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Introduction
Research on Ebola virus (EBOV) has focused on preventing and controlling the infection using
vaccines and antiviral therapies. Given the long-term challenge of the current epidemic and the
likelihood of future outbreaks of viral hemorrhagic fevers caused by the filoviruses, including
EBOV and Marburg virus, efforts should also focus on developing therapies to reduce the
deadly complications of infection with these viruses [1,2]. There are striking similarities in the
syndromes caused by bacterial and fungal sepsis [3–14] and by EBOV [15–27] (Table 1). Sep-
sis, defined as the systemic inflammatory response to infection, causes a spectrum of pathology
ranging from mild, basic physiologic and laboratory derangements to shock, multiple organ
failure, and death [3,7]. While the term “sepsis” is generally used in the context of bacterial and
fungal infections, all microorganisms, including viruses, can cause sepsis. This Opinion argues
that the wealth of knowledge about bacterial and fungal sepsis (herein referred to as “classical
sepsis”) should be used to inform the development of adjunctive therapies to improve the out-
come of EBOV and other viral hemorrhagic fevers.

Pathophysiology of Classical Sepsis and EBOV
In classical sepsis, activation of innate immune pathways via pattern recognition receptors,
such as the toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-
like receptors, initiates systemic inflammation [29–31]. Maladaptive responses in sepsis cause
excessive inflammation, endothelial dysfunction, coagulopathy, vascular leak, shock, and organ
failure [11–13]. Analogous to the “cytokine storm” of classical sepsis, EBOV also causes sys-
temic inflammation, endothelial dysfunction, coagulopathy, vascular leak, shock, and organ
failure [17–25]. Fatal EBOV is associated with high levels of pro-inflammatory cytokines, che-
mokines, the anti-inflammatory cytokine IL-10, and nitric oxide [17,19,20]. Similar to classical
sepsis, EBOV also causes immune suppression and a predisposition to secondary bacterial
infections [11,15,23]. This latter complication has prompted the administration of empiric
antibiotics to patients with EBOV [24–26]. It is possible that classical sepsis therapies may be
beneficial in EBOV, in part because of their impact on the complications of secondary bacterial
sepsis.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005088 October 1, 2015 1 / 9

OPEN ACCESS

Citation: Hellman J (2015) Addressing the
Complications of Ebola and Other Viral Hemorrhagic
Fever Infections: Using Insights from Bacterial and
Fungal Sepsis. PLoS Pathog 11(10): e1005088.
doi:10.1371/journal.ppat.1005088

Editor: Glenn F Rall, The Fox Chase Cancer Center,
UNITED STATES

Published: October 1, 2015

Copyright: © 2015 Judith Hellman. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: There were no funding sources for this
manuscript. Thus, no funding sources had any role in
the collection of information, analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The author has declared that
no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1005088&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The mechanisms underlying immune and endothelial cell dysfunction and organ failure in
EBOV have yet to be unraveled. Infection of monocytes, macrophages, and dendritic cells leads
to acute inflammation [16]. Early activation and subsequent massive apoptosis of T-lympho-
cytes is associated with fatal outcomes in EBOV [17,32]. The innate immune system has been
implicated in the beneficial and harmful responses to EBOV [15,27,33,34]. The EBOV glyco-
protein (GP) is a putative TLR4 agonist [27,35]. The shed surface GP of EBOV has been
detected in the blood during infection; it activates macrophages and endothelial cells and
induces endothelial cytotoxicity and permeability [27,36]. Finally, EBOV suppresses antiviral
immunity by interfering with signaling via the innate immune receptor, RIG-I, and by interfer-
ing with type I interferon (IFN) production and signaling [28,37–40]. The resultant increased
viral load may further exacerbate inflammation by activating innate immune pathways and by
causing cytolysis.

Defining Approaches to the Viral Hemorrhagic Fevers Based on
Classical Sepsis Research
Described below are strategies that have been studied in classical sepsis and could be applicable
to sepsis caused by EBOV and other viral hemorrhagic fevers (Fig 1). Recognizing that some of
these strategies will not be feasible in resource-limited areas, it would nonetheless be reasonable
to move forward with preclinical and clinical studies to further characterize the pathophysiol-
ogy and develop approaches to reduce the complications of EBOV sepsis.

Supportive therapies
The Surviving Sepsis Campaign guidelines provide detailed instructions for the care of patients
with sepsis based on state-of-the-art knowledge and therapeutics [41]. Mainstays of manage-
ment include antibiotics, procedures to remove infectious foci, and the administration of basic
supportive therapies (including fluids and vasopressors) to maintain tissue perfusion. More
aggressive therapies are used to support patients through sepsis-induced organ failure. For
example, ventilator support and renal replacement therapy are used to manage respiratory or
renal failure, respectively [41]. Recent reports suggest that early administration of fluids, elec-
trolytes, and nutrition reduces shock and organ failure in EBOV [23–26]. Thus, strong efforts
should continue to be made towards making these basic therapies widely available. Although
intensive care therapies such as mechanical ventilation and renal replacement therapy may not
be available in all areas, they should be utilized in patients being cared for in countries with

Table 1. Similarities between Severe and Fatal EBOV and Classical Sepsis.*

Parameter Similarities References

Systemic
Inflammation

Increased levels of pro-inflammatory cytokines (e.g., interleukin 6 [IL-6]), chemokines (IL-8),
and the anti-inflammatory cytokine IL-10

Classical Sepsis: [5,10,11];
EBOV: [17,19,20]

Immune
Dysfunction

Increased susceptibility to secondary bacterial infections, lymphocyte apoptosis Classical Sepsis: [4,14]; EBOV:
[23,28]

Coagulopathy Increased D-dimers, thrombomodulin, ferritin, disseminated intravascular coagulation,
thrombocytopenia

Classical Sepsis: [9,12]; EBOV:
[17,18,20]

Endothelial
Dysfunction

Vascular leak with hypovolemia Classical Sepsis: [13]; EBOV:
[23–25,27]

Organ Dysfunction Renal insufficiency, hepatic dysfunction, respiratory failure, neurologic dysfunction Classical Sepsis: [6,8,11]; EBOV:
[21–25]

* Classical sepsis is defined as bacterial and fungal sepsis

doi:10.1371/journal.ppat.1005088.t001
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adequate resources, since recent data strongly suggest that these therapies improve the out-
come of severe EBOV [23,25].

Reduce acute inflammation
Numerous sepsis trials have used agents to neutralize specific pro-inflammatory mediators or
to block inflammatory receptors. These directions have not yet been successful in reducing the
mortality of classical sepsis [42]. In contrast to the heterogeneity of classical sepsis, EBOV sep-
sis is caused by a single microbe whose pathogenesis follows a reasonably characteristic course.
Therefore, it is conceivable that the appropriately timed administration of an agent to neutral-
ize the effects of an inflammatory mediator could be beneficial in EBOV. In this regard, high
levels of IL-6 have been reported to correlate with fatal EBOV [19], and a humanized antibody
to the IL-6 receptor has been used in humans to safely treat rheumatoid arthritis [43]. How-
ever, this approach is highly speculative, as high IL-6 levels have not yet been proven to

Fig 1. Potential approaches to sepsis caused by viral hemorrhagic fevers based on insights from classical sepsis. The schematic outlines potential
approaches to reducing the downstream complications of the viral hemorrhagic fevers, based on what is currently known about the pathophysiology of EBOV
sepsis and the state of the art of classical sepsis research.

doi:10.1371/journal.ppat.1005088.g001
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mediate fatal outcomes of EBOV. Furthermore, although high cytokine levels correlate with
fatal EBOV, paradoxically, an early robust pro-inflammatory response is associated with better
outcomes in EBOV infection [32]. This observation suggests that early administration of agents
to neutralize pro-inflammatory mediators such as IL-6 could, in fact, worsen outcomes by
interfering with antiviral immunity and/or by increasing susceptibility to secondary bacterial
infections.

One intriguing possibility would be to use a TLR4 antagonist such as Eritoran to reduce
activation of leukocytes and endothelial cells. A TLR4 antagonist might reduce systemic
inflammation and endothelial dysfunction induced by the EBOV-shed GP, a putative TLR4
agonist [27,35], without interfering with the initiation of protective responses via other intra-
cellular innate immune receptors, such as RIG-I. Despite the recent negative Phase III random-
ized controlled trial (RCT) in classical sepsis [44], and given the safety of Eritoran in humans,
it would be reasonable to study this approach in preclinical studies and to consider a limited
trial in humans with EBOV.

Reverse immune suppression
Sepsis and EBOV disease cause immune suppression. Current sepsis studies are focused on
restoring immune function using cytokines (e.g., IL-7, IL-15, GM-CSF, and type I IFN) or
blocking co-inhibitory molecules (e.g., PD-1 and CTLA-4) [14]. Early treatment with immune-
enhancing agents may promote earlier adaptive immunity and facilitate more rapid resolution
of infection. This approach might be beneficial in EBOV, in which higher viral loads correlate
with increased mortality [20,22].

Promote inflammation resolution
The failure to resolve acute inflammation is believed to contribute to poor outcomes in sepsis.
Specialized pro-resolving lipid mediators, including resolvins, maresins, and lipoxins, can
reduce inflammation without compromising anti-microbial defenses and are being investi-
gated in preclinical sepsis studies [45–50]. The endocannabinoids, another class of endogenous
lipids, have received attention recently for their ability to modulate inflammation [51–53]. The
availability and safety of plant-derived cannabinoids suggests that, if effective, they could be
viable treatment options. Statins have inflammation-resolving properties and have been pro-
posed for EBOV [45,54]. However, some recent meta-analyses of RCTs have failed to show a
survival benefit for statins in classical sepsis [55,56].

Corticosteroids
Following the Surviving Sepsis Campaign guidelines [41], corticosteroids could potentially be
used in patients with EBOV and refractory shock. However, although low-dose corticosteroids
can reverse shock, recent meta-analyses of RCTs in classical sepsis have failed to show that cor-
ticosteroids improve survival [57,58]. Based on the lack of definitive proof that corticosteroids
improve outcomes in sepsis and the potential for corticosteroids to impair adaptive immunity
and exacerbate gastrointestinal bleeding, their routine use in EBOV is not recommended.

Modulate coagulation pathways
The coagulopathies of classical sepsis and EBOV are initiated through activation of tissue factor
[9,59]. At the extreme, these syndromes cause disseminated intravascular coagulation (DIC).
The mixed coagulopathy of EBOV presents a conundrum as to whether to target coagulation,
anticoagulation, or fibrinolysis. Studies in EBOV have focused on modulating proximal
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coagulation pathways, which may reduce bleeding and microvascular thrombosis. Treatment
with an inhibitor of tissue factor-initiated coagulation was reported to improve outcomes in
nonhuman primates with EBOV, suggesting that this may be a viable approach in humans
[60]. Neither activated protein C nor tissue factor pathway inhibitor (TFPI) seem appropriate
for testing in EBOV based on negative RCTs in classical sepsis [61,62] and concerns that they
may exacerbate bleeding.

Stabilize the endothelium
The proteins VE-cadherin, Slit, Robo, Angiopoietin 2, and TIE2—all involved in maintaining
the endothelial barrier—are being explored as therapeutic targets in classical sepsis [63–65]
and are potential targets in EBOV. Combined treatment with statins and angiotensin receptor
blockers, which each have endothelial stabilizing effects, has also been proposed to treat the
vascular leak associated with EBOV [54].

Bind cell-free heme
The syndrome of DIC causes hemolysis with hemoglobin release. Cell-free heme potentiates
inflammation induced by microbial products [66,67]. Recent reports that the heme binding
proteins hemopexin and haptoglobin are protective in sepsis models [66–68] suggest that these
proteins could be viable adjuvant therapies for EBOV.

Concluding Remarks
Although we are encouraged by the reduction in the current EBOV epidemic, recently, cases of
EBOV have been reported again in Liberia [69], and it is likely that there will be future out-
breaks of EBOV and other viral hemorrhagic fevers. Numerous lives may again be lost while
developing a vaccine. Insights from classical sepsis research could be used to develop
approaches to address the complications of the sepsis that can be common to the viral hemor-
rhagic fevers. These approaches could be implemented well before a vaccine is available and
could hugely impact the morbidity and mortality of EBOV and other viral hemorrhagic fevers.
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