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Background: Ewing’s sarcoma (ES) is a common bone cancer in children and adolescents. There are ethnic differences in the
incidence and treatment effects. People have made great efforts to clarify the cause; however, the molecular mechanism of ES is still
poorly understood.
Methods: We download the microarray datasets GSE68776, GSE45544 and GSE17674 from the Gene Expression Omnibus (GEO)
database. The differentially expressed genes (DEGs) of the three datasets were screened and enrichment analysis was performed.
STRING and Cytoscape were used to carry out module analysis, building a protein–protein interaction (PPI) network. Finally, a series
of analyses such as survival analysis and immune infiltration analysis were performed on the selected genes.
Results: A total of 629 differentially expressed genes were screened, including 206 up-regulated genes and 423 down-regulated genes.
The pathways and rich-functions of DEGs include protein activation cascade, carbohydrate binding, cell-cell adhesion junctions,
mitotic cell cycle, p53 pathway, and cancer pathways. Then, a total of 10 hub genes were screened out. Biological process analysis
showed that these genes were mainly enriched in mitotic nuclear division, protein kinase activity, cell division, cell cycle, and protein
phosphorylation.
Conclusion: Survival analysis and multiple gene comparison analysis showed that CDCA8, MAD2L1 and FANCI may be involved
in the occurrence and prognosis of ES. The purpose of our study is to clarify the DEG and key genes, which will help us know more
about the molecular mechanisms of ES, provide potential pathway or targets for the diagnosis and treatment.
Keywords: Ewing sarcoma, biomarkers, microarray, differentially expressed genes, protein interaction

Introduction
ES is a poorly differentiated and aggressive tumor, which is called the three most common bone tumors together with
osteosarcoma and chondrosarcoma.1–4 The origin of the tumor is not clear. Pathologically, a tumor composed of small
and round cells is considered to be original in the neuroectoderm through electron microscopy and immunohistochemical
analysis. Mesenchymal-stem cells, which are deemed to originate from primitive bone marrow, usually have the
following features: Modified by fusion transcripts involving EWS-ERG or EWS-FLI1 genes.5–8 ES’s clinical manifesta-
tions are not specific, mainly manifested as local masses, pain, etc.; X-rays manifested as osmotic destruction of the
backbone, with onion skin-like and needle-like periosteal reactions. There are ethnic differences in its incidence, that
European and American populations is higher than that in Asian populations. There are also differences in treatment
effects. Although researchers have worked hard to improve the treatment and diagnosis plan, people with metastases or
relapses at the time of diagnosis still show poor prognosis.9 The wide application of bioinformatics analysis and
microarray technology at the genomic level, especially the screening of gene heredity and variation, is conducive to
our screening of functional pathways and differentially expressed genes involved in the ES mechanism. However, the
independence and false positives of microarray analysis make it difficult for us to obtain reliable results. Therefore, to
screen potential biomarkers of ES, we downloaded and analyzed 3 mRNA data sets from the Gene Expression Omnibus
(GEO) database to obtain the DEGs between non-tumor tissue and tumor tissue. Subsequently, a series of analyses were
carried out, such as protein interaction (PPI) network, gene ontology (GO), pathway enrichment analysis, immune
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analysis, survival analysis, etc., to help us understand the molecular mechanism of carcinogenesis. Finally, 629 DEGs
and 10 hub genes were screened out.

Materials and Methods
Gene Chip Data
GEO10 is a public genomics database with a high storage capacity in the entire microarrays dataset and gene expression data.
Three gene datasets were downloaded from GEO, which are GSE68776,11 GSE4554412,13 and GSE17674.14–16 Transform
the platform probe information into corresponding gene symbols. The GSE68776 dataset contains 32 tumor biopsy speci-
mens and 33 normal adult tissue samples. GSE45544 contains 8 Ewing sarcoma patient samples (MuET-x), 6 Ewing sarcoma
patient samples (TUMK00XX) and 22 normal tissues (PBMC, spleen, thymus, stomach, uterus, fetal brain, fetal liver)
sample. GSE17674 contains the Ewing sarcoma family from 44 tumor patients and 18 normal muscle samples.

DEG Recognition
GEO2R is an interactive web tool. Use GEO2R to compare multiple sets of samples to identify DEG across experimental
conditions. The false discovery rate of Benjamini and Hochberg and the adjusted P-value (adj.P) can be used to limit
false positives and find statistically significant genes. Adjust the probe set, delete the probe set without the corresponding
gene symbol, and delete the gene with multiple probe sets. LogFC <-1 or logFC (fold change)> 1, adj.P <0.01, the above
three conditions are considered to be statistically significant.

DEG’s GO and KEGG Enrichment Analysis
DAVID (The Database for Annotation, Visualization and Integrated Discovery) (v6.8)17 helps researchers understand the
biological significance behind many genes through a comprehensive set of functional annotation tools. KEGG (https://
www.kegg.jp) is a resource database, molecular data sets generated by genome sequencing and other high-throughput
experimental technologies, using molecular-level large-scale information to understand biological systems.18 The gene
ontology (GO) knowledge base is the world’s largest knowledge base of gene functions and information sources. The
information in this knowledge base is the basis for the computational analysis of genetics and molecular biology
experiments in biomedicine, that is readable by both humans and machines.19 DAVID online database was used for
biological analysis of DEG, then, P<0.05 was considered statistically significant.

Network (PPI) and Module Analysis
STRING (V11.0) (http://string-db.org) is a database of predicted protein–protein interactions. The interactions include
physical and functional associations, that originate from the transfer of information between predictive and computational
organisms, as well as the interaction of other (main) database aggregations.20 Using STRING to analyze the function of
proteins, that may provide information about the mechanism of related diseases. In our study, the STRING database was
used to construct the DEG protein interaction network, and the interactions with a comprehensive score (supported by
data)>0.4 were considered to be statistically significant. Cytoscape (v3.8.0) is an open-source application software used
to visualize complex networks in bioinformatics and integrate network attribute data.21 Cytoscape’s plug-in MCODE
(version v2.0.0) is used to cluster topology on a given network to find highly interconnected areas.22 CytoHubba (v0.1) is
another plug-in in Cytoscape. It uses a variety of topology algorithms to explore and predict important nodes and subnets
in the network.23 Use Cytoscape to make a protein interaction network (PPI), and then use MCODE to analyze the
important modules. Select parameters: MCODE score>5, k score=2, degree cutoff=2, maximum depth=100, node score
cutoff=0.2. Then filter out the key sub-networks, namely hub genes (a total of 10) through the cytoHubba in the module.
Finally, use DAVID to analyze the hub genes by KEGG and GO.

Selection and Analysis of Key Genes
Oncomine is a tumor gene chip database that can be used to analyze gene expression differences and predict co-expressed
genes. It can also be classified according to clinical information such as issue type, tumor stage and grade.24 Using the
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Oncomine database, under the Ewing’s sarcoma classification, the top ten co-expressed genes of each hub gene were
selected. After being classified, a total of 85 genes including genes were obtained. Draw the co-expression network
through String and Cytoscape. BiNGO (Biological Network Gene Oncology) (v3.0.3) is a web tool used to find that
certain gene ontology (GO) are statistically overrepresented in a certain set of genes or biological networks.25 We used
BiNGO, a plug-in of Cytoscape, to analyze the biological process of the hub gene and made a network interaction map.
UCSC Xena is a multi-omics online exploration tool for clinical or phenotypic data.26 The hierarchical clusters and
sample types of hub genes were constructed by UCSC Xena. TIMER is a broad resource tool for systematic analysis of
cancer immune infiltration.27–29 TIMER (v2.0) was used to analyze the immune infiltration of hub genes, then, showed
the correlation between gene expression and immune analysis, the correlation between gene expression and clinical. The
hub gene sample code needs to be downloaded from the TCGA (The Cancer Genome Atlas) (https://portal.gdc.cancer.
gov/) database for Immune infiltration analysis. OncoLnc (http://www.oncolnc.org) is a tool for interactively exploring
the relevance of survival.30 Oncolnc was used to analyze the overall survival of hub genes. Seven genes were obtained
through the results of survival analysis and immune correlation analysis. Then use Oncomine to analyze and compare the
expression of 8 genes in different sarcoma types, and 3 key genes were screened out. Finally, analyze the correlation
between the key gene’s expression and Ewing’s sarcoma tumor grade, stage, EWSR1-FLI1 fusion and TP53 mutation on
Oncomine.

Results
Identify DEGs in Microarrays
After standardizing the microarray results, DEG was determined (8207 in GSE68776, 2115 in GSE45544, and 28893 in
GSE17674) (Figure 1A). As is shown, the picture of Venn (Figure 1B), the overlap between these 3 datasets contains 629
genes, consisting of 423 down-regulated and 206 up-regulated genes between ES tissue and non-cancer tissue.

GO and KEGG Enrichment Analysis of DEG
The functions and pathways of DEGs were analyzed by DAVID. GO analysis results showed that the biological process
(BP) changes of DEGs were significantly obvious in protein phosphorylation, regulation of related pathways by p53
mediator, intercellular adhesion, and mitotic cell cycle. The changes in molecular function (MF) mainly includes protein
kinase activity, carbohydrate binding, cadherin binding involved in cell-cell adhesion, oxidoreductase activity, and
protein serine/threonine kinase activity. The cell composition (CC) changes of DEGs mainly includes sarcoma, spindle
pole, and cell adhesion junctions. KEGG pathway analysis shows that DEG is mainly rich in cell cycle, glioma, cancer
pathway and P53 pathway (Table 1).

PPI Network and Module Construction
The PPI network (Figure 1C) and the most important modules (Figure 2A) were built through Cytoscape. CytoHubba
was then used to screen out the genes (Figure 2B), of which CCNB2 is an up-regulated gene, and the rest are the down-
regulated genes. The functional analysis of hub genes by DAVID showed that the up-regulated genes in this module are
mainly enriched in cell division and cycle, mitosis, protein binding, etc., and the down-regulated genes are mainly
enriched in protein kinase activity, protein localization to kinetochore, protein phosphorylation, chromosome centromere
regions, etc. (Table 2).

Selection and Analysis of Key Genes
We screened out 10 hub genes. The names and functions of these genes are shown in Table 3. Oncomine, String and
Cytoscape were used to plot the co-expression network of these genes (Figure 3A) and biological process analysis
diagram (Figure 3B). Through hierarchical clustering, we can see that pivot genes can basically distinguish ES samples
from non-tumor samples (Figure 4A). The correlation between gene expression and clinical results (Figure 4B) showed
that among 260 patients with sarcoma, the expression levels of AURKB, BUB1, CDCA8, CDK1, MAD2L1, and
MCOPH were higher. The correlation between immune infiltration and gene expression is shown in Figure 5. Survival
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analysis showed that the overall survival rate of patients with CDCA8, NCAPH, CDK1, MAD2L1, CCNB2, and FANCI
was relatively high (>30%) (Figure 6). Combining the results obtained in Figures 4B, 6 and 8 genes (AURKB, BUB1,
CDCA8, CDK1, MAD2L1, FANCI, NCAPH and CCNB2) were screened out. Through the screening of 8 genes, the key
genes are CDCA8, MAD2L1 and FANCI (Figure 7). Finally, the analysis lists several expression patterns of the three
genes that are relatively important in ES (Figure 8). Based on the above analysis, it is suggested that CDCA8, MAD2L1
and FANCI may have a great importance in the occurrence or progression of ES.

Discussion
In the past few years, constantly updated technologies have made contributions to obtain more accurate diagnosis and
finer classification of diseases, that have highlighted the importance of molecular heterogeneity between and within
tumors and secondary genetic changes. Some new large-scale sequencing technologies have helped exploration the
genomic pattern of Ewing’s sarcoma, proving that ES is a cancer related to gene fusion, and belongs to the transcription
factor family of EWSR1 and ETS (especially FLI1) repeated translocations.31–33 Similar to other cancers caused by gene
fusions, ESFT has a low somatic mutation load, indicating that the fusion of EWSR1-ETS has an advantage as a driver.
We also need to pay attention to mutations that lead to cancer recurrence, including several tumor suppressors such as

Figure 1 (A) The volcano plot shows the relationship between the fold change and the P value in each group of microarrays. Red is an up-regulated gene, and blue is
a down-regulated gene. Adjust P value <0.05. (B) Venn diagram, select DEG fold change> 2, P value <0.01, 3 microarray data sets show that 629 genes overlap. (C)
629DEG’s PPI network.
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STAG2, TP53 and CDKN2A. More notably, ESFT shows obvious mutations in genes involved in the kinase signaling
pathway.34 Targeted fusion is achieved through changes in the related transcriptome or epigenome, It has always been an
active and challenging field.

Table 1 Enrichment Analysis (629DEG’s)

Item Description or Name Count in Set P-value

GO:0005913 Cell-cell adherens junction 24 5.10E-04
GO:0005899 Insulin receptor complex 2 0.096175434

GO:0042383 Sarcolemma 9 0.00713397

GO:0000922 Spindle pole 10 0.010290216
GO:0005925 Focal adhesion 23 0.011379205

GO:0004672 Protein kinase activity 26 6.22E-04

GO:0016491 Oxidoreductase activity 13 4.19E-02
GO:0001047 Core promoter binding 8 0.005995515

GO:0035064 Methylated histone binding 7 0.009061117
GO:0098641 Cadherin binding involved in cell-cell Adhesion 19 0.010937265

GO:0048661 Positive regulation of smooth muscle cell proliferation 7 0.018309355

GO:0048146 Positive regulation of fibroblast proliferation 7 0.011251043
GO:0046777 Protein autophosphorylation 14 0.007695992

GO:0030332 Cyclin binding 4 0.029245751

GO:0004674 Protein serine/threonine kinase activity 21 0.034002412
GO:0001649 Osteoblast differentiation 9 0.029806392

GO:1901796 Regulation of signal transduction by p53 class mediator 14 4.14E-04

GO:0000086 G2/M transition 12 0.008889738
GO:0000082 G1/S transition 15 1.27E-05

GO:0098609 Cell adhesion 18 0.015253207

hsa04110 Cell cycle 17 1.13E-05
hsa05214 Glioma 11 1.18E-04

hsa05200 Pathways in cancer 25 0.010072395

hsa04115 p53 signaling pathway 7 0.036457409

Figure 2 (A) The important module is obtained from a PPI network with 48 nodes and 782 edges. Red is an up-regulated gene; light blue is a down-regulated gene. (B)
Using cytohubba’s MCC algorithm to screen out the top ten genes in the module, we can see the connection between them. The weight of these genes in the module
network becomes higher as the color darkens.
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In this study, we analyzed 3 mRNA microarray data sets and screened out 629 differentially expressed genes (423
down-regulated and 206 up-regulated genes). Then the hub gene was identified for functional enrichment analysis to
explore the interaction between DEGs. The down-regulated genes are mainly enriched in kinase activity, protein
localization to kinetochore, protein phosphorylation, chromosome centromeric regions, etc. The up-regulated genes are
mainly enriched in protein binding, cell cycle and cell division, etc. We all know that mitosis and cell cycle processes
have a great influence on tumor dysregulation.35–37 Many tumor processes also involve protein kinases. For instance, in
various human malignant tumors, it is very common for Protein kinases to facilitate signal transduction of MAPK/ERK,
making it the key molecule in the dysregulation of this pathway. Consequently, the MAPK becomes a key signaling
pathway involved in tumorigenesis and regulating the uptake of glucose by malignant cells.38 Phosphorylation is
a relatively common post-translational modification (PTM), which regulates many cell functions under healthy

Table 2 Enrichment Analysis (10DEG’s)

Item Description or Name Count in Set FDR

Up
GO:0051301 Cellular division 7 6.26E-09

GO:0007067 Nuclear division 5 5.52E-06

GO:0005515 Protein binding 10 2.79E-03
hsa04114 Oocyte meiosis 4 3.99E-05

hsa04110 Cell cycle 4 5.57E-05

hsa04115 p53 signaling pathway 2 4.78E-02
Down
GO:0004674 Protein threonine/serine kinase activity 4 8.33E-04
GO:0034501 Localization to kinetochore of the protein 2 5.35E-03

GO:0004672 Kinase activity of the protein 3 1.47E-02

GO:0045171 Intercellular bridge 2 2.15E-02
GO:0006468 Protein phosphorylation 3 2.33E-02

GO:0000775 Chromosome, centromeric region 2 2.78E-02

GO:0000777 Condensed chromosome kinetochore 2 4.22E-02

Table 3 Annotation (10DEG’s)

Number Gene
Symbol

Name Partial Function Description

1 BUB1 BUB1 mitotic checkpoint

serine/threonine kinase

Important for correct chromosome alignment and spindle assembly inspection

2 CDK1 Cyclin dependent kinase 1 It plays a key role in controlling the eukaryotic cell cycle (such as regulating the initiation

of mitosis and the centrosome cycle).

3 CCNB2 Cyclin B2 It is necessary to control the cell cycle during the G2/M transition period.
4 AURKB Aurora kinase B It is the threonine/serine-protein kinase component of CPC (chromosomal passenger

complex).

5 CDCA8 Cell division cycle associated
8

It is an integral part of CPC (CPC is the key regulator of mitosis).

6 MAD2L1 Mitotic arrest deficient 2 like

1

It is an integral part of the spindle assembly checkpoint. Its function is to make all

chromosomes align correctly in the metaphase plate and prevent the early start of the
later period.

7 PLK4 Polo like kinase 4 Play a key role in centriole replication.

8 CENPF Centromere protein F It is necessary for the function of kinetochore and the segregation of chromosomes in
mitosis.

9 FANCI FA complementation group I It plays a vital role in the repair of DNA double-strand breaks.

10 NCAPH Non-SMC condensin
I complex subunit H

Regulatory subunit of the condensin complex, a complex required for conversion of
interphase chromatin into mitotic-like condense chromosomes.
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conditions. However, changes in the phosphorylation pathway can lead to serious diseases, especially cancer.39 The
instability of chromosomes is considered a portent of bad tumors; and the strict regulation of the region where the
kinetochore and chromosome centromere are combined also reveals the possible role of RNA on the centromere.44 In
short, these theories and our results finally coincide.

Figure 3 PPI-network and Bioanalysis chart. (A) Co-expression of hub genes. The blue nodes are co-expressed genes, and the red nodes are hub genes. (B) Some biological
process diagrams of hub genes. The size of the node refers to the ontology of the gene. The color depth of the node refers to the adjusted P value.

Figure 4 (A) Hierarchical clustering: down-regulated genes are marked in blue, and up-regulated genes are marked in red. Sample type: Different colors in the picture
correspond to different sample types. The sarcoma sample data (n=271) comes from the TCGA database. P<0.05 is considered statistically significant. (B) The correlation
between gene expression and clinical outcome. (SARC, n=260).
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Among the 10 genes we screened, CDCA8, MAD2L1 and FANCI are of great significance. Some studies have shown
that overexpression of CDCA8 contributes to the proliferation of tumor cells, such as colorectal cancer and lung cancer
cells.40,41 In addition, high CDCA8 expression has also been found to indicate a poor prognosis for gastric cancer.42

However, there is currently no evidence suggesting that CDCA8 is a specific marker for the above tumors. Based on
RNA sequencing, bioinformatics analysis, and protein levels, CDCA8 silencing can down-regulate the levels of cyclin
B1 and p-cdc2 and explain how it induces G2/M arrest.43 Selective suppression of the CDCA8-AURKB pathway may
also become an effective way to treat cancer.40 According to our research, CDCA8 may be a potential treatment target for
ES, but it has yet to be confirmed. MAD2L is associated with mitochondrial checkpoints. Defects in the control of
mitotic checkpoints are thought to contribute to chromosomal instability and aneuploidy.44 Some studies suggest that
MAD2L1 is associated with endometrial cancer, gastric cancer, and liver cancer. In the case of endometrial cancer with
lymphatic metastasis, MAD2L1 is significantly overexpressed.45 In gastric cancer, the up-regulation of miR-30a-3p can
reduce the expression of MAD2L1, which in turn inhibits its cell proliferation.46 In addition, certain changes in HCC
cells (such as proliferation and migration)47 can be controlled by restraining MAD2L1 and miR-200c-5p. Therefore,
defects in mitotic checkpoints may help to increase the sensitivity of certain tumor cells to mitotic spindle inhibitors. We
highly suspect that MAD2L may affect the mitosis process of ES cells, according to the analysis of MAD2L1 in Figure 8.
In the study of FANCI gene expression, most of them are related to malignant hematological diseases of children, but
reports related to lung cancer and breast cancer are also not rare. Children’s FANCI gene was detected in 94 genes related
to hematological malignancies. The sequence analysis and testing of this gene was done by the US INVITAE
laboratory.48 In lung adenocarcinoma tissues, compared with neighboring normal tissues, the mRNA and protein of
FANCI are overexpressed.49 According to a recent study, FANCI may promote cell metabolism when DNA repair is not
required.50 Importantly, a study verified that there is a certain relationship between FANCI and sarcoma. They observed
that 9 of 66 patients (13.6%) had 10 types (including FANCI and TP53) cancer-related genes contain at least one

Figure 5 The relationship between gene expression and immune infiltration.
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germline mutation gene that can predict disease. They also successfully verified that the two variants (FANCE and
FANCI) did not show a loss of heterozygosity, but structural data indicated that the positions of these two genes were
related to important protein interactions.51–53 This finding further supports our belief that FANCI may be one of the
potential key biomarkers of Ewing’s sarcoma.

Document retrieval results indicate that the interaction between Ewing’s sarcoma and hub genes (BUB1, CDK1,
CCNB2, AURKB, PLK4, CENPF, and NCAPH) has not been widely reported. Overexpression of BUB1 plays an
important role in breast cancer.54 Dysregulated mitotic kinases are often associated with cancer. In addition, miR-10b,
which is highly related to the BUB1 gene, was down-regulated in osteosarcoma samples.55 Some scholars proposed
that CDK1 may be related to breast cancer and explained that circMETTL3 affects breast cancer through the
circMETTL3/miR-31-5p/CDK1 axis.56 In pancreatic cancer cells driven by K-Ras, knocking out cell cycle regulators
CDK1 (or CDK2) or transcription regulators CDK7 (or CDK9) is as effective as knocking out K-Ras.57 The high
expression of CCNB2 has some effects on bladder cancer, lung cancer and colorectal cancer.58,59 The expression of
AURKB is often associated with lung cancer and liver cancer. They believe that the interaction between RB1 and
AURKB may be related to the small cell lung cancer driver.60 PLK4 is associated with lung cancer and tumors of the

Figure 6 Survival analysis. CDCA8, NACPH, CDK1, MAD2L1, CCNB2 and FANCI have a relatively high overall survival rate (>30%). P<0.05 was considered statistically
significant.
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reproductive system, nervous system, digestive system, etc. According to data, Plk4 is widely over-expressed in
tumor samples from cancer patients.61 The abnormal expression of CENPF is related to many malignant tumors,
including liver cancer and breast cancer.62–65 Studies have shown that the interaction between LANA and CENPF has
an impact on the genome of Kaposi’s sarcoma-associated herpes virus (KSHV).66 The expression of NCAPH is
related to breast cancer, lung cancer and colon cancer. In patients with hormone receptor-related breast cancer, the
upregulation of NCAPH indicates a poor prognosis.67 The expression of NCAPH and Mcl-1 suggests that patients
with non-small cell lung cancer may have a poor prognosis.68 Many NCAPH mutations have been found in patients
with colon cancer.69

In summary, this study aims to screen and identify DEGs that may be involved in the carcinogenesis or progression of
ES. 629 DEGs and 10 hub genes were screened using the public gene expression comprehensive dataset. Furthermore,
survival analysis suggested that CDCA8, NACPH, CDK1, MAD2L1, CCNB2 and FANCI were significantly associated
with patient prognosis. Especially CDCA8, MAD2L1 and FANCI which may provide new clues for studying the
mechanism of ES from the perspective of bioinformatics. However, further experiments and exploration are still needed
to verify these results.

Figure 7 Comparison of genes in multiple analyses. FANCI: Cancer Type: Sarcoma. 1. Neale Multi-cancer. 2. Neale Multi-cancer 2; MAD2L1: Cancer Type: Sarcoma. 1.
Barretina CellLine 2. 2. Neale Multi-cancer. 3. Rothenberg CellLine; CDCA8: Cancer Type: Sarcoma. 1. Barretina CellLine 2. 2. Neale Multi-cancer. 3. Neale Multi-cancer 2.
4. Rothenberg CellLine; NCAPH: Sarcoma Type: Ewing’s Sarcoma. 1. Baird Sarcoma. Cancer Type: Sarcoma. 2. Neale Multi-cancer. 3. Neale Multi-cancer 2; AURKB: Cancer
Type: Sarcoma. 1. Barretina CellLine 2. 2. Bittner Multi-cancer. 3. Neale Multi-cancer. 4. Wooster CellLine; CCNB2: Sarcoma Type: Ewing’s Sarcoma. 1. Bittner Sarcoma.
Cancer Type: Sarcoma. 2. Neale Multi-cancer. 3. Rothenberg CellLine; BUB1: Cancer Type: Sarcoma. 1. Bittner Multi-cancer. Sarcoma Type: Ewing’s Sarcoma. 2. Henderson
Sarcoma; CDK1: Sarcoma Type: Ewing’s Sarcoma. 1. Baird Sarcoma. Cancer Type: Sarcoma. 2. Barretina CellLine 2. The rank for a gene is the median rank for that gene
across each of the analyses. The p-value for a gene is its p-value for the median-ranked analysis. In the heat map of 8 genes, CDCA8, MAD2L1 and FANCI have more or
higher expressions.
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