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Abstract: Crop growth and yield often face sophisticated environmental stresses, especially the low
availability of mineral nutrients in soils, such as deficiencies of nitrogen, phosphorus, potassium,
and others. Thus, it is of great importance to understand the mechanisms of crop response to
mineral nutrient deficiencies, as a basis to contribute to genetic improvement and breeding of crop
varieties with high nutrient efficiency for sustainable agriculture. With the advent of large-scale
omics approaches, the metabolome based on mass spectrometry has been employed as a powerful
and useful technique to dissect the biochemical, molecular, and genetic bases of metabolisms in
many crops. Numerous metabolites have been demonstrated to play essential roles in plant growth
and cellular stress response to nutrient limitations. Therefore, the purpose of this review was to
summarize the recent advances in the dissection of crop metabolism responses to deficiencies of
mineral nutrients, as well as the underlying adaptive mechanisms. This review is intended to provide
insights into and perspectives on developing crop varieties with high nutrient efficiency through
metabolite-based crop improvement.
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1. Introduction

Along with the growing population, the demands for crop production have increased
gradually, as reflected by the 85% increase predicted from 2013 to 2050 [1,2]. In different
growth and development periods, crops often suffer many sophisticated environmental
stresses. Among them, deficiencies of mineral nutrients, such as nitrogen (N), phosphorus
(P), potassium (K), and others, are considered as the major constraints for crop growth and
production [3,4]. For example, a 30–40% decrease in crop yield may occur under low P avail-
ability, while crop yields can drop by 10–40% under varying levels of N deficiency [4–6].
To maintain crop growth and yield under poor soil nutrient conditions in traditional agri-
culture, large amounts of chemical fertilizers are supplied to soils, but most of them are
inevitably wasted due to low nutrient efficiency of crops and poor mobilization of nutrients
in soils [7,8]. For example, N use efficiency of most plants is only 30–50%, resulting in
50–70% of the N fertilizer lost by denitrification, leaching, and volatilization [9]. Excess
fertilizer amounts supplied to the soils lead to a waste of resources and increasing envi-
ronmental issues, such as soil hardening, surface and groundwater contamination, and
greenhouse gas emissions [10,11]. Therefore, developing crop varieties with high nutrient
efficiency through genetic improvement is a critical approach to reconcile increased crop
production with environmental sustainability.

To understand the adaptive mechanisms of crops to nutrient deficiency, a large
number of nutrient-responsive genes or proteins have been identified and character-
ized through high-throughput omics techniques, such as genomics, transcriptomics, and
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proteomics [12,13]. Due to the changes in gene transcripts, protein levels, and enzyme
activities not always being correlated, metabolites, the products of plant metabolism, are
regarded as the readouts of plant growth or developmental status [14]. Thus, metabolomics,
which is defined as qualitative and quantitative analysis of cellular metabolites based on
mass spectrometry (MS) coupled to gas or liquid chromatography (GC or LC) and nuclear
magnetic resonance (NMR) spectroscopy, has become an important complementary tool
for functional genomics and system biology studies in plants [15].

More than 200,000 metabolites are estimated to be present in plants, which may have
diverse functions in plant growth or cellular stress responses [14,16]. With the development
of the accurate and large-scale detection of metabolites, metabolomics, including untargeted
and targeted approaches, is now widely employed to identify differentially accumulated
metabolites (DAMs) in response of crops to nutrient deficiencies. In this review, therefore,
we mainly focus on recent advances in metabolomic dissection of crops in response to
deficiencies of various mineral nutrients, including N, P, K, and other nutrients. This
review also highlights the roles of key metabolites and the regulation of critical metabolic
pathways during nutrient deficiency, with the intention to provide some insights into and
perspectives on metabolite-based crop improvement.

2. Metabolisms Responsive to Nutrient Deficiencies in Crops
2.1. N Deficiency

As N is one of the most important macronutrients for crop growth and development,
its deficiency severely decreases crop biomass, inhibits chlorophyll content, and disrupts
photosynthesis and photorespiration, ultimately limiting crop yield [17–19]. A series of
physiological and molecular mechanisms underlying crop adaptation to N deficiency have
been demonstrated, such as coordinating carbon (C) and N metabolisms, regulating root
architecture, modulating phytohormone signaling, enhancing N uptake and translocation,
and accumulating stress tolerance-related compounds [8,20–24]. Since total N content
and crop growth are affected by N limitation, metabolome analysis has been performed
to identify N deficiency responsive metabolites and metabolic pathways, dissecting the
adaptive mechanisms through regulation of metabolic profiles in many crops, such as
rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), barley (Hordeum vulgare),
soybean (Glycine max), tomato (Solanum lycopersicum), and rapeseed (Brassica napus) [25–32].
A summary of metabolome analyses of crops responses to N deficiency is presented in
Table 1. Many of the identified DAMs can be integrated into specific metabolic pathways
regulated by low-N stress (Figure 1).

N deficiency has been shown to significantly decrease photosynthetic rate [29,33].
Several photosynthesis-related genes and proteins have been found to be downregulated
by N deficiency [12,25], which is closely related to the accumulation of carbohydrates
under N deprivation [34]. A variety of sugars, including fructose, galactose, glucose,
sucrose, and maltose, are markedly increased in N-deficient leaves of barley according to
metabolome analysis [35]. A similar result has been reported in apple leaves, where several
carbohydrates related to C metabolism, such as glucose-6-P, fructose-6-P, and glycerate-3-P,
are increased by N deficiency [33]. The accumulation of carbohydrates is believed to act as
a key signal to fine-tune the decrease in photosynthesis in plant leaves during N limitation.
Consistent with the reduction in photosynthesis, the tricarboxylic acid (TCA) cycle is also
inhibited in leaves during low-N stress [25,33,36]. For example, intermediate metabolites
involved in the TCA cycle, such as 2-oxoglutarate, citrate, isocitrate, succinate, fumarate,
and malate, are decreased in tomato leaves under N-deficient conditions [37].
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Table 1. Metabolome analyses of crop responses to N deficiency.

Crop Species Tissue Duration of
Treatment (days) Method Number of DAMs Main Changes in Metabolites or Metabolic Pathways Reference

Maize (Zea mays) a Leaves 20/30 GC–MS 70 (in total) Decreasing most amino acids; increasing starch and
secondary metabolites. [25]

Tomato
(Solanum lycopersicum) Leaves 5/15 LC/GC–MS 28/34 Decreasing amino acids and organic acids; increasing

Fru-6-P, Glc-6-P, and sedoheptulose-7-P. [26]

Roots 5/15 LC/GC–MS 28/34
Decreasing amino acids and organic acids; increasing
Fru-6-P, glucose, Glc-6-P, glycerate, pyruvate, ribulose,
fructose, and sucrose.

[26]

Rice (Oryza sativa) Shoots 5/15 CE–TOF MS 49/65 Decreasing L-aspartate, L-phenylalanine, GABA,
guanosine, adenine, and cytidine. [28]

Roots 5/15 CE–TOF MS 59/73
Decreasing nicotinamide, sorbitol-6P, glycero-3P,
L-phenylalanine, GABA, citrulline, acetylserine,
and histidinol.

[28]

Root exudates 5/15 CE–TOF MS 17/24 Increasing glutarate, adipate, 2-hydroxyisobutyrate,
succinate, 2-isopropylmalate, raffinose, and abscisate. [28]

Leaves 30 LC–ESI-MS/MS 432 Promoting TCA cycle to produce more energy and
α-ketoglutarate. [29]

Barley
(Hordeum vulgare) a Leaves 1/3/6/9/12/15/18 GC–MS 51 (in total) Decreasing all major amino acids. [27]

Roots 1/3/6/9/12/15/18 GC–MS 51 (in total) Increasing both minor and major amino acids at late stage. [27]

Shoots 20 GC–MS 51
Decreasing amino acids (glycine, asparagine, aspartic acid,
glutamine, lysine, and threonine); increasing sugars
(maltose, glucose, fructose, galactose, and psicose).

[35]

Barley
(Hordeum vulgare) a Roots 20 GC–MS 49 Decreasing amino acids (lysine, tyrosine, threonine,

ornithine, and glutamine) [35]

Soybean
(Glycine max) a Roots 14 GC–MS 36/40 Increasing soluble sugars and organic acids. [36]

Wheat
(Triticum aestivum) Grains 25 days post anthesis GC–MS 77 Increasing ornithine, cysteine, aspartate, and tyrosine;

promoting sugar accumulation. [31]
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Table 1. Cont.

Crop Species Tissue Duration of
Treatment (days) Method Number of DAMs Main Changes in Metabolites or Metabolic Pathways Reference

Rapeseed
(Brassica napus) Leaves 14 LC–ESI-MS/MS 175 Decreasing aspartic acid; increasing L-alanine. [32]

Rapeseed
(Brassica napus) Roots 14 LC–ESI-MS/MS 166 Increasing aspartic acid. [32]

Apple (Malus pumila) Leaves 30 LC–ESI-MS/MS 527 Increasing ornithine, arginine, and asparagine. [33]

Roots 30 LC–ESI-MS/MS 477 Decreasing cinnamic acid, cyanidin-3-O-glucoside, and
pelargonidin-3-O-glucoside [33]

DAMs, differentially accumulated metabolites. a Two genotypes used in the studies.
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phate), PEP (phosphoenolpyruvic acid), GABA (γ-aminobutyric acid), TCA (tricarboxylic acid), 
GS/GOGAT (glutamine synthetase/glutamate synthetase). 
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Similarly, under N-deficient conditions, most amino acids, including aspartic acid, lysine, 
glycine, threonine, asparagine, and glutamine, were decreased in barley leaves [35]. Inter-
estingly, the decreased amino acid metabolites may be attributed to the downregulated 
glutamine synthetase (GS) and glutamine aminotransferase (GOGAT) genes, which are 
involved in the conversion of ammonium to amino acids [33]. Furthermore, integrated 
analyses of transcriptomics and metabolomics in rice showed that the NADH-dependent 
glutamate synthase (OsGLT1) gene is downregulated by N deficiency, which is consistent 
with the decreases in glutamate concentration [29]. Similar results have also been obtained 
in leaves of soybean and tomato where amino acids were decreased by N deficiency 
[26,30]. The reduction in amino-acid levels under low-N stress is considered as an energy-
saving strategy. On the basis of the above results, it is reasonable to propose that a crop 
can adjust the balance between C and N metabolism to avoid metabolic inefficiencies and 
maintain crop growth under N deprivation.  

Similar to other abiotic stresses, N deficiency also causes the generation of reactive 
oxygen species (ROS), resulting in lipid peroxidation and triggering oxidative stress in 
crops if not well scavenged. For example, the content of H2O2 is significantly increased in 
apple leaves subjected to low-N treatment, generating oxidative stress [33]. In addition to 
induce the activities of antioxidant enzymes to eliminate ROS damage, the other adaptive 
change that alleviates oxidative stress during N deficiency in plants is the accumulation 
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[38,39]. It was reported that ascorbic acid, putrescine, and 5-hydroxytryptamine were 

Figure 1. Metabolic pathways changes in crop leaves under N deficiency. N deficiency inhibits the N
assimilation pathway and TCA cycle, resulting in large decreases in amino acids, while it accumulates
tolerance-related metabolites for reactive oxygen species (ROS) scavenging. The accumulated and
reduced metabolites are marked in red and blue, respectively. Abbreviations: P (phosphate), PEP
(phosphoenolpyruvic acid), GABA (γ-aminobutyric acid), TCA (tricarboxylic acid), GS/GOGAT
(glutamine synthetase/glutamate synthetase).

It has been demonstrated that N deficiency is bound to affect N metabolism. For
example, the concentrations of free amino acids were decreased by 12.5% in leaves of rice
exposed to low-N treatment [29]. In maize, a set of amino acids, such as glutamate, as-
paragine, alanine, serine, and glycine, were all decreased in leaves under N deficiency [25].
Similarly, under N-deficient conditions, most amino acids, including aspartic acid, lysine,
glycine, threonine, asparagine, and glutamine, were decreased in barley leaves [35]. Inter-
estingly, the decreased amino acid metabolites may be attributed to the downregulated
glutamine synthetase (GS) and glutamine aminotransferase (GOGAT) genes, which are
involved in the conversion of ammonium to amino acids [33]. Furthermore, integrated
analyses of transcriptomics and metabolomics in rice showed that the NADH-dependent
glutamate synthase (OsGLT1) gene is downregulated by N deficiency, which is consistent
with the decreases in glutamate concentration [29]. Similar results have also been obtained
in leaves of soybean and tomato where amino acids were decreased by N deficiency [26,30].
The reduction in amino-acid levels under low-N stress is considered as an energy-saving
strategy. On the basis of the above results, it is reasonable to propose that a crop can adjust
the balance between C and N metabolism to avoid metabolic inefficiencies and maintain
crop growth under N deprivation.

Similar to other abiotic stresses, N deficiency also causes the generation of reactive
oxygen species (ROS), resulting in lipid peroxidation and triggering oxidative stress in
crops if not well scavenged. For example, the content of H2O2 is significantly increased in
apple leaves subjected to low-N treatment, generating oxidative stress [33]. In addition to
induce the activities of antioxidant enzymes to eliminate ROS damage, the other adaptive
change that alleviates oxidative stress during N deficiency in plants is the accumulation of
stress tolerance-related metabolites. Among these metabolites, galactinol, raffinose, sugar
alcohols, ascorbic acid, and polyamines have been considered as ROS scavengers [38,39].
It was reported that ascorbic acid, putrescine, and 5-hydroxytryptamine were greatly
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accumulated in barley shoots [35], which are beneficial for the tolerance of barley to
low-N stress. Secondary metabolites are proposed to be important resistance substances
produced by plants during long-term adaptation to environmental stress. Metabolome
studies showed that flavonoid-related metabolites, such as cinnamic acid, dihydroquercetin,
pelargonidin-3-O-glucoside, and cyanidin-3-O-glucoside, were increased by N deficiency
in apple [33], which is likely to protect cells from oxidative stress damage. Furthermore,
under N limitation, β-alanine levels were found to be increased in leaves of rapeseed [32].
Increases in the levels of osmoprotectants, such as β-alanine, proline, and γ-aminobutyric
acid (GABA), are generally associated with enhanced low-N stress tolerance in plants [40],
but the exact roles of these metabolites in different crops remain to be investigated.

Another strategy for increasing low-N stress tolerance can be achieved by promoting
root elongation under N deficiency. Thus, metabolic profile changes in roots can reveal
the mechanisms underlying adaptation of a crop to N deficiency. For example, plant
hormones are found to play an important role in regulating root growth under low-N
stress [32]. The concentrations of gibberellic acid (GA) in rapeseed roots were significantly
increased under N deficiency, which may contribute to promoting root growth [32]. In
addition to phytohormones, increasing C partitions to roots is also necessary to increase
root growth [41,42]. In contrast to leaves, the levels of metabolites involved in the TCA cycle
were increased in apple and soybean roots under N deficiency [30,33], which may promote
root growth through enhancing energy accumulation under N-deficient conditions. On the
contrary, the contents of alanine, aspartic acid, isoleucine, serine, and threonine were found
to be decreased in low-N-tolerant soybean roots, indicating that low-N-tolerant soybean
may adapt to N deficiency by reducing energy consumption [30]. Malate, related to the TCA
cycle, was found to be increased in roots under N deficiency [33]. Since dehydrogenation
of malate is accompanied by the generation of NADH, which is an important antioxidant,
the increased malate concentration in roots is considered as an adaptive mechanism of
plant tolerance to N deficiency by an enhanced antioxidant status [33]. An additional study
in soybean showed that the accumulation of malate in roots could also stimulate nitrate
uptake under N deficiency [43]. Furthermore, secondary metabolites, such as salicylic
acid (SA) and catechol, were increased in soybean roots under N deprivation [30]. SA
was found to be involved in increasing N use efficiency of isolated cucumber (Cucumis
sativus) cotyledons [44]. Moreover, the shikimate metabolic pathway-related compounds
phenylalanine, shikimic acid, SA, naringin, and neohesperidin also increased in soybean
roots during N deficiency [30], which may contribute to the synthesis of aromatic amino
acids, plant hormones, and a variety of important active secondary metabolites, increasing
tolerance to stress conditions [45,46]. Furthermore, the levels of raffinose and galactitol in
roots were higher than those in shoots of barley [35]; the authors concluded that roots were
more affected by low-N stress than shoots. A comparison of amino-acid metabolites in
common soybean with the low-N-tolerant soybean genotype Tongyu06311 showed that
proline was accumulated in roots of the low-N-tolerant soybean genotype Tongyu06311,
which is probably beneficial for soybean adapted to low-N stress [30]. Thus, metabolism
adjustments are essential for crops in response to N deficiency.

2.2. P Deficiency

P is a key component of nucleic acids, proteins, and membrane lipids, and it is essential
for many biological processes in plants [13,47,48]. Low P availability in soils is a major
constraint for crop production. In past decades, there have been large advances in dissecting
the mechanisms of plant adaptation to P deficiency including physiological and biochemical
responses. Plants have developed a variety of adaptive strategies, such as changing root
architecture and morphology, increasing the secretion of organic acids, and developing
a bypass pathway for recycling internal P [12,49,50]. Metabolome analysis has also been
widely conducted to investigate the metabolite-based low-P tolerance mechanisms in crops,
such as soybean, quinoa (Chenopodium quinoa), common bean (Phaseolus vulgaris), tomato,
and oats (Avena sativa) [26,51–55]. To date, numerous metabolites have been identified to be
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involved in the responses of crops to P deficiency. A summary of metabolome analysis and
identified DAMs is presented in Table 2. The DAMs can be integrated into specific pathways
associated with lipids, flavonoids, amino acids, and nucleotide metabolisms, shedding
light on the changes in crop responses to low-P stress (Figure 2). These findings provide
major insights into understanding the mechanisms of low-P stress tolerance through
metabolic modulation.
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Figure 2. Metabolic pathways regulated by P deficiency in crop roots. The specific changes in
metabolites involve organic acids and phospholipids, which may be related to external Pi acquisition
and internal P reutilization, respectively. The accumulated and reduced metabolites are marked in
red and blue, respectively. Abbreviations: PSI (phosphate starvation-induced), P (phosphate), PEP
(phosphoenolpyruvic acid), GABA (γ-aminobutyric acid), TCA (tricarboxylic acid), GS/GOGAT
(glutamine synthetase/glutamate synthetase).

Modifying root growth and increasing the root-to-shoot ratio are key adaptive mech-
anisms to enhance phosphate (Pi) acquisition efficiency for plants under low-P stress.
Transcriptomic and proteomic analyses have been conducted to identify key genes or
proteins involved in the regulation of root architecture and morphology in response to P
deficiency [54]. Metabolites involved in root development regulation have also been identi-
fied through a metabolomic approach [26,51,53,54]. Both C and N metabolisms have been
reported to be modulated in response of crops to P deficiency. Most amino-acid metabolites,
including asparagine, lysine, histidine, ornithine, isoleucine, leucine, and arginine, were
found to be accumulated in P-deprived roots of several crops, such as common bean,
tomato, and soybean [26,51,54]. Furthermore, it was found that the increase in amino-acid
concentration may be due to the upregulation of protein degradation-related genes and
the downregulation of protein synthesis-related genes under P deficiency [56,57]. During
low-P stress, plants can increase C distribution to the root system, thereby increasing the
root-to-shoot ratio and regulating the root system morphology. Significant increases in mal-
tose, sucrose, raffinose, and 6-kestose were observed in barley roots under 17 days of low-P
treatment [58]; the authors considered this an adaptive mechanism of plants by promoting
root growth through regulating C allocation. In addition, sugar has been documented
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to be an important sensor for the Pi starvation response; the expression of phosphate
starvation-induced (PSI) genes was found to be regulated by sugar limitation [59]. Thus,
increases in sugar levels in roots may induce the expression of PSI genes, regulating plant
growth under low-P stress. However, further characterization of sugar and PSI genes is
needed to confirm their exact roles in low-P stress tolerance via regulating C allocation
in plants.

In addition to root growth regulation for acquiring Pi, crop roots can exudate organic
acids into the rhizosphere to promote solubilization of fixed Pi [32,60]. It has been found that
organic acids have an important role in the response of plants to Pi starvation. For example,
metabolome analysis of the exudates from rice roots revealed that organic acids, such as 2,6-
diaminopimelate, 3-dehydroshikimate, fumarate, hypoxanthine, and D-galacturonate, were
increased by P deficiency [28], which may contribute to the mobilization of insoluble soil P,
as suggested by the authors. Furthermore, significant increases in the exudation of malic,
oxalic, and succinic acids were observed in the P-efficient wheat genotype RAC875 [61].
On the other hand, metabolome analysis has shown that internal organic acids in roots
are also affected by P deficiency. The levels of organic acids, such as tartaric acid and 2,4-
dihydroxybutanoic acid, in roots of common bean were found to be decreased during low-P
stress [52]. Similar results were also obtained in barley roots exposed to low-P treatment,
where the levels of several organic acids, including α-ketoglutarate, succinate, fumarate,
and malate, were reduced [58]. Therefore, organic acids secreted to the rhizosphere may
lead to the reduction in organic acids in roots under P deficiency. An increase in organic
acid exudation from roots is one of the important physiological mechanisms for crops
increasing Pi utilization from soils.

On the other hand, promoting the remobilization of internal P resources, such as
phosphorylated metabolites, nucleic acids, and phospholipids, which are well known as
the largest P pool in plants [62], is necessary for crop adaptation to P deficiency. Under P-
limited conditions, the levels of phosphorylated metabolites were reported to be decreased
in soybean roots, including sn-glycero-3-phosphocholine, O-phosphocholine, deoxyribose
5-phosphate, O-phosphorylethanolamine, and DL-glyceraldehyde 3-phosphate [54]. Simi-
lar results were also found in oats where glucose-6-phosphate and myo-inositol phosphate
were dramatically decreased in P-deficient roots [53]. Moreover, nucleotides, such as adeno-
sine 3′-monophosphate, inosine 5′-monophosphate, guanosine 5′-monophosphate, uridine
5′-diphospho-D-glucose, guanosine monophosphate, adenosine 5′-monophosphate, de-
oxyribose 5-phosphate, cytidine 5′-monophosphate, uridine 5′-monophosphate, and guano-
sine 3′,5′-cyclic monophosphate, were decreased by Pi starvation in soybean roots [54].
Decreases in nucleic acid concentration were also observed in white lupin under Pi star-
vation [63]. The regulation of the synthesis and/or degradation of nucleotides is likely to
help a crop cope with P deficiency. Recently, a key gene, DNA polymerase delta 1 (DPD1),
involved in organelle DNA degradation for improving P use efficiency, was characterized
in Arabidopsis [64]. Several DPD1 homologs in soybean were also found to be upregu-
lated in roots under P deficiency [54]. These results support the hypothesis that changes
in nucleotide metabolism are beneficial for increasing internal P remobilization, thereby
improving P utilization efficiency. Furthermore, lipid-related metabolites such as glyc-
erophospholipids were found to be decreased in responses of crops to P deficiency [54,65].
For example, in soybean roots, sn-glycero-3-phosphocholine, O-phosphocholine, and sev-
eral glycerophospholipids, all of which are involved in remodeling membrane lipids, were
decreased under P-deficient conditions [54]. Replacing phospholipids with sulfolipids or
galactolipids in bio-membranes can also help plant tolerance to low-P stress; this deserves
further investigation.
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Table 2. Metabolome analyses of crop responses to P deficiency.

Crop Species Tissue Duration of
Treatment (days) Method Number of DAMs Main Changes in Metabolites or Metabolic Pathways Reference

Tomato
(Solanum lycopersicum) Leaves 5/15 LC/GC–MS 17/30 Decreasing soluble sugars. [26]

Roots 5/15 LC/GC–MS 29/30 Decreasing soluble sugars; increasing amino acids and
organic acids. [26]

Rice (Oryza sativa) Shoots 5/15 CE–TOF MS 26/38 Decreasing L-aspartate, L-phenylalanine, GABA,
guanosine, adenine, and cytidine. [28]

Roots 5/15 CE–TOF MS 33/8 Decreasing trans-zeatin, citrate, and D-glucosamine. [28]

Root exudates 5/15 CE–TOF MS 18/12

Increasing cytosine, hypoxanthine, nicotinate, choline,
1,4-butanediamine, creatine, 2,6-diaminopimelate,
3-dehydroshikimate, galactosamine, fumarate, glycerate,
and glutamate.

[28]

Common bean
(Phaseolus vulgaris) Roots 21 GC–MS 42 Increasing polyols and sugars. [51]

Nodules 21 GC–MS 45 Increasing organic and polyhydroxy acids. [52]

Oats (Avena sativa) Roots 10 GC–MS 30 Decreasing phosphorylated metabolites; increasing citric
acid and malic acid. [53]

Soybean (Glycine max) Roots 12 LC–ESI-MS/MS 155 Decreasing phosphorylated lipids and nucleic acids. [54]

Quinoa
(Chenopodium quinoa) a Shoots 30 UPLC–MS/MS 149

Decreasing dihydroxyacetone phosphate,
3-phospho-D-glyceric acid, glucose-1-phosphate, and
uridine diphospho-D-glucose

[55]

Barley
(Hordeum vulgare) Shoots 20 GC–MS 51

Decreasing phosphorus-containing compounds
(glucose-6-phosphate, mannose-6-phosphate, and
glycerol-3-phosphate).

[35]

Roots 20 GC–MS 49 Increasing sugars (fructose, glucose, and sucrose) and
organic acids (citric acid and malic acid). [35]

Shoots 10/17 GC–MS 22/38 Decreasing glucose-6-P, fructose-6-P, glycerol-3-P, and
inositol-1-P. [58]
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Table 2. Cont.

Crop Species Tissue Duration of
Treatment (days) Method Number of DAMs Main Changes in Metabolites or Metabolic Pathways Reference

Roots 10/17 GC–MS 7/42 Decreasing succinic acid and fumaric acid. [58]

Wheat
(Triticum aestivum) Leaves/roots 28 GC–MS nd

Decreasing glycerol-3-P in roots; increasing raffinose and
1-kestose in roots and aspartate, glutamine, and alanine
in leaves.

[61]

White lupin
(Lupinus albus) Shoots 14/22 GC–MS nd Decreasing fructose, glucose, and sucrose after 14 days

of treatment. [63]

Non-cluster roots 14/22 GC–MS nd Decreasing phosphorylated metabolites; increasing
organic acids and several shikimate pathway products. [63]

DAMs, differentially accumulated metabolites; nd, not described in the studies. a Two genotypes used in the studies.
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In contrast to roots, increased accumulation of sucrose, maltose, raffinose, and 6-
kestose was observed mainly in shoots of barley growing under moderately P-deficient
conditions [58], indicating that barley roots are less sensitive to Pi starvation. Furthermore,
amino acids in legume nodules are also significantly affected by P deficiency. For example,
five out of 10 amino-acid metabolites were decreased, whereas three out of 10 amino-acid
metabolites were increased in nodules of common bean [52]. N metabolism-related metabo-
lites, including spermidine, putrescine, urea, glycine, serine, glutamine, and threonine,
were reduced in nodules of common bean under P deficiency, which may lead to a decrease
in symbiotic nitrogen fixation [52]. However, the mechanism of metabolite changes in
nodules under low-P stress requires to be studied further.

2.3. K Deficiency

Among the macronutrients, K plays essential roles in plant growth and development as
a major cation or as a cofactor of various enzymes. Unlike N and P, K is not a part of organic
compounds, but plays important roles in many physiological and biochemical processes,
such as enzyme activation, ion homeostasis, osmoregulation, and protein synthesis [66,67].
Generally, the availability of K in soils is limited, which has become a limiting factor
for sustainable production of cultivated crops [68]. Recently, metabolomic approaches
have been applied to dissect the mechanism of crop tolerance to K deficiency (Table 3);
examples include tomato (Solanum lycopersicum), sunflower (Helianthus annuus), barley
(Hordeum vulgare), rapeseed (Brassica napus), and peanut (Arachis hypogaea) [26,35,69–72].
Many of the identified DAMs can be integrated into specific metabolic pathways regulated
by K deficiency stress (Figure 3).

It is generally believed that carbohydrate metabolism not only is an important en-
ergy source for plants, but also plays a vital role in protein and lipid metabolisms [73].
Increases in the content of sugars, such as glucose, sucrose, and fructose, are suggested
to be associated with plants in response to various stresses, including K deficiency [74].
Sugar levels have been reported to be increased in both leaves and roots of barley under K
deficiency [35,70]. Accumulation of sucrose was also found in tomato roots under low-K
stress [26]. Furthermore, low-K-tolerant barley genotypes seemed to accumulate more
sugars in both leaves and roots than low-K-sensitive barley genotypes [70], indicating
that increasing sugar accumulation is critical for barley adaptation to low-K stress. In
addition, sucrose is an important signaling molecule that is transferred from leaves to roots,
regulating root growth in response to nutrient stress [25,52]. Since K is involved in the
loading of sucrose to the phloem, availability of K seriously affects the transport of sucrose
from leaves to roots [75,76]. Therefore, under K-deficient conditions, sucrose in roots is not
only an important substance for low-K tolerance, but also a key indicator to screen crops
for tolerance to K limitation. It has been documented that N metabolism is affected by K
deficiency; according to metabolome analysis, amino acids in leaves and roots of barley
were increased during K limitation [70]. Metabolomic analysis also showed that tryptophan,
guanidineacetic acid, asparagine, alanine, ornithine, and histidine were all increased in
K-deficient wheat roots, while citric acid, glutamic acid, and GABA were decreased [77].
Interestingly, most of the increased amino acids were positively charged, whereas the
negatively charged amino acids were reduced in both leaves and roots of barley [70]. Since
K deficiency could lead to electric charge imbalance, it is important to maintain charge
balance in plant cells to cope with low-K stress. The phenylpropanoid metabolic pathway
is one of the most important secondary metabolic pathways in plants [78]. Within this path-
way, L-phenylalanine can be catalyzed into trans-Cinnamic acid, which is a key substrate
for the synthesis of flavonoids, lignin, and alkaloids [79]. Metabolome analysis revealed
that, under K-deficient conditions, L-phenylalanine levels in a low-K-tolerant barley geno-
type were higher than those in a low-K-sensitive barley genotype [70], suggesting that
regulation of the phenylpropanoid metabolic pathway can contribute to barley coping with
low-K stress.
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Figure 3. Metabolic pathways regulated by K deficiency in crops. K deficiency affects diverse
pathways, including N metabolism, TCA cycle, glycolysis, shikimic acid pathway, and secondary
metabolic pathways, accumulating stress-tolerant metabolites and phytohormones. The accumulated
and reduced metabolites are marked in red and blue, respectively. Abbreviations: SA (salicylic
acid), JA (jasmonic acid), ABA (abscisic acid), GABA (γ-aminobutyric acid), TCA (tricarboxylic acid),
GS/GOGAT (glutamine synthetase/glutamate synthetase).

K deficiency also causes an excess accumulation of reactive oxygen species (ROS),
resulting in oxidative stress in plants [80]. Thus, increasing the concentration of antioxidant
metabolites is a vital stress tolerance strategy for plants dealing with K deprivation. The
accumulation of compatible solutes, such as proline, soluble sugars, amino acids, and
polyols, plays an important role in osmotic adjustment [81]. Among them, proline is
regarded as an important antioxidant for stress tolerance [82]. There is evidence that K
deficiency increases the concentration of proline in both leaves and roots of barley; for
example, leaves of the low-K-tolerant cultivar XZ153 contained higher proline levels than
those of the sensitive cultivar XZ141 [70]. Similarly, increases in proline concentration were
observed in K-deprived leaves and roots of peanut [72]. In addition, ascorbic acid is an
important antioxidant protecting cell membrane permeability [83]. The concentration of
ascorbic acid in barley roots was found to be increased during low-K stress, especially in the
low-K-tolerant cultivar XZ153. Furthermore, ascorbic acid concentrations were increased
in leaves of the low-K-tolerant barley cultivar XZ153, but decreased in the low-K-sensitive
barley cultivar XZ141 [70]. In addition, glutathione is also a key antioxidant involved
in scavenging ROS via the GSH-ascorbate cycle [84]. Metabolome analysis showed that
the content of glutathione was increased in roots of the low-K-tolerant wheat cultivar
KN9204 but not in low-K-sensitive cultivar BN207 [77]. Thus, it is reasonable to propose
that antioxidant metabolites, such as proline, ascorbic acid, and glutathione, are important
metabolites for crop adaptation to K deficiency, although further investigation is required.

Phytohormones are small endogenous signaling molecules that participate in regulat-
ing plant growth and development in various life stages and stress conditions. Metabolites



Int. J. Mol. Sci. 2022, 23, 9079 13 of 21

related to phytohormones, such as abscisic acid (ABA), jasmonic acid (JA), and SA, are
regulated by K deficiency. ABA is well known as a stress signal in response to drought,
salinity, and nutrient limitation [85]. It can maintain the water relation by regulating
stomatal conductance and plant metabolism [86]. JA is involved in abiotic stress through
activation of antioxidant systems, synthesis of amino acids and sugars, and regulation of
stomatal opening and closing [87]. SA is involved in protecting membrane integrity and
modulating abundance of protein associated with secondary metabolites [72]. It was shown
that, in both leaves and roots of peanut, K deficiency increased the levels of ABA [72].
Similarly, JA concentration in leaves of peanut also increased during low-K stress [72].
Unlike ABA and JA, SA concentration increased in leaves of peanut but decreased in roots
under K-limited conditions [72]. Therefore, considering the importance of phytohormones
in plant growth, it is reasonable to suggest that ABA, JA, SA, and other phytohormones are
important molecules for low-K stress tolerance.

2.4. Other Nutrient Deficiencies

Despite the advances in identifying various metabolites and metabolic pathways
responding to N, P, and K deficiency, little attention has been given to metabolic changes in
response of crops to deficiencies of other essential nutrients, such as magnesium (Mg), iron
(Fe), zinc (Zn), sulfur (S), and boron (B) (Table 3).

Mg is an important component of chlorophyll and a cofactor for enzymes participating
in many physiological processes [88]. It has been reported that Mg deficiency leads to
large differentiated metabolic processes in source and sink tissues. For example, Mg
deficiency led to leaf-specific accumulation of amino-acid metabolites in soybean, such as
phenylalanine, asparagine, leucine, isoleucine, glycine, glutamine, and serine; in contrast,
root-specific depletion of pyruvic acid, citrate, 2-keto-glutaric acid, succinic acid, fumaric
acid, and malate were observed under Mg deficiency [89]. Mg deficiency also impaired C
allocation in soybean, as reflected by significant increases in carbohydrates, such as starch,
sucrose, glucose, and fructose in leaves, and moderate decreases in sucrose and starch in
roots [89]. These results suggest that reprogramming of distinct C and N metabolisms may
occur in the response of soybean leaves and roots to Mg limitation.

Fe is the fourth most common element in the Earth’s crust, and it is easily fixed
into insoluble Fe3+ precipitates, leading to low availability for plants [90]. Fe limitation
affects several metabolic processes, such as photosynthesis and respiration, as well as
leads to an increase in ROS [91]. In rice, glycolysis and respiration-related metabolites,
such as 3-P-glycerate, 3-P-glycerate derivatives, branched-chain amino acids, and pyruvate
derivatives, were found to be increased in roots during low-Fe stress [91]. Furthermore,
an increase in phytosiderophore 2′-deoxymugineic acid was observed in rice roots under
Fe deficiency [91]. These results suggest that changes in C and energy metabolisms and
increasing 2′-deoxymugineic acid secretion are important adaptive mechanisms of rice
dealing with Fe deficiency. In addition, in leaves of the betel palm (Areca catechu), significant
increases in naringenin, butin, and hesperetin but decreases in xanthohumol, purine, and N-
p-coumaroylspermidine were observed under Fe deficiency [92], suggesting that regulating
biosynthesis of flavonoids and flavonols is an important adaptive strategy for the betel
palm in response to Fe deficiency.
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Table 3. Metabolome analyses of crop responses to other nutrient deficiencies.

Nutrient Crop Species Tissue Duration of
Treatment (d) Method Number of

DAMs
Main Changes of Metabolites or Metabolic

Pathways Reference

Potassium Tomato
(Solanum lycopersicum) Leaves 5/15 LC/GC–MS 30/28 Decreasing organic acids and amino acids. [26]

Roots 5/15 LC/GC–MS 32/29 Accumulating soluble sugars and amino acids. [26]

Barley
(Hordeum vulgare) a Shoots 20 GC–MS 51

Increasing monosaccharides (fructose, galactose, and
glucose), disaccharides (sucrose and maltose), and

polysaccharide (psicose).
[35]

Roots 20 GC–MS 49 Increasing putrescine and 5-hydroxytryptamine. [35]

Leaves/roots 16 GC–MS 57 (in total)
Decreasing negatively charged amino acids (Asp and

Glu) and most organic acids; increasing positively
charged amino acids (Lys and Gln).

[70]

Sunflower
(Helianthus annuus) Leaves/roots 14 GC–MS nd

Decreasing glycerol 3-phosphate and fructose
6-phosphate; increasing citrate, aconitate, malate,

fumarate, and putrescine.
[69]

Rapeseed
(Brassica napus) b Leaves 45 LC–MS nd Increasing citric acid, arginine, and asparagine. [71]

Peanut
(Arachis hypogaea) Leaves/roots 15 GC–MS nd Decreasing aspartic acid and glutamic acid; increasing

lysine, histidine, and arginine [72]

Wheat
(Triticum aestivum) a Roots 14 UPLC–ESI-

MS/MS 162
Decreasing more amino acids in K-sensitive genotype

BN207; increasing more amino acids in K-tolerant
genotype KN9204.

[77]

Magnesium Soybean
(Glycine max) Leaves 4/8 GC–MS 5/26

Decreasing methylmalonic acid; increasing
phenylalanine, carbon allocation, and respiration
metabolism (e.g., sucrose, glucose, and fructose).

[89]

Roots 4/8 GC–MS 3/16 Decreasing urea and TCA cycle; increasing glutamine
and allantoic acid. [89]

Iron Rice (Oryza sativa) Roots 7 LC–MS nd Increasing amino acids related to α-ketoglutarate
family (proline, histidine, and glutamine). [91]

Betel palm
(Areca catechu) Leaves 28 LC–MS 106 Increasing organic acids and flavonoids. [92]
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Table 3. Cont.

Nutrient Crop Species Tissue Duration of
Treatment (d) Method Number of

DAMs
Main Changes of Metabolites or Metabolic

Pathways Reference

Zinc Tea (Camellia sinensis) Leaves 120 LC–MS 10
Decreasing fructose-6-phosphate, digalactosylglycerol,
and 2-O-glycerol-beta-D-galactopyranoside; increasing

caffeine and catechin gallate.
[93]

Sulfur Lettuce (Lactuca
sativa) a Leaves 42 LC–MS 14

Increasing caffeoyl derivatives, caffeic acid hexose,
5-caffeoylquinic acid (5-OCQA), quercetin, and

luteolin glucoside derivatives.
[94]

Boron Alfalfa (Medicago
sativa) Flowers 7 GC–MS 19 Increasing large sugars. [95]

Seeds Until harvest GC–MS 13 Increasing sugars and phenolic compounds. [95]

DAMs, differentially accumulated metabolites; nd, not described in the studies. a Two genotypes used in the studies; b three different degrees of K deficiency. nd, not described in
the studies.
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In tea (Camellia sinensis) plants, Zn deficiency reduced the contents of two secondary
metabolites, four carbohydrate metabolites, and four nitrogenous metabolites in leaves [93],
indicating that tea plants respond to Zn-deficient stress through regulating carbohydrate,
nitrogenous, and secondary metabolisms. Recently, several secondary metabolites, such
as sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid,
quercetin, and luteolin glucoside derivatives, were found to be regulated by S deficiency in
leaves of lettuce (Lactuca sativa) [94]. Furthermore, in alfalfa (Medicago sativa), B deficiency
increased the accumulation of sugars and phenolic compounds in flowers and seeds,
respectively, which may cause abscission or abortion of reproductive organs [95].

Although the results above provide some useful information on the changes in
metabolic profiles of crops in response to deficiencies of Mg, Zn, Fe, S, and B, more studies
in these areas are needed to increase our understanding of the metabolic mechanisms of
crop adaptation.

3. Conclusions and Perspectives

Nutrient deficiency directly limits crop growth and production. With the rapid devel-
opment of analytical detection technology and bioinformatics, metabolomics has become
one of the important technologies in systems biology research to dissect metabolic pro-
file responses of crops to nutrient stress. This review summarized the advances of crop
metabolism responses to deficiencies of mineral nutrients and discussed these responses
and the underlying adaptive mechanisms. N deficiency seems to impair the whole plant
growth, as reflected by decreased N assimilation and TCA cycle, as well as a reduction
in most amino acids, which is considered as an energy-saving strategy for tolerance to
low-N stress. On the other hand, N deficiency often causes oxidative stress in plants; thus,
several stress tolerance-related metabolites, such as galactinol, raffinose, sugar alcohol,
and ascorbic acid, are accumulated under N-deficient conditions, contributing to ROS
scavenging [38,39]. Regarding low P availability, N and C metabolisms are also affected by
Pi deprivation, along with the TCA cycle and membrane phospholipid metabolism. This
can be considered as fine-tuning to improve P efficiency in plants. For example, increases in
sucrose and amino acids in roots seem to support the enlargement of roots. In addition, the
reduction in organic acid metabolites may be attributed to the production of root exudates
to mobilize soil P. Furthermore, the reduction in phospholipid metabolites, which are
important sources of organic P, may contribute to P reutilization. Unlike N and P, K is
not a component of most metabolites, and metabolism changes caused by K deficiency
may be helpful for tolerance to osmotic oxidative stresses. N metabolism is also regulated
by K deficiency, while the changes in amino acids (e.g., glutathione) may also relate to
oxidative stress. Furthermore, several secondary metabolic pathways obviously change
under K-deficient conditions, including the phenylpropanoid pathway, where accumulated
phenylalanine can be converted into some secondary metabolites and salicylic acid, which
are critical for stress tolerance. While accumulation of sugar metabolites is observed under
N, P, and K deficiency, the increases in soluble sugars may contribute to maintain osmotic
homeostasis during nutrient deficiencies. Therefore, both common and specific metabolites
or metabolic pathways can play a part in crop responses to nutrient deficiency. Although
more studies are needed, some key clues indicate that regulation of C, N, and energy
metabolisms is important for the responses of crops to nutrient deficiencies, especially
regarding macroelements. Elucidating the biosynthesis and regulation of crop metabolites
during nutrient deficiency can largely increase our understanding of how plants acquire
and utilize mineral nutrients under the fluctuating levels of nutrients in soils.

Although significant advances in the diverse detection platforms, such as GC–MS,
LC–MS, and capillary electrophoresis–mass spectrometry (CE–MS), have been used in
metabolomic analysis, individual platforms are unable to cover all metabolites in plants [96],
since the number of identified metabolites varies greatly across different techniques. Thus,
making full use of the advantages of different detection platforms, multiplatform detection
should be used for comprehensive metabolomic analysis. Although metabolomics data



Int. J. Mol. Sci. 2022, 23, 9079 17 of 21

reveal various metabolic pathways regulated by nutrient stress, it remains hard to know
whether a metabolic pathway is up- or downregulated, because most changed metabolites
may be associated with two or more pathways.

The changes in metabolism pathways are usually caused by a number of related
functional transcripts rather than individual transcripts. Thus, it is important to integrate
transcriptomics and metabolomics to identify the response of key genes or pathways to
nutrient deficiency. On the other hand, changes of transcripts may not always correlate
to enzyme activities; thus, proteomics can be used to identify key proteins or enzymes. It
is also important for a better correlation of the changes between metabolites with genes
and proteins, as well as crop growth and development. In consequence, future work is
required to integrate analyses of transcriptomics, proteomics, and metabolomics to dissect
the mechanisms underlying crop response to nutrient deficiency.

Furthermore, as an important bridge between genome and phenome, metabolite-based
genome-wide association study (mGWAS) has recently been used in interactive functional
genomics and metabolomics to understand the genetic bases of plant metabolism [14,97].
The mGWAS approach is performed to identify key genes involved in specific metabolic
pathways in crops. For example, in wheat, several candidate genes were identified as being
involved in the flavonoid decoration pathway through mGWAS [98]. Using the mGWAS
approach, a genetic network of chlorogenic acid biosynthesis in Populus tomentosa was
constructed on the basis of six causal genes [99]. Similar results were also reported in
barley for UV-B protection through the regulation of the phenylpropanoid pathway [100].
However, available information about mGWAS used for dissecting mechanisms underlying
crop responses to nutrient deficiency is scarce. It is important to identify the critical genes
participating in specific metabolic pathways through integration of mGWAS and other
omics approaches, which could be used to develop high-nutrient-efficiency crop varieties
through genetic improvement in future.
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