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Co-fractionation mass spectrometry (CF-MS)-based approaches enable cell-wide identification of
protein-protein and protein-metabolite complexes present in the cellular lysate. CF-MS combines bio-
chemical separation of molecular complexes with an untargeted mass-spectrometry-based proteomics
and/or metabolomics analysis of the obtained fractions, and is used to delineate putative interactors.
CF-MS data are a treasure trove for biological discovery. To facilitate analysis and visualization of original
or publically available CF-MS datasets, we designed PROMISed, a user-friendly tool available online via
https://myshiny.mpimp-golm.mpg.de/PDP1/ or as a repository via https://github.com/
DennisSchlossarek/PROMISed. Specifically, starting with raw fractionation profiles, PROMISed (i) con-
tains activities for data pre-processing and normalization, (ii) deconvolutes complex fractionation pro-
files into single, distinct peaks, (iii) identifies co-eluting protein–protein or protein–metabolite pairs
using user-defined correlation methods, and (iv) performs co-fractionation network analysis. Given mul-
tiple CF-MS datasets, for instance representing different environmental condition, PROMISed allows to
select for proteins and metabolites that differ in their elution profile, which may indicate change in
the interaction status. But it also enables the identification of protein–protein and protein–metabolite
pairs that co-elute together across multiple datasets. PROMISed enables users to (i) easily adjust param-
eters at each step of the analysis, (ii) download partial and final results, and (iii) select among different
data-visualization options. PROMISed renders CF-MS data accessible to a broad scientific audience, allow-
ing users with no computational or statistical background to look for novel protein–protein and protein–
metabolite complexes for further experimental validation.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background and summary

Comprehensive identification of protein–protein interactions
(PPIs) is crucial for understanding the intricate mechanics behind
all biological processes. In the past, a plethora of PPIs have been
unraveled by large-scale studies using affinity purification coupled
with mass spectrometry (AP-MS) and yeast-two-hybrid (Y2H)
screens. Recent progress in mass-spectrometry proteomics has
seen an advent of a complementary high-throughput method
named co-fractionation mass spectrometry (CF-MS). In contrast
to AP-MS and Y2H, CF-MS obviates the need for a protein bait
and enables proteome-wide characterization of PPIs in a single
experiment. CF-MS is based on separation of protein complexes,
utilizing different biochemical techniques such as size-exclusion
chromatography (SEC) [16,24], ion exchange (IEX) chromatography
[13], blue native gels [11] or density-gradient centrifugation [7],
followed by mass-spectrometry-based proteomics analysis of the
obtained fractions. Similarity between separation profiles—
referred to as co-fractionation—is used to delineate putative inter-
actors. We have recently extended the CF-MS workflow to the
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analysis of protein–metabolite interactions (PMIs), dubbing our
approach PROMIS (PROtein–Metabolite Interactions using Size
separation). PROMIS combines SEC-based separation of protein–
protein and protein–metabolite complexes followed by both
proteomics and metabolomics analysis of the collected fractions.
PROMIS builds upon the observation that metabolites remain in
protein complexes during mild cell lysis and biochemical
fractionation. Analogously to PPIs [13,24], PMIs are delineated by
correlating the fractionation profiles of a protein–metabolite pair
[17,21–23]. Table 1 list examples of CF-MS studies.

While a CF-MS protocol is not experimentally challenging, data
analysis requires computational expertise that is not always pre-
sent in an experimental group. Analysis of a CF-MS dataset entails
normalization, the selection of single peaks from complex fraction-
ation profiles, identification of co-fractionating molecule pairs, and
finally charting of the interaction network. Here, we describe PRO-
MISed (PROMIS Easy Data analysis), a novel web tool designed to
analyze, integrate, visualize and mine data obtained from CF-MS-
based studies. Starting with datasets containing absolute or rela-
tive quantification of fractionated molecules (proteins, metabo-
lites, nucleic acids), PROMISed allows users to i) perform pre-
processing steps, including normalization, smoothing and replicate
pooling, ii) split complex fractionation profiles into single peaks,
iii) integrate data to identify co-fractionating molecules, e.g. pro-
tein–metabolite or protein–protein pairs, and iv) create and
describe co-fractionation networks. Additionally, we implemented
a statistical workflow which, given multiple datasets, looks for dif-
ferential fractionation profiles indicative of a novel interaction, e.g.
associated with a particular developmental stage or environmental
condition. It is based on determining significant differences in the
Table 1
Published datasets derived from co-fractionation-based methods. CN-PAGE: clear native P
chromatography, SDG: sucrose density gradient. *1) the nine model species include: Caenor
Homo sapiens, Xenopus laevis, Nematostella vectensis, Dictyostelium discoideum and Saccharom
max, Cannabis sativa, Solanum lycopersicum, Chenopodium quinoa, Zea mays, Oryza sativa ssp.
and Chlamydomonas reinhardtii.

Method Biological material Identifications Data
available

M

IEX, IEF, SDG Human cell culture 3006 proteins, 622 putative
complexes

Yes A

IEX E. coli, S. cerevisiae No T
m
c

SEC A. thaliana 713 cytosolic proteins Yes A
SEC 9 model species (*1) 13,386 protein orthologues No P
SEC A. thaliana cell

suspension culture
5000 proteins, 140
metabolites

Yes P
s

SEC HEK293 2127 proteins, 462
complexes

Yes C

SEC A. thaliana 3889 and 5563 proteins in
two replicates, respectively

Yes G
p

SEC, IEX, IEF 13 plant species (*2) 141,910 unique proteins
corresponding to 23,896
orthogroups

Yes A
n

SEC Human cell culture,
mouse embryonic
stem cells

1012 (human) and 1165
(mESCs) RNA-associated
proteins

No S
c

CN-PAGE A. thaliana 2338 (end of day) and 2469
(end of night) proteins

Yes P
P

SDG A. thaliana 216 ribosomal proteins Yes S
c

IEX, SEC, SDG Synechocystis sp. PCC
6803

2062 proteins, 291
multiprotein complexes

Yes G
6

SEC S. cerevisiae (log-
phase)

3982 proteins, 74
metabolites

Yes G
c
k

SEC Chaetomium
thermophilum

3286 proteins, 257
metabolites

No C
i
t
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Manhattan distances calculated between fractionation profiles
within the replicates and between experimental conditions. The
main challenge with CF-MS is to differentiate true complexes from
those merely having similar fractionation properties. For instance,
in a single PROMIS experiment, every metabolite co-fractionates
with several hundred proteins, of which possibly only one is a true
binder. PROMISed enables users to identify pairs of molecules that
co-migrate across multiple datasets; and in that way narrows
down the list of putative interactors. In summary, PROMISed
allows users with no computational experience to mine their
own or available CF-MS datasets for novel protein–protein and
protein–metabolite interactions.

2. Software description and methods

2.1. General design and implementation

PROMISed is accessible via a frontend web interface built using
the shiny R package [5], as the backend of PROMISed is written in
the R environment. The web tool aims to generate co-fractionation
networks from raw fractionation profiles. The PROMISed user
interface provides individual tabs to guide the user through the dif-
ferent steps of data analysis. Each step provides options to cus-
tomize data analysis parameters and a plotting area displaying
(intermediate) results, such as normalized profiles or protein–
metabolite co-fractionation networks. For convenience, two exam-
ple data files containing metabolite and protein fractionation pro-
files obtained upon cell lysate fractionation using SEC are available
in order to demonstrate the functionality and requirements of
PROMISed.
AGE, IEF: isoelectric focusing, IEX: ion-exchange chromatography, SEC: size-exclusion
habditis elegans, Drosophila melanogaster, Mus musculus, Strongylocentrotus purpuratus,
yces cerevisiae; *2) plant species studied: Arabidopsis thaliana, Brassica oleracea, Glycine
japonica, Triticum aestivum, Cocos nucifera, Ceratopteris richardii, Selaginella moellendorf

ain focus Reference

census of human soluble protein complexes [13]

arget identification by chromatographic co-fractionation:
onitoring of drug-protein interactions without immobilization or
hemical derivatization

[4]

proteomic strategy for global analysis of plant protein complexes [2]
anorama of ancient metazoan macromolecular complexes [24]
ROMIS, global analysis of protein–metabolite interactions using size
eparation in Arabidopsis thaliana

[23]

omplex-centric proteome profiling by SEC-SWATH-MS [14]

lobal identification of protein complexes within the membrane
roteome of Arabidopsis roots using a SEC-MS approach

[10]

pan-plant protein complex map reveals deep conservation and
ovel assemblies

[19]

ystematic discovery of endogenous human ribonucleoprotein
omplexes

[18]

rotein complex identification and quantitative complexome by CN-
AGE

[11]

eparation and paired proteome profiling of plant chloroplast and
ytoplasmic ribosomes

[7]

lobal landscape of native protein complexes in Synechocystis sp. Pcc
803

[25]

lobal mapping of protein–metabolite interactions in Saccharomyces
erevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate
inase activity

[17]

oupling proteomics and metabolomics for the unsupervised
dentification of protein-metabolite interactions in Chaetomium
hermophilum

[15]
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As shown in Fig. 1, data analysis using PROMISed comprises i) a
pre-processing step, reducing data noise and applying normaliza-
tion and smoothing to ensure comparability between fractionation
profiles obtained from independent CF-MS experiments, ii) statis-
tical analysis based on the dis-elution score, identifying molecules
whose fractionation profiles differ significantly between experi-
mental conditions, iii) replicate pooling, creating a single fraction-
ation profile for proteins or metabolites which replicates pass a
chosen similarity threshold, iv) peak deconvolution, splitting com-
plex fractionation profiles into single and distinct peaks for the
downstream identification of co-fractionating molecules, v) data
integration, creating a correlation matrix between the deconvo-
luted profiles which can be used to mine for co-fractionating part-
ners or to vi) create co-fractionation networks.

PROMISed is available online via https://myshiny.mpimp-golm.
mpg.de/PDP1/, located at the Max Planck Institute of Molecular
Plant Physiology. Additionally, the source code as well as a docker
image is available at https://github.com/DennisSchlossarek/
PROMISed.

In the following we explain the main steps of the PROMISed
workflow in detail, emphasizing the arguments adjustable by the
user. A list of default settings is given in Table 2.

2.2. Input data requirements

The data files accepted by PROMISed are simple tables in a tab-
delimited text format containing absolute or relative quantification
of proteins and/or metabolites upon fractionation across collected
fractions. Inexperienced users can easily generate the tables: the
rows correspond to identified proteins or metabolites, each labeled
with a unique name, and columns correspond to fractions obtained
from different replicates and/or conditions. Column names should
therefore include information about the name of the condition, the
name and number of a replicate, and the number of a fraction, and
should be constructed as:
Fig. 1. Schematic workflow for the PROMISed web tool. PROMISed is designed to proce
obtained by SEC. Separate metabolite and protein datasets are uploaded, then proce
deconvolution, the datasets are integrated into a correlation matrix, which can be mined
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Subsequent fractions of the same separation should be sorted
in ascending order of fraction numbers. The tables may also con-
tain columns with additional information, such as retention time
and m/z for annotated metabolites or number of unique peptides
used for protein identification. In such cases PROMISed asks the
user to select a window of columns containing measured intensi-
ties in chromatographic fractions. Currently, additional informa-
tion is ignored by PROMISed and will not be appended to the
result tables. An example of CF-MS input data tables can be found
in Supplementary Tables 1 and 2 or in the demo data available in
PROMISed.

NameOfCondition_NameOfReplicate_#Replicate_ #Fraction
2.3. Pre-processing

Prior to statistical analysis and peak deconvolution, different
data pre-processing steps can be applied, if necessary. These
include data-noise reduction, normalization, and smoothing of
fractionation profiles. In case of complex separation using size-
exclusion chromatography, fractionation profiles of proteins and
metabolites span several consecutive fractions, with the peak
width depending on experimental setup such as SEC column pore
size. Therefore, measured metabolite or protein abundance in one
fraction, but not directly neighboring fractions, can be considered
as data noise, which might interfere with downstream processes.
Remove Single Peaks provides the option to remove this data noise
by replacing single-fraction peaks with zeroes. An additional way
of reducing data noise is Profile Smoothing, which is achieved here
by applying a local 2nd-degree polynomial regression fitting con-
trolled by the Span Value parameter. To reduce data noise even fur-
ther, fractions with low relative intensity can be set to 0. This
might be necessary if measured intensities are close to the detec-
tion limit of the instruments used, e.g. sensitivity of mass
spectrometer.
ss and integrate two different CF-MS datasets, e.g. protein and metabolite profiles
ssed in parallel using the same methods and settings chosen by the user. After
for co-fractionating pairs, and from which co-fractionation networks can be drawn.

https://myshiny.mpimp-golm.mpg.de/PDP1/
https://myshiny.mpimp-golm.mpg.de/PDP1/
https://github.com/DennisSchlossarek/PROMISed
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Table 2
Default settings of the adjustable parameters in the PROMISed web tool.

Processing step Parameter Default

Pre-Processing Remove Single Peaks TRUE
Normalize TRUE
Minimum Relative Intensity 0.10
Profile Smoothing TRUE
Span Value 0.15

Replicate Combination Correlation Method Pearson
Reproducibility Threshold 0.70
Keep Single Replicates FALSE

Deconvolution Minimum Relative Intensity 0.20
Minimum Intensity of Local
Maxima

0.20

Minimum Incline 0.80

Data Integration Correlation Method Pearson
Correlation Threshold 0.70

Network Analysis Filter Network No Filter
Node Colour Cluster
Layout Force-

directed

Differential
Fractionation

p-Value Threshold 0.05

Fig. 2. Effect of processing options in PROMISed on fractionation profiles. a) Top: Resu
profile (gray). Bottom: Effect of individual pre-processing options on the shape of the f
profile. c) Left: Identification of local maxima and valleys in the combined profile. Both lo
cutting point, since the incline to the previous fraction (marked in red) exceeds theMinim
a protein or metabolite profile fractionating differentially between two conditions (left an
is referred to the web version of this article.)
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For data obtained from multiple, independently performed sep-
arations, normalization might be required to ensure comparability
between fractionation profiles of different conditions or replicates.
Normalization in PROMISed is performed separately for each frac-
tionation profile, by normalizing every fraction to the fraction with
maximum intensity within the fractionation profile. Normalization
is required prior to statistical analysis of differentially eluting pro-
files, which uses Manhattan distances to compare peak intensities.
All parameters and options included in the pre-processing step are
listed below, and a schematic overview of their effects on fraction-
ation profiles is shown in Fig. 2a.

Remove Single Peaks: replaces single values surrounded by zer-
oes with zero, eliminating data-noise ‘‘peaks” that only span one
fraction.

Normalize: fractionation profiles are normalized to their maxi-
mum intensity.

Minimum Relative Intensity: sets a threshold for the minimum
relative intensity (after normalization). Values below this thresh-
old are replaced by 0.

Profile Smoothing: reduces data noise by using a local 2nd-
degree polynomial regression fitting, controlled by Span Value as
an additional parameter. Default Span Value is 0.15 for profiles of
length 40. Sup. Fig. 1 gives an overview of minimal Span Values
for profiles of different length.
lting profile (red) after applying all pre-processing steps compared to the original
ractionation profile. b) Fractionation profiles of three replicates and the combined
cal maxima are greater than the Minimum Peak Intensity. The valley is considered a
um Incline threshold. The resulting peaks are shown on the right side. d) Example of
d right). (For interpretation of the references to color in this figure legend, the reader



D. Schlossarek, M. Luzarowski, E. Sokołowska et al. Computational and Structural Biotechnology Journal 19 (2021) 5117–5125
Span Value: controls the degree of smoothing by defining the
number of neighboring fractions involved. Corresponds to propor-
tion of total fractions and is given in a range of 0 to 1. Default is
0.15 for profiles spanning 40 fractions. In such examples, six neigh-
boring fractions will be used for smoothing. Profiles differing in the
number of fractions may require optimization of Span Values.
2.4. Replicate pooling

The pooling of replicates is achieved by summing up repro-
ducible replicates of fractionation profiles (Fig. 2b). Reproducibility
is calculated using either one of three correlation methods. An
adjustable threshold gives the user control over the strictness of
replicate combination. In addition, for datasets comprising two
replicates, a single profile is treated as reproducible when the other
replicate comprises an empty profile. Two of our previous studies
exploiting PROMIS for system-wide detection of protein–metabo-
lite complexes in Arabidopsis thaliana and Saccharomyces cerevisiae
showed high reproducibility of fractionation (PCC > 0.9) between
biological replicates [17,23].

Correlation Method: the user can choose between three meth-
ods of calculating correlation: Pearson correlation, Kendall’s tau or
Spearman’s rank correlation.

Reproducibility Threshold: sets a threshold for the minimum
correlation coefficient between replicates to sum up fractionation
profiles.

Keep Single Replicates: allows to keep fractionation profiles of
one replicate when the other replicates are uniformly 0. Used as
default when uploaded data contains only one or two replicates.
2.5. Deconvolution

Since native proteins and metabolites can be involved in multi-
ple protein–protein–metabolite complexes of different molecular
weights, obtained CF-MS fractionation profiles are often complex
and contain several local maxima. Profile deconvolution aims at
splitting a complex fractionation profile into several profiles con-
taining one peak each, corresponding to independent homomeric
or heteromeric states of a protein or a protein partner of a metabo-
lite. Profile deconvolution based on identifying local maxima was
first used in studies aiming to identify protein–protein complexes
using CN-PAGE [11] and later adapted for identification of protein–
metabolite complexes using PROMIS [17]. In a nutshell, deconvolu-
tion is achieved by first identifying local maxima and subsequently
finding the shape of the underlying fractionation peak (Fig. 2c).

Local maxima are found using the turnpoint function (pastecs R
package [12] and filtered against the Minimum Intensity of Local
Maxima parameter. Next, the shape of the fractionation peak is
identified by ‘‘scanning” over the profile and making a decision
at each fraction as follows: starting from a local maximum, each
subsequent fraction is considered part of the underlying peak until
its maximum normalized intensity is below Minimum Relative
Intensity or until the fraction constitutes a major local valley, with
an incline greater than Minimum Incline to one of the surrounding
fractions. The fractions prior to the first local maximum, and frac-
tions in-between the last fraction of an identified peak and the next
maximum are assigned to the following true local maximum, as
long as their intensity passes the Minimum Relative Intensity crite-
ria. Profile deconvolution can be bypassed by checking the No
Deconvolution box.

Minimum Relative Intensity: sets a threshold for the minimum
relative. Values below this threshold are replaced by 0.

Minimum Intensity of Local Maxima: sets a threshold for the
minimum relative intensity with which a local maximum is con-
sidered an independent peak.
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Minimum Incline: minimum incline around a local minimum
for cutting the peak into two.

2.6. Data integration

The integration of the two datasets is accomplished by calculat-
ing a correlation matrix between the deconvoluted profiles of both
datasets. The method of correlation can be either Pearson correla-
tion, Kendall’s tau or Spearman’s rank correlation. In our hands and
for the purpose of screening for protein–metabolite complexes in
S. cerevisiae using SEC, Pearson correlation and Kendall’s tau served
equally well for retrieving known protein–metabolite assemblies
[17]. The resulting correlation matrix is filtered using the Correla-
tion Threshold and can be downloaded as a text file. Proteins and
metabolites passing the threshold are further considered as co-
fractionating. Previous studies showed that a threshold of 0.7 (de-
fault) gives a good agreement between sensitivity and specificity
for detection of known molecular complexes [17,23].

PROMISed offers multiple ways of mining the obtained results
in a targeted and untargeted manner (see ‘‘Network analysis”).
Focusing on a pre-selected molecule, in the ‘‘Data Integration”
tab users have the possibility to identify co-fractionating partners
of a chosen entry across all provided datasets (‘‘Intersections of
Conditions”) or under a defined condition (e.g. for single species,
developmental stage or growth conditions). Additionally, the
deconvoluted fractionation profiles of a target from each dataset
can be directly compared in one plot. Lastly, the protein or metabo-
lite peaks with the highest correlation to the target can be plotted
together with the target, and a subset of the correlation matrix is
displayed in the user interface (Fig. 3).

Correlation Method: gives the user the option to choose
between three methods of calculating correlation: Pearson correla-
tion, Kendall’s tau or Spearman’s rank correlation.

Correlation Threshold: sets a threshold for the minimum corre-
lation coefficient to consider metabolite and/or protein peaks as
co-eluting.

2.7. Network analysis

PROMISed constructs co-fractionation networks from the fil-
tered correlation matrix using the igraph R package [6]. Networks
are created as weighted correlation networks, depicting single pro-
tein or metabolite peaks as nodes, and the correlation coefficient
between those peaks as edges. Networks can be restricted to
selected entries instead of using the whole correlation matrix. To
allow the user to recreate and analyze the obtained networks using
different tools such as Cytoscape [20], the edgelists and nodelists
can be readily downloaded.

The networks are displayed and made interactive using the
visNetwork R package [1]. Nodes can be color-highlighted to depict
either information about connectivity, calculated as k-coreness, or
communities, identified using the Louvain method for community
detection [3]. Additionally, the user can choose between three dif-
ferent options for the network’s layout: network components, a
force-directed layout, or automatic detection of the most appropri-
ate layout. An example of network visualization is given in Fig. 4.

Filter Network: determines whether a network should be cre-
ated using all available data (No Filter) or only around a selected
protein or metabolite (Selection 1 and 2).

Node Color: changes node colors to highlight either communi-
ties (Cluster) (Fig. 4a) or node connectivity measured as k-
Coreness (Fig. 4b). Default is a Uniform light blue.

Layout: controls the layout of the depicted network with two
options: Force-directed uses the network layout algorithm by
Fruchterman and Reingold [9], and Circles creates a circle of nodes
for each network component.



Fig. 3. Top scored co-fractionating protein peaks of a selected metabolite. Upper panel: Deconvoluted fractionation profile of a selected metabolite (Metabolite2) in dark, and
the deconvoluted protein peaks with the best scores (here: Pearson correlation) in light colors. The first Metabolite2 peak (blue) co-elutes with Protein1754, the second
Metabolite2 peak (green) with Protein33. Lower panel: Table depicting correlation scores, here Pearson correlation, between the two peaks originating from the Metabolite2
fractionation profile and all protein peaks. The table is sorted to show the highest 5 scores for the first Metabolite2 peak, revealing Protein1754 as the best co-eluting protein
peak with a PCC of 0.98. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Visualization of co-fractionation networks. The network is depicted using the Force-directed layout and Cluster color option. The inset shows Cluster 2 colored
according to its k-coreness.
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Fig. 5. PROMISed can capture previously predicted protein interactors of AHA2.
Comparison of the number of proteins co-fractionating with AHA2 in the data from
Gilbert&Schulze, 2018. The data was analysed using PROMISed default settings with
the Data Integration Correlation Threshold of 0.89, to reproduce the original work. In
total, PROMISed captured 161 interaction partners shared in both replicates,
compared to the 174 in the original work (Gilbert&Schulze). Additionally,
PROMISed captured 19 proteins that were also identified in a pull-down experi-
ment performed in the original work.
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2.8. Differential fractionation

Describing differences in fractionation profiles (as shown in
Fig. 2d) of the same protein or metabolite is a crucial, yet chal-
lenging step in identifying interactions responsive to experimen-
tal conditions. One attempt to meet this challenge was made by
Mallam and colleagues, who developed a computational frame-
work named DIF-FRAC score. The DIF-FRAC score compares a nor-
malized Manhattan distance between fractionation profiles of
treated and untreated proteins with those of known non-
responsive proteins. This method proved to be powerful for the
search of novel RNA-associated proteins in the presence and
absence of RNA, where a true-negative list could be generated
[18]. However, for most untargeted research questions this is
not the case.

To circumvent this requirement, we developed the dis-elution
score, which relies on the statistical comparison of Manhattan dis-
tances between conditions with distances within conditions. In
detail, we calculate the Manhattan distances of all combinations
of replicates between conditions X and Y (k x!� y!k1) and within
the conditions (k x!� x!k1 andk y!� y!k1). The resulting vectors of
Manhattan distances are then statistically compared using a one-
way analysis of variance (ANOVA). A post-hoc Tukey test is then
used to check whether k x!� y!k1 is significantly larger than
k x!� x!k1 and k y!� y!k1).

The ‘‘Differential Fractionation” tab allows the user to calculate
the dis-elution score as a pairwise comparison between experi-
mental conditions. The results can be downloaded in a table for-
mat, where FDR-corrected p-values of profiles passing the Tukey
test are reported or viewed for each protein or metabolite in each
pair of conditions depicted as a boxplot (see Metabolite 1–3 from
example data). Please note that p-values shown on boxplots in
the user interface are not FDR corrected and may differ from values
in the results table.

p-Value Threshold: controls p-value threshold to filter dis-
elution scores.
3. Promised captures predicted AHA2 interactors

To test the applicability of PROMISed to analyze previously
published CF-MS experiments, we used the publicly available
dataset from Gilbert&Schulze, 2018. The authors first investi-
gated membrane protein–protein complexes isolated from the
Arabidopsis thaliana roots and subsequently focused on one
selected protein: H + -ATPase AHA2. Comparison of the 174
proteins co-eluting with AHA2 with the list of 32 proteins iden-
tified in the AHA2 pulldown experiment revealed an overlap of
13 proteins. We downloaded original protein elution profiles
available as a supplement dataset to compare published analy-
sis with the data analysis pipeline embedded in PROMIsed. The
experiment comprises two biological replicas, which we ana-
lyzed separately, using the default settings, except for the Data
Integration Correlation Threshold, which was set to 0.89 to
replicate the author’s high-confidence threshold. We then fil-
tered the generated networks for AHA2 and obtained the net-
work’s edge-list. In other words, a list of co-fractionating
proteins. In total, we identified 489 and 590 co-fractionating
proteins in replicate one and replicate two, respectively, of
which 161 were common. We then compared 161 identified
interactors with the list of AHA2 protein partners reported in
the original work (Fig. 5). The overlap contained 64 of the pre-
viously predicted AHA2 protein interaction partners, of which
19 were also retrieved in the pulldown experiment, which is
six more than in the original analysis. The discrepancy origi-
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nates from an additional AHA2 elution peak resulting from
the deconvolution step.
4. Novelty and applications

Recent years have seen an advent of CF-MS-based approaches
for the characterization of molecular complexes. Multiple datasets
for both model and non-model organisms, spanning different
developmental stages and environmental conditions have been
published and are available to the scientific community. Moreover,
interactive tools such as SECexplorer-cc (https://sec-explorer.shi-
nyapps.io/hela_cellcycle/) [14], plant.Map (http://plants.protein-
complexes.org) [19] and YeastPMI (http://promis.mpimp-golm.
mpg.de/yeastpmi) [17] provide an access to PPIs and PMIs for a
handful of those published datasets. Here, we introduce a freely
accessible and intuitive web tool designed for analysis, integration,
visualization and mining of co-fractionation data, which does not
require a computational or statistical background. PROMISed is
not restricted by the identity of interactors (protein, metabolite
etc.) or type of separation (SEC, IEX, native gel), and the only input
it requires is raw fractionation profiles. PROMISed enables adjust-
ment of multiple parameters at each analysis step, allowing tailor-
ing of the process to a particular dataset or a biological question
and making it more interactive and consequently more attractive
to potential users. Moreover, at each data-processing step users
can download and inspect the results file. When it comes to data
mining, PROMISed can be used in several ways. In the simplest sce-
nario, users can mine PROMISed-generated interaction networks
(matrix) for the putative interactors of their protein or metabolite
of interest. As already mentioned in the Introduction, a single CF-
MS dataset may not be sufficient to differentiate true complexes
from those merely having similar fractionation properties. A pro-
ven strategy to address this problem [19], implemented in PRO-
MISed, is to look for repeating co-fractionation across multiple
datasets, differing, for instance, in the separation method or source
of the starting material. In addition to searching for repeating co-
fractionation, another unique feature implemented in PROMISed
allows users to look for proteins and metabolites that change their
fractionation profile in multi-condition experiments. A difference
in the fractionation profile can have different biological explana-
tions, but it unequivocally attests to rewiring of the interactome.
Overall, PROMISed is a unique tool designed for analysis, integra-
tion, visualization and mining of co-fractionation data, accessible
to users without computational or statistical background.

https://sec-explorer.shinyapps.io/hela_cellcycle/
https://sec-explorer.shinyapps.io/hela_cellcycle/
http://plants.proteincomplexes.org
http://plants.proteincomplexes.org
http://promis.mpimp-golm.mpg.de/yeastpmi
http://promis.mpimp-golm.mpg.de/yeastpmi


D. Schlossarek, M. Luzarowski, E. Sokołowska et al. Computational and Structural Biotechnology Journal 19 (2021) 5117–5125
5. Discussion and conclusion

The use of CF-MS-based approaches has led to numerous and
significant biological insights. For example, by separating the sol-
uble protein fraction of human cell culture lines using ion-
exchange chromatography, authors found as many as 13,993 inter-
actions, corresponding to 622 putative protein complexes; more
than half of them (364) were previously unannotated [13]. Using
a workflow dubbed DIF-FRAC, Mallam and colleagues identified
115 ribonucleoprotein complexes in human cell culture lines by
comparing separation profiles of proteins obtained from lysates
treated with RNAse to a non-treated control, inferring that 20% of
human protein complexes contain an RNA component [18]. By
expanding co-fractionation-based methods to protein–metabolite
interactions, PROMIS has delineated putative protein interactors
for over 140 metabolites in A. thaliana [23], and validated 225 pre-
viously predicted PMIs in yeast [17]. Following up on PROMIS
results led to the identification of proteogenic dipeptides as novel
regulators of metabolism [17,23].

While the number of methods using co-fractionation to study
protein–protein and protein–metabolite interactions is growing,
data-analysis pipelines and strategies greatly vary between
research groups and are often highly specific for one experiment.
For example, machine-learning approaches have been successfully
used to create protein–protein interaction networks [13,19,24].
Additionally, a complex-centric experimental workflow using
SEC-SWATH-MS has been developed [14], complemented by a
machine-learning-based computational framework dubbed PCpro-
phet [8]. However, machine-learning-based approaches require
preselected data to train on, limiting transferability to other
approaches and datasets.

In addition, neither approach has so far been applied to inte-
grate the wide range of protein-binding metabolites. And finally,
the complex-centric workflow, and especially any machine-
learning approach, requires a certain level of bioinformatic skills,
creating an entry barrier for many experimental researchers. We
created a user-friendly application that does not require prior com-
putational insight and that guides users through the processing
steps, allows to adjust parameters of each activity to tailor various
experimental setups, and helps to visualize co-fractionating pairs
and interactome networks.
6. Code availability

PROMISed is available online via https://myshiny.mpimp-golm.
mpg.de/PDP1/, located at the Max Planck Institute of Molecular
Plant Physiology. Additionally, the source code as well as a docker
image is available at https://github.com/DennisSchlossarek/
PROMISed.
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