had a very low false positive rate. Thus the detected outliers, if any,

may be good candidates, or at least good indicators, of the signal of divergent selection.

The rough periwinkle (Littorina saxatilis) is a marine gastropod mollusk that represents an

interesting system for studying adaptive divergence and parallel speciation at different spatial

scales. In Europe, L. saxatilis has adapted to different shore habitats resulting in both an

exposed-to-wave, and other non-exposed (but crab-accessible) ecotype. The crab- accessible

ecotype has large thick shells while the exposed-to-wave ecotype consists of smaller snails with

thin shells and a larger shell aperture. Several experimental studies have shown that these eco-

types have been able of evolving local adaptation in the face of gene flow even at small spatial

scales [52].

Ravinet et al. [53] have recently published a study where they used RAD loci as dominant

markers to quantify shared genomic divergence amongst L. saxatilis ecotype pairs (wave vs

crab) on three close islands on the Skagerrak coast of Sweden. These islands are connected by

weak gene flow. In their outlier analysis, they filtered the data for sex-linked loci and null

alleles. The filtering was applied for each island separately.

We applied the EOS test to analyze the separate-island filtered loci from Ravinet et al. Loci

with null allele frequency equal or higher than 0.5 were discarded. We also discarded those

polymorphisms not shared between ecotypes from the same location. Additionally, we

required a minimum frequency allele of 4 per metapopulation sample size. Thus, we have

excluded about 10–20% of the original individual-island filtered loci. The results of the

between ecotypes outlier analysis using EOS are shown in Table 7. Results show that the num-

ber of outliers detected as significant in this study is much less than in the original study. We
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find a total of 48 outliers in the three islands while the number originally found was 406 (RAD

loci in Table 2 of [53]). This is not surprising given the conservative nature and low false posi-

tive rate of EOS. However, note that we find a 2% (1/48) of SNPs shared by all islands which is

quite similar to the 2.2% (9/406) found in the original study. Considering the islands by pairs,

Jutholmen and Ramsö share 2 outliers, Saltö has no outlier in common with Jutholmen but it

shared 2 with Ramsö.

For the outliers detected by EOS, the mean FST between ecotypes ranges between 0.48–0.6

(Table 8). The q-values are high (0.51–0.76) although we already know by the simulations that

this may indicate linkage between the markers, more than a real false positive rate (see also

[11]).

Discussion

The aim of this study was to develop two complementary strategies, haplotype-based and out-

lier-based, for the detection of divergent selection in pairs of populations connected by migra-

tion. Because high rate of false positives is a known concern of outlier-based methods [9–11],

the proposed methodology was especially designed to minimize the false positive rate. Addi-

tionally, both methods should be useful for non-model species and therefore, it should not be

necessary either to have a priori functional information on candidate regions, or to perform

neutral simulations to obtain critical cut-off values.

We have shown that nvdFST, which combines haplotype-based and FST-differentiation

information, is a powerful strategy for detecting divergent selection. The method has proven

to work well even when the phasing accuracy is not perfect. However, the nvdFST algorithm

does not perform well when the whole set of markers segregates independently. To deal with

the latter, a second method was proposed based on the idea that the outliers caused by the

effect of divergent selection would cluster apart from those caused by different demography

issues. This extreme outlier set test EOS, was intended to be conservative because of the afore-

mentioned tendency of outlier-based methods to produce false positives. Under the simulated

scenarios, the EOS test behaves well when markers are independent or under weak linkage,

reaching powers between 60–90% while maintaining false positive rates below the nominal

level.

Table 7. Outliers detected after EOS analysis of the individual-island filtered loci from L. saxatilis data. Numbers in parentheses refer to the results in

the original analysis [53].

Island Unique Only with Jutholmen Only with Ramsö Only with Saltö Shared all Total

Jutholmen 7 (59) __ 2 (13) 0 (16) 1 (9) 10 (97)

Ramsö 24 (86) 2 (13) __ 2 (21) 1 (9) 29 (129)

Saltö 6 (134) 0 (16) 2 (21) __ 1 (9) 9 (180)

https://doi.org/10.1371/journal.pone.0175944.t007

Table 8. Summary of EOS analysis for the between ecotypes L. saxatilis data [53].

Island Non-outliers Outliers not in EOS EOS FST FST_EOS pvalEOS qvalEOS

Jutholmen 4564 112 10 0.045 0.48 0.002 0.51

Ramsö 4602 82 29 0.064 0.53 0.005 0.63

Saltö 4632 51 9 0.060 0.60 0.002 0.76

FST: Mean FST for the analyzed loci. FST_EOS: Mean FST for the loci included in the extreme outlier set. pvalEOS: Mean p-values across the loci included in

the extreme outlier set. qvalEOS: Mean q-values across the loci included in the extreme outlier set.

https://doi.org/10.1371/journal.pone.0175944.t008
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Polygenic architecture

In general, the FST-based methods cannot detect selection in polygenic scenarios [8, 11]

because these tests are specifically designed for finding FST values larger than average, which

are difficult to discover if the frequency differences are slight for the polygenic loci, or if the

overall FST is high. On the contrary, the nvdFST performs even better under such scenario. The

explanation for this good performance is that the distributed selective signal facilitates the dis-

covery of the corresponding haplotype patterns of divergent selection. These patterns are cou-

pled with the occurrence of high frequency at the target site in one population and low in

another. The good performance of nvdFST under the polygenic setting, therefore, occurs

because a) we select concrete SNPs because of their selective pattern and b) this coincides with

higher FST at these SNPs.

Position effect, positive predictive value and FDR by site

Besides the detection of the signal of selection, we have also inferred the location of the selec-

tive site. It has been shown that under nvdFST, the localization is better when the selective site

is at the center of the chromosome. The ability of localizing the selective position is still a pend-

ing issue for many of the selection detection methods. There is also plenty of room for

improvement under the nvdFST and EOS methods in this regard, for instance by exploring the

relationship between recombination and the window sizes that yield the highest scores.

Indeed, the interplay among divergent selection, recombination, drift and migration should be

considered for further improving the efficiency of the methods.

Concerning true and false positive rate measures, we have given a) the true positive rate

(power) in terms of the percentage of runs in which selection (at any site) was detected from

simulated selective scenarios and b) the false positive rate as the percentage of runs in which

selection (at any site) was detected from simulated neutral scenarios.

The error rate can also be measured by the number of sites falsely detected as selective.

First, it should be clarified that under the neutral scenario, we always considered a false posi-

tive when any site within the chromosome has been signaled as selective. Thus, when we are

saying that FPR is below 5%, in more than 95% of the neutral files no single site was detected

as selective, and so the error rate by site is 0. Therefore, we can consider the number of sites

advocated as selective in those few runs in which neutrality was falsely rejected. In the case of

the EOS test, this number was just 1 single site per Mb when markers are independent or 1 to

4 when they are linked.

In the case of nvdFST, the situation is different just because various window sizes are assayed

and a number k of candidates is considered, so that the maximum number of false positives by

genome can be at most w × k, where w is the number of different window sizes. However, the

number of false positives would also be dependent on the recombination rate. In most cases,

we have assayed 2–4 window sizes and just 1 candidate, and the average number of falsely

detected sites in the neutral files was close to 1.

When a higher number of candidates (k>1) was studied the percentage of false positives

was always less than γ × k (γ = 0.05). For example, in the extreme case of inspecting the 100%

of neutral sites from an ultra-high density linkage map (about 60,000 candidates with ρ = 120),

we found 1–2% false positives independently of the window size. For the selective scenarios,

we are also interested in the per site comparison, i.e. the proportion of detected sites that lies

at, or close to, the true selective position. The linkage relationship will depend on the recombi-

nation rate and so we would measure the distance in centimorgans (cM). Therefore, if we con-

sider a given position as being true only when it lies at distance of less than t cM from the real
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position, then the positive predictive value (PPV) can be measured as PPV = #(detected sites at

distance� t) / # detected sites. Similarly, the false discovery rate per site is, FDRl = 1 -PPV.

Thus, given the positions obtained in our simulations, when we set t = 0.15 cM the PPV is

in most of the cases 100%, i.e. all detected positions lie within the acceptance region, except for

some cases under the highest recombination rate (ρ = 60). In the latter cases under the nvdFST
test, the PPV decreases to 85–95% with a worst case of 70% when the selective site is located at

the very extreme of the chromosome. Therefore, in these latter cases (nvdFST; ρ = 60), when

claiming that selection has been detected, we are assuming that 5–15% of the times the

detected position could be far away from 0.15 cM. However, If we assume as correct any posi-

tion within 1 cM distance from the true one (t = 1), then the per-site FDRl is virtually zero in

every studied case. The latter means that any detected site lies closer than 1 map unit from the

real position.

High migration scenario

It is important to note that under high migration, nvdFSTmaintains a reasonable power. How-

ever, the power diminishes with the highest recombination rate. This may occur due to the

combined effect of gene flow and recombination, that generates intermediate HAC mean val-

uesm1 andm2 and similar variances. Indeed, for a given selection intensity, the higher the Nm
requires tighter linkage for the establishment of divergent alleles [54].

In the case of the EOS test, there is an obvious tradeoff between the stringency of the cutoff

point for the outlier set and the migration rate. The cutoff depends on the FST upper-bound

which is a function of the number of populations, the sample size and the minimum allele fre-

quency. However, this does not take into account the effect of migration. A possible solution

to improve the efficiency of EOS under high migration would be to update the cutoff point as

a function of the migration rate.

HapMap data

The applicability of the nvdFSTmethod to real data was evaluated by analyzing the human

chromosome 2. For each pair of populations, the full set of SNPs in the phased haplotypes was

directly analyzed without any assumption about specific candidate regions or reference SNPs.

Our method successfully detected the lactase persistence region that is known to expand

over more than 1 Mb in chromosome 2 of European populations [47, 55]. In addition, we

detected other regions previously reported as under ongoing selective sweeps in human popu-

lations (see Table 6 and S1 HapMap file), together with another that has not been explicitly

reported from the HapMap comparisons. Worth mentioning is the SLC23A3 gene that has

been associated to schizophrenia susceptibility in the Japanese population [50] and that we

found to be significant both in ASN-YRI and CEU-YRI comparisons.

We also found as selected other regions not previously reported. For example, in the ASN--

CEU comparison, 20 SNPs had high and significant nvd value within the NBAS gene. Muta-

tions in this gene has been associated to short stature and different multisystem disorders [56,

57]. Again in the ASN-CEU comparison, the BRE gene showed quite high nvd values. This

gene encodes a component of the BRCA1-A complex. These results illustrate how the nvdFST
method can be used in exploratory studies to detect locally adapted polymorphisms that could

be interesting candidates for association studies.

Littorina saxatilis data

The natural systems where local adaptation occurs can be of great complexity [58]. Local adap-

tation may occur most likely due to alleles with large effect but also under a polygenic
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architecture [58, 59]. In addition, the geographic structure and the migration-selection balance

can generate complex patterns of the distribution of genetic variation [60]. The L. saxatilis eco-

types are an especially interesting system to study local adaptation in presence of gene flow

[61]. This system has an exceptional level of replication at different extents, such as country,

localities within country, and the micro-geographical level of the ecotypes. In the case of the

Swedish populations, the pattern of differentiation can be separated in factors such as, locali-

ties and habitat variation among islands—that may be caused by genetic drift—and variation

between habitats within localities—that may be caused by divergent selection [61]. There are

also different mechanisms by which parallel adaptation may occur, resulting in different pre-

dictions about the proportion of shared adaptive variation among localities.

Regarding the shared genomic divergence of the L. saxatilis system in Swedish populations,

it seems to be a small proportion of the total genomic divergence [53, 61, 62]. That is, the

majority of the genomic variation linked to the evolution of ecotypes is not shared between the

studied islands. The EOS analysis of the Ravinet et al. data seems to support this finding. At

the same time, we identify far fewer outliers, being Saltö—which is closer to the mainland—

the island with the lowest number. However, this result is the opposite of the result in Ravinet’s

study, where Saltö had the highest number of outliers. This difference can be caused by an

excess of false positives in the original study, though we cannot rule out that our findings can

be an artefact due to the conservativeness of EOS.

As a final remark, the strategy used in nvdFST is in line with the suggestion of combining

multiple signals from different tests as a way of improving the power/false positive rate rela-

tionships for the selection detection methods [18, 63, 64]. Accordingly, the nvdFST test does

this. It combines haplotype and population differentiation information and may be a helpful

tool to explore patterns of divergent selection when approximate knowledge of the haplotype

phase is available. Alternatively, the EOS method is a conservative outlier test useful when the

full set of SNPs is unlinked or under weak linkage. Both strategies can be applied without the

need of performing neutral simulations and have a low false positive rate.
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