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ABSTRACT
Dysbiosis of the gut microbiome is a hallmark of inflammatory bowel disease (IBD) and both, IBD 
risk and microbiome composition, have been found to be associated with genetic variation. Using 
data from families of IBD patients, we examined the association between genetic and microbiome 
similarity in a specific IBD context, followed by a genome-wide quantitative trait locus (QTL) linkage 
analysis of various microbiome traits using the same data. SNP genotypes as well as gut micro-
biome and phenotype data were obtained from the Kiel IBD family cohort (IBD-KC). The IBD-KC is an 
ongoing prospective study in Germany currently comprising 256 families with 455 IBD patients and 
575 first- and second-degree relatives. Initially focusing upon known IBD risk loci, we noted 
a statistically significant (FDR<0.05) association between genetic similarity at SNP rs11741861 and 
overall microbiome dissimilarity among pairs of relatives discordant for IBD. In a genome-wide QTL 
analysis, 12 chromosomal regions were found to be linked to the abundance of one of seven 
microbial genera, namely Barnesiella (chromosome 4, region spanning 10.34 cM), Clostridium_XIVa 
(chr4, 3.86 cM; chr14, two regions spanning 7.05 and 13.02 cM respectively), Pseudoflavonifractor 
(chr7, 12.80 cM) Parasutterella (chr14, 8.26 cM), Ruminococcus (chr16, two overlapping regions 
spanning 8.01 and 16.87 cM, respectively), Roseburia (chr19, 7.99 cM), and Odoribacter (chr22, 
three regions spanning 0.89, 5.57 and 1.71 cM, respectively), as well as the Shannon index of α 
diversity (chr3, 1.47 cM). Our study thus shows that, in families of IBD patients, pairwise genetic 
similarity for at least one IBD risk locus is associated with overall microbiome dissimilarity among 
discordant pairs of relatives, and that hitherto unknown genetic modifiers of microbiome traits are 
located in at least 12 human genomic regions.
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Introduction

Inflammatory bowel disease (IBD) is a chronic 
relapsing condition of the intestine1 that affects 
more than 6.8 million people worldwide.2 IBD 
comprises two main sub-entities, namely, Crohn’s 
disease (CD) and ulcerative colitis (UC), both of 
which have a complex etiology involving genetic, 
microbial and environmental factors as well as their 
interactions.3 More than 200 genetic variants asso-
ciated with an increased IBD risk have been identi-
fied so far.4 In addition, dysbiosis of the gut 
microbiome has been shown to be a hallmark of 
IBD, presenting itself as a reduction in overall gut 
microbial biodiversity.4–6 Whether the latter is 
a cause or a consequence of the disease, however, 

is not well understood. In any case, some bacterial 
species clearly exert a protective effect against IBD 
whereas others have a predisposing role,7 as is 
exemplified by a decrease of beneficial bacteria, 
such as Faecalibacterium praunitzii and Roseburia 
intestinalis, and an increase of harmful pathogens6 

in IBD patients.
The gut microbiome compositions of members of 

one and the same family tend to be more similar than 
those of unrelated individuals,8,9 a phenomenon 
usually ascribed to the fact that family members 
often live in the same environment and have similar 
dietary habits.10 At the same time, however, blood 
relatives also share genetic factors which means that 
familial microbiome similarity may also reflect genetic 
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similarity.10 Indeed, heritability analyses of the gut 
microbiomes of twins revealed that the abundance 
of a number of taxa, including Christensenellaceae, 
Ruminococcaceae, and Lachnospiraceae, is under 
some kind of genetic controls.10,11 In addition, 
genome-wide association studies (GWAS) showed 
evidence for various links between host genetic 
variation and gut microbiome composition.12–14 

In the particular context of IBD, statistical associa-
tions were detected between DNA sequence varia-
tion at the NOD2 gene locus and the abundance of 
Enterobacteriaceae.15 In addition, an IBD genetic 
risk score based upon 11 disease-associated 
genetic variants was found to be negatively corre-
lated with the abundance of Roseburia.6 These 
results notwithstanding, however, the fact that 
monozygotic twins discordant for UC tend to 
have different microbiomes, with a notable reduc-
tion of diversity seen in the affected sib,16 suggests 
that the joint role of genome and microbiome in 
IBD etiology is complex.

Most previous studies of the connection 
between gut microbiome and genetic variation 
employed a GWAS approach. However, GWAS 
are usually unable to discern the impact of rare 
variants upon the microbiome and, particularly 
when carried out in population-representative 
samples, cannot take the specificities of a certain 
disease context into account. This prompted us to 
adopt a family-based design to study the link 
between host genetics and gut microbiome in 
IBD etiology. Family-based studies are capable of 
localizing genetic effects irrespective of the fre-
quencies of the variants involved as long as the 
effects of interest segregate in families.17,18 We 
therefore used genetic and microbiome data from 
the IBD kindred cohort (IBD-KC), a nationwide 
prospective study in Germany of IBD patients and 
their families, to examine the heritability of the 
abundance of individual microbial genera and the 
diversity of whole microbiomes, followed by 
a genome-wide quantitative trait locus (QTL) 
linkage analysis of the abundances and α diversity 
at genus level. Finally, we performed association 
analyses within the identified linkage regions to 
identify individual SNPs associated with one or 
more of these microbiome traits.

Results

Cohort characteristics

Our study data were derived from the Kiel IBD 
kindred cohort (IBD-KC, see Methods), which at 
the time comprised 1030 individuals from 256 
families, including 455 IBD patients. Genotype, phe-
notype and microbiome data were available for 703 
IBD-KC participants (Table 1). None of the potential 
confounders of a possible genotype-phenotype rela-
tionship (e.g. age, sex) differed notably between 
affected and non-affected family members. A total 
of 22 bacterial genera yielded a count ≥10 in at least 
50% of the samples (Supplementary Table 1), which 
qualified them as ‘highly prominent’ for the purpose 
of the subsequent genome-wide linkage analysis. 
Alpha and β diversity plots of the microbiome data 
are provided in Supplementary Fig. 1.

Heritability analysis

For the 22 highly prominent genera in our study (i.e. 
count ≥10 in ≥50% of samples), the covariate- 
adjusted, pedigree-based estimates of the heritability 
(h2) ranged from 0 to 27.6% (Figure 1, Supplementary 
Table 2).

Pairwise genetic and microbiome similarity

Our study of the relationship between pairwise genetic 
and microbiome similarity was focussed upon geno-
mic regions implicated in IBD before through GWAS. 
We analyzed genetic and microbiome similarity sepa-
rately for pairs of blood relatives who were concordant 
or discordant for IBD. For the overall genetic similar-
ity at IBD risk loci, measured by the sum of locus- 
specific excess identity-by-descent sharing values (Δρ) 
as defined in the ‘Methods’ section, no significant 
association with β diversity was observed in linear 

Table 1. Characteristics (median [1st quartile, 3rd quartile] or 
number [%]) of study samples according to IBD affection status.

IBD Non-IBD

Total 294 409
Age 41.9 [30.2, 53.0] 42.6 [26.0, 58.2]
Body mass index (BMI) 23.9 [20.9, 26.4] 24.8 [21.4, 27.3]
Female [%] 182 [61.9] 231 [56.5]
Ever smoker [%] 29 [9.2] 50 [12.2]
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regression analyses after multiple testing correction, 
irrespective of whether β diversity was calculated from 
all amplicon sequence variants (ASVs) or from all 
genera. However, when Δρ was considered for indivi-
dual SNPs, and when β diversity was based upon all 
genera, one significant association between the two 
similarity measures emerged among IBD-discordant 
pairs after multiple testing correction (FDR ≤0.05), 
namely for SNP rs11741861 (p = 2.8 × 10−5, 
q = 0.005). Results for the 20 SNPs with the lowest 
p values are listed in Supplementary Table 3. Marker 
rs11741861, which is located on chromosome (chr) 5 
at position 150277909, is an intronic variant of both 
the IRGM (immunity-related GTPase M) and the 
ZNF300 (zinc finger protein 300) genes, according to 
the GWAS Catalog.19 The linear regression coefficient 
relating Δρ to β was estimated as 0.08 (95% CI: [0.04, 
0.13]), indicating that IBD-discordant pairs of rela-
tives who were genetically more similar were less 
similar in terms of their microbiome composition 
(Figure 2). No particular phenotype such as IBD sub- 
entity or age at diagnosis was found to be related to Δρ.

Genome-wide QTL linkage analysis

Evidence for linkage at genome-wide significance 
level (i.e. logarithm of odds [LOD] score >3) was 
obtained between 12 different chromosomal regions 

and the abundance of one of seven microbial genera, 
namely Barnesiella (maximum LOD score 3.24 on 
chr4), Clostridium_XIVa (max LOD 3.02 on chr4, 
max LOD 4.39 for region 1 on chr14, max LOD 3.60 
for region 2 on chr14), Pseudoflavonifractor (max 
LOD 3.13 on chr7), Parasutterella (max LOD 3.02 
on chr14), Ruminococcus (max LOD 4.42 for region 
1 on chr16, max LOD 3.11 for region 2 on chr16), 
Roseburia (max LOD 3.78 on chr19), and 
Odoribacter (max LOD 4.31 for region 1 on chr22, 
max LOD 4.26 for region 2 on chr22, max LOD 4.08 
for region 3 on chr22), as well as the Shannon index 
of α diversity (max LOD 3.72 on chr3) (Table 2). 
A complete overview of the results of the genome- 
wide linkage analysis is provided in Supplementary 
Fig. 2.

SNPs located in three discovered regions 
(Table 3, Figure 3a-c), namely those linked to the 
abundance of Barnesiella (chr4), Clostridium_XlVa 
(chr14), and Roseburia (chr19), respectively, have 
been reported before to be associated with IBD or 
one of its sub-entities.21–23 The SNPs in question 
are rs13126505 and rs3774937 (chr4), rs8005161 
(chr14) and rs17771967 (chr19). SNPs rs13126505 
and rs3774937 are intronic variants of the BANK1 
(B cell scaffold protein with ankyrin repeats 1) and 
NFKB1 (nuclear factor kappa B subunit 1) genes, 
respectively, rs8005161 is an intronic variant of the 

Figure 1. Heritability (h2) estimates for 22 microbial genera.
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GPR65 (G protein-coupled receptor 65) gene, and 
rs17771967 is an intergenic variant mapping to the 
region of the RNU6-222P (RNA, U6 small nuclear 

222, pseudogene) and KIR3DL2 (killer cell immu-
noglobulin like receptor, three Ig domains and long 
cytoplasmic tail 2) genes.

Figure 2. Statistically significant association (FDR≤0.05) between β diversity and excess identical-by-descent sharing (Δρ) for SNP 
rs11741861. Each dot represents a pair of blood relatives discordant for IBD.
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Notably, various SNPs not genotyped in the pre-
sent study, but located within the two-unit support 
intervals for traits Clostridium_XIVa (rs116135844 
on chr4, rs8019270 on chr14), Barnesiella (rs3775467 
on chr4), and Pseudoflavonifractor (rs10248138 on 
chr7), have been reported previously to be associated 
with Bacteroidales, Prevotella, Weissella, and 
Lachnobacterium, respectively.12,24–26

Association analysis within the linkage regions

SNP-wise association analyses covering the two-unit 
support intervals linked to different microbiome traits 
(Figure 3a-c, Supplementary Fig. 3a-g) comprised 
a variable number of SNPs: 1821 for the abundance 
of Barnesiella (chr4), 528 for Clostridium_XIVa 
(chr4), 1995 for Pseudoflavonifractor (chr7), 1221 for 
Clostridium_XIVa (chr14, interval 1), 2139 for 
Clostridium_XIVa (chr14, interval 2), 986 for 
Parasutterella (chr14), 1192 for Ruminococcus 
(chr16, interval 1), 2391 for Ruminococcus (chr16, 
interval 2), 698 for Roseburia (chr19), 22 for 
Odoribacter (chr22, interval 1), 763 for Odoribacter 
(chr22, interval 2), 281 for Odoribacter (chr22, 

interval 3), and 177 for the Shannon index of α 
diversity (chr3). A list of all SNPs exhibiting 
a nominally significant trait-association is provided 
in Supplementary Table 5. One SNP that clearly stood 
out because it had a p value one order of magnitude 
smaller than all other SNPs in the region was rs242076 
(chr22:33229830), associated with the abundance of 
Odoribacter (Supplementary Fig. 3f, SNP highlighted 
in red). This SNP is an intronic variant of the SYN3 
and TIMP3 genes, according to dbSNP.27

Discussion

The heritability estimates from the present study were 
in line with the results of previous microbiome studies 
in twins, in other types of siblings, and among North 
American Hutterites, all reporting consistently lower 
heritability of microbial traits (at different taxa classi-
fication levels) than of other heritable human 
traits.25,28–30 Our linkage study led to the identifica-
tion of 12 different chromosomal regions linked to the 
abundance of one of seven microbial genera, namely 
Barnesiella, Clostridium_XIVa, Pseudoflavonifractor, 
Parasutterella, Ruminococcus, Roseburia, and 
Odoribacter, or to the Shannon index of α diversity. 
Subsequent association analyses within the linkage 
regions identified a SNP on chromosome 22 as 
being associated with the abundance of genus 
Odoribacter.

Based upon place of residence information, we 
determined that only 44 of 364 pairs of individuals 
relevant to our study belonged to the same house-
hold. In a linear regression analysis relating 

Table 2. Genetic linkage analysis of microbiome traits (i.e. genus abundance, Shannon index) in IBD families. For each significantly 
linked locus (LOD>3), the two-unit support interval demarcates the chromosomal region in which the surrounding LOD score differs by 
less than 2 units from the maximum LOD score. The number n of genes in each region was determined using biomaRt software 
(v.2.44.4).20 Mb: mega base pairs; cM: centi-Morgan.

Microbiome trait Chr. Two-unit support interval Physical (genetic) size of region Genes (n)

Shannon index 3 rs838269 – rs16865790 0.61 Mb (1.47 cM) 13
Barnesiella 4 rs28532850 – rs28521501 15.17 Mb (10.34 cM) 146
Clostridium_XIVa 4 rs74648066 – rs115532888 3.51 Mb (3.86 cM) 31
Pseudoflavonifractor 7 rs73686954 – rs117808204 10.64 Mb (12.80 cM) 163
Parasutterella 14 rs10142572 – rs179667 6.11 Mb (8.26 cM) 58
Clostridium_XIVa (region 1) 14 rs79049326 – rs10138419 6.80 Mb (7.05 cM) 64
Clostridium_XIVa (region 2) 14 rs17707618 – rs1956681 12.76 Mb (13.02 cM) 226
Ruminococcus (region 1) 16 rs79541675 – rs77680845 5.21 Mb (8.01 cM) 133
Ruminococcus (region 2) 16 rs9972717 – rs10500519 11.61 Mb (16.87 cM) 194
Roseburia 19 rs117653309 – rs114419168 2.31 Mb (7.99 cM) 168
Odoribacter (region 1) 22 rs16987300 – rs111633245 0.32 Mb (0.89 cM) 38
Odoribacter (region 2) 22 rs78835794 – rs6518994 3.68 Mb (5.57 cM) 56
Odoribacter (region 3) 22 rs117342979 – rs73164039 2.02 Mb (1.71 cM) 97

Table 3. IBD-associated SNPs significantly linked to microbial 
abundance. Gene: nearby IBD-associated gene according to the 
GWAS Catalog; bp: base pairs.

SNP Chr. Position (bp) Genus Gene

rs13126505 4 102865304 Barnesiella BANK1 (intronic)
rs3774937 4 103434253 Barnesiella NFKB1 (intronic)
rs8005161 14 88472595 Clostridium_XlVa GPR65 (intronic)
rs17771967 19 55380214 Roseburia Intergenic
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Figure 3. a-c Selected linkage regions of microbiome characteristics. Locus zoom plots span the two-unit support intervals 
(demarcated by horizontal arrowhead lines) of genome-wide significant linkages to the abundance of microbial genera, found with 
regions harboring IBD-associated SNPs (highlighted in red). Plots of the remaining linkage regions from Table 2 are provided in 
Supplementary Fig. 3a-g). Depicted are the LOD score (top panel), p value (on the log10 scale) from a SNP-wise association analysis 
(central panel) and the location of protein coding genes (bottom panel). The range of each gene is marked by a horizontal line; a list of 
gene names (from left to right) is provided in Supplementary Table 4. Dashed vertical lines mark the location of the max LOD in each 
interval.
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pairwise genetic and microbiome similarity to one 
another, shared household was not a significant 
covariate. In the pedigree-based heritability analy-
sis with MERLIN, however, only covariates at the 
single individual level (such as age or sex) could be 
accounted for, but not covariates pertaining to pairs 
of individuals. This means that shared familial 
environment may well have biased the heritability 
estimates obtained with MERLIN, but this bias is 
likely to have been small.

GWAS between microbiome and host genetics 
(mGWAS) are challenging due to a number of 
factors. First, the microbiome is a highly dynamic 
entity and evolves over time. Second, it is influ-
enced by various demographic and environmental 
factors such as diet and lifestyle. Third, the very 
nature of microbiome data, such as sparseness, high 
dimensionality, and spurious correlation due to 
compositionality, renders their statistical analysis 
difficult in practice. Finally, owing to its mostly 
descriptive nature, a 16S rRNA-based inventory of 
taxa may not suffice to fully depict all relevant 
characteristics of microbiome function in a given 
sample. In consequence, the replicability of 
mGWAS has been considerably poor.31

This notwithstanding, mGWAS have identified 
several associations between host genetic variation 
and gut microbiome composition in the past.12–14 

Of particular interest in the context of IBD, NOD2 
gene variants have been shown to be associated 
with the presence or absence of certain microbial 
taxa.15 Taken together with the alteration of micro-
biomes consistently seen in IBD patients,4,6 this 
association suggests that the microbiome may func-
tion as an effector of at least some of the genetic risk 
of IBD. However, since such a causal link should 
plausibly depend upon additional disease-specific 
triggers as well, such as other genes and the envir-
onment, it called for studying the possible modula-
tion, by genetic IBD risk factors, of the microbiome 
also in unaffected relatives of IBD patients.

Against this background, it is interesting to note 
that a recent study by Turpin et al.32, being speci-
fically targeted at NOD2, demonstrated an associa-
tion between variants in this gene and the fecal 
microbiome composition in healthy first-degree 
relatives of CD patients. Notably, the authors also 
pointed out the advantages of their study design 
over traditional association studies of population- 

representative healthy individuals. In contrast to 
Turpin et al.32 however, our study (i) was not 
focused upon certain genetic variants, but covered 
all genomic regions implicated in IBD by GWAS 
before, and (ii) used a genetic linkage approach in 
IBD families to explore the possible joint role of 
genotype and microbiome in the etiology of the 
disease.

Our analysis of the relationship between intra- 
familial genetic similarity at IBD risk loci and 
microbiome dissimilarity, measured by β diver-
sity, revealed one significant association for SNP 
rs11741861. IBD-discordant pairs of relatives 
who were genetically more similar at the respec-
tive IBD risk locus tended to be less similar in 
terms of their microbiome composition. This 
observation is consistent with similar findings 
in monozygotic IBD-discordant twins16 and sup-
ports the idea that a genetic disposition to IBD 
may only lead to manifest disease in the pre-
sence of a susceptible microbiome. What is 
more, SNP rs11741861 is an intronic variant of 
the IRGM (immunity-related GTPase M) and 
ZNF300 (zinc finger protein 300) genes on chro-
mosome 5. Notably, altered levels of IRGM 
expression have been shown before to affect 
bacterial autophagy,33 which in turn is linked 
to CD susceptibility. Moreover, IBD risk var-
iants, including rs11741861, are known to influ-
ence the gut microbiota of healthy individuals in 
the form of a reduction in abundance of the 
butyrate producing genus Roseburia.6

Three of the 12 chromosomal regions identified 
as being linked to a microbiome QTL in IBD 
families, namely on chr4 (Barnesiella abundance), 
chr14 (Clostridium_XlVa), and chr19 (Roseburia), 
harbor four SNPs previously reported to be asso-
ciated with either IBD or one of its sub-entities21–23 

(Table 3). Our linkage analysis was complemented 
by a genotype-phenotype association analysis 
within the two-unit support intervals, which iden-
tified SNP rs242076 (chr22 interval 2) as being 
associated with the abundance of genus 
Odoribacter. This SNP is an intronic variant of the 
SYN3 and TIMP3 genes. TIMP3 has been shown to 
be down-regulated in CD patients34 and a loss of 
TIMP3 function was associated with gut micro-
biome dysbiosis, liver steatosis, and systemic 
inflammation.35

GUT MICROBES e2024415-7



In conclusion, our study showed (i) that herit-
ability is lower for microbiome traits than for other 
traits, (ii) that genetic similarity between IBD- 
discordant relatives is inversely correlated with 
microbiome similarity for at least one known IBD 
risk locus and (iii) that at least 12 distinct chromo-
somal regions in the human genome are linked to 
different microbiome traits in IBD families, includ-
ing genera abundance and α diversity. Our study 
illustrates the usefulness of a family-based design to 
study genotype-microbiome relationships in the 
context of specific diseases. Future studies on IBD, 
in particular, should include targeted, preferably 
DNA sequence-based analyses of the linkage 
regions identified in our study to clarify further 
the causative role of the microbiome in disease 
etiology.

Methods

Cohort description

Using a multi-tiered approach (Figure 4), we ana-
lyzed genotype, phenotype, and microbiome data 
from the IBD-KC, a nationwide prospective study 
in Germany that was initiated in Kiel in 2013 and 
that has been ongoing since then, with regular fol-
low-up assessments undertaken every two years. 

Biomaterial (blood, stool, and hair) and question-
naire data have been collected from all study parti-
cipants, currently comprising 455 IBD patients 
(including 11 cases of suspected IBD), all of whom 
were >6 years of age at the time of inclusion, and 575 
first- and second-degree relatives. The IBD patients 
were recruited through treating physicians, clinics, 
study flyers or letters, and articles disseminated by 
patient organizations such as the Deutsche Morbus 
Crohn/Colitis ulcerosa Vereinigung. Each study par-
ticipant received a study set containing the informed 
consent form, a questionnaire, and biomaterial 
tubes. The participants were asked to bring the bio-
material tubes to their next regular medical appoint-
ment, and their treating physicians were asked to 
conduct the blood sampling and to send tubes to 
the study laboratory at the Institute of Clinical 
Molecular Biology in Kiel. In addition, the IBD 
patients received a questionnaire to be filled out by 
their treating physician. Of the data collected by the 
IBD-KC, we used age, sex, smoking status, BMI, 
affection status, and household concordance as cov-
ariates in the present study.

The IBD-KC study protocol was approved by the 
ethics committee of the medical faculty of Kiel 
University (AZ 117/13). Each study participant 
signed an age-adapted informed consent (IC) 

Figure 4. Multi-tiered genetic linkage and association analysis of microbiome data from the Kiel IBD Kindred Cohort (IBD-KC). The key 
findings of each analysis step are summarized in italic script.
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form prior to their inclusion. For children 
<18 years of age, the IC had to be signed by the 
parents, and additional re-consent was sought at 
the child’s 12th and 18th birthday.

Genotyping

All samples were genotyped with the Global 
Screening Array-24 Multi Disease v2.0, following the 
Illumina(R)Infinium HTS Assay Auto Workflow 
(Document #15045738v0). SNP calling was per-
formed from idats image files using Illumina 
Genome Studio v2.0 with the appropriate cluster defi-
nition file (gsa-24-v2-0-A1-cluster-file.bpm). A total 
of 712,189 SNPs was available for analysis, including 
quality control (QC).

SNP alleles were converted to the plus strand of 
human reference genome build hg37 using strand 
files available at https://www.well.ox.ac.uk/~wray 
ner/strand/. SNPs lacking a match between the 
probe and reference sequence, or exhibiting more 
than two alleles, were removed. For SNPs mapping 
to the same chromosomal position, the one with the 
lowest number of missing genotypes in the IBD-KC 
data was kept for further analysis. Genetic distances 
were derived from the Rutgers Combined Linkage- 
Physical Map v3 (Kosambi, in centi-Morgan, cM)36 

and interpolated, if necessary, using a modified ver-
sion of the SNPgenmap() function implemented in 
R package CrypticIBDcheck.37

QC of SNP genotypes was performed with 
PLINK38 v1.9, unless stated otherwise, at both the 
SNP and the sample level. SNPs were excluded 
under one of the following conditions: call rate 
<0.99, minor allele frequency (MAF) equal to zero 
among family founders, Hardy-Weinberg equili-
brium p < 10−5 in unaffected founders, presence 
of alleles at odds with the EUR superpopulation of 
the 1000 Genomes Project, or an absolute MAF 
difference >0.2 to the EUR sample. Of the 686,627 
SNPs for which genotype data were available, some 
526,849 (76.7%) passed QC.

Samples were removed if their overall call rate 
was <0.97, if the proportion of heterozygous SNPs 
was outside mean±5SD, as estimated from all sam-
ples, or if the sex check failed.

Principal component analysis (PCA) is a standard 
approach in GWAS to detect outliers and to detect 
unknown population structure. To account for the 

family design of the present study, PCA was per-
formed with PC-Air39 from Bioconductor package 
GENESIS (v2.16.1).40 Briefly, PC-Air extracts 
a subset of unrelated individuals and infers the axes 
of largest genetic variation in this subset. The genetic 
similarity to subset members is then used to deter-
mine the coordinates on the inferred axes for the 
remaining individuals. Function pedigreeMax 
Unrelated() of Bioconductor package GWASTools 
(v1.28.0)41 was applied here to identify the required 
maximum set of unrelated individuals. Based upon 
the first two principal components derived, outlier 
samples were identified and removed using 
a bivariate generalization of boxplots, called 
bagplots,42 as implemented in R package aplpack 
(v1.3.3), adopting a loop factor of 5. The PCA was 
performed twice, once using only genotypes from 
the IBD-KC and once after merging the data with 
the 1000 Genomes Project phase 1 genotype data. In 
total, 11 individuals were removed according to the 
above-mentioned criteria.

Reported family relationships were evaluated for 
consistency based upon the available SNP geno-
types, using different strategies. First, possible relat-
edness between families was assessed considering 
the most likely level of identity-by descent (ibd) 
between pairs of presumably unrelated individuals 
from different families, estimated with PLINK from 
50k SNPs with MAF >0.05 and pairwise linkage 
disequilibrium (LD) <0.1. Second, relationships 
within pedigrees were assessed for correctness 
with a maximized log-likelihood ratio (MLLR) test 
as implemented in PREST (v3_02),43 using 5k SNPs 
with MAF >0.1 and pairwise LD <0.1. Third, poten-
tially false relationships were checked further with 
ALTERTEST (v3_02),43 using 2k SNPs with MAF 
>0.1 and pairwise LD <0.1 where the reduction in 
marker number became necessary due to the com-
putational complexity and demand of the analysis. 
As a result, one pair of presumably unrelated indi-
viduals was removed because they could have been 
first cousins or at least distantly related, according 
to ALTERTEST. In addition, the genotypes of two 
samples involved in a potential sample swap were 
set to missing.

Mendelian inconsistencies were ascertained 
using level 1 and level 2 algorithms implemented 
in Pedcheck (v1.2).44 Level 1 is the nuclear family 
algorithm that checks inconsistencies between 
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parents and offspring while the genotype elimina-
tion algorithm at level 2 aims to detect subtle incon-
sistencies by accounting for the full pedigree. Based 
upon level 1 results, one complete family with more 
than 500 Mendelian inconsistencies was removed. 
In addition, 955 SNPs with more than one 
Mendelian error were excluded. For the remaining 
inconsistencies, including those identified at level 2, 
genotypes in the respective families were set to 
missing as well.

16s RNA sequencing and data processing

IBD-KC participants collected fecal samples in 
standard stool collection tubes at home and sent 
them to the laboratory at room temperature within 
24 hours. There, samples were stored at −80°C until 
further processing. DNA was extracted with the 
QIAamp DNA Stool Mini and QIAamp Fast DNA 
Stool Mini Kits (Qiagen) on a QIAcube system, 
adding an additional bead-beating step. 
Subsequent 16S rRNA gene library generation and 
sequencing was performed as previously 
described.45 In short, the V1-V2 region of the 16S 
rRNA gene was sequenced on the MiSeq platform 
using v3 chemistry for 2x300bp paired-end reads 
(Illumina Inc., San Diego, CA, USA). At this point, 
it must be noted that the choice of 16s rRNA 
primers has been shown before to affect the resolu-
tion of the analysis of microbiome diversity.46,47 In 
particular, primers for the V3-V4 region were 
found to identify more microbial taxa than V1-V2 
primers in vaginal swaps,46 and V2-V3 primers 
could be shown to yield the highest resolution for 
microbes from lower taxonomic ranks.47 Therefore, 
it cannot be excluded that some bacterial taxa may 
have been overlooked in our study due to the lack 
of V3-V4 primers.

Demultiplexing after sequencing was based upon 
null mismatches in the barcode sequences. Data 
processing was performed using the DADA2 
v1.1048 workflow for big datasets (https://benjjneb. 
github.io/dada2/bigdata.html) resulting in abun-
dance tables of ASVs. Briefly, all sequencing runs 
were handled separately (workflow adjusted for V1- 
V2 region can be found at https://github.com/ 
mruehlemann/ikmb_amplicon_processing/blob/ 
master/dada2_16S_workflow.R) and finally col-
lected in a single abundance table per dataset, 

which underwent chimera filtering. ASVs under-
went taxonomic annotation using the Bayesian 
classifier provided by DADA2 and the Ribosomal 
Database Project (RDP) version 16 release. All sam-
ples were rarefied to 10,000 counts.

Pre-processed 16s RNA sequence data were 
transformed into a phyloseq49 object. The ASVs 
were collapsed at genus level to allow meaningful 
inclusion of very rare taxa. Gut microbiome abun-
dance data are usually characterized by many low to 
zero counts, which results in severely skewed abun-
dance distributions. We therefore normalized the 
abundance values at genus level using the log- 
transformed counts per million (cpm) function in 
R package edgeR.50 The analysis of β diversity was 
carried out with non-normalized values.

Statistical analysis

Heritability analysis
Pedigree-based estimates of the heritability (h2) of 
genus-specific abundance values and of overall 
microbiome diversity were obtained using the var-
iance components method as implemented in 
MERLIN (v 1.1.2).51 Briefly, heritability quantifies 
the proportion of inter-individual phenotypic var-
iation attributable to genetic variation. For our 
heritability analyses, we considered the 22 ‘highly 
prominent’ genera, defined by a count ≥10 in at 
least 50% of samples. Sex, smoking status, affection 
status, BMI, and age were included in this and all 
other statistical analyses as covariates.

Pairwise microbial and genetic similarity
The association between genetic and microbiome 
similarity was studied considering all blood- 
related pairs of eligible individuals from the IBD- 
KC, except parent-offspring and monozygotic 
twin pairs (because these types of relationship 
entail no variation in genetic similarity). The dis-
similarity of their microbiomes was quantified by 
Bray-Curtis β diversity, calculated from either a) 
all ASVs (n = 50,167), b) all genera, or c) the 22 
highly prominent genera. Pairwise genetic similar-
ity was quantified as the local excess ibd sharing, 
estimated with MERLIN (v 1.1.2) for each of the 
189 IBD risk loci reported by Liu et al.21 To this 
end, SNPs <500kb distant from a given risk locus 
were used to derive the posterior probabilities p0, 
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p1 and p2 of the three possible ibd states at that 
locus, and the actual level of ibd sharing (ρact) was 
estimated as p1 + 2× p2. Next, the expected level of 
ibd sharing (ρexp) was derived for each pair of 
individuals from their pedigree-based familial 
relationship using R package ribd.52 Finally, the 
excess ibd sharing was set equal to Δρ = ρact-ρexp. 
Overall genetic similarity at all IBD risk loci com-
bined was defined as the sum of the locus-specific 
Δρ values.

The relationship between microbiome and genetic 
similarity was analyzed by way of constructing linear 
models with microbiome dissimilarity as the 
response variable and genetic similarity as the pre-
dictor variable, treating pairs of individuals as obser-
vational units. Potential confounders and covariates 
with a reported effect upon the microbiome45 were 
also included in the models, namely difference in age 
and BMI as well as concordance in terms of sex, 
smoking status, household, and IBD affection status. 
To allow for multiple testing, p values of the risk 
locus-wise analyses were corrected using a false dis-
covery rate (FDR) approach at a nominal signifi-
cance level of 0.05.

Genome-wide QTL linkage analysis
To identify chromosomal regions specifically 
linked, in IBD families, to α diversity at the genus 
level, quantified by either chao1 or Shannon index, 
or to the abundance of the 22 highly prominent 
genera, genome-wide multipoint QTL linkage ana-
lysis was carried out both with and without linkage 
disequilibrium (LD) pruning, using MERLIN- 
REGRESS (v 1.1.2). This software is an implemen-
tation of the regression-based method proposed by 
Sham et al53 which relates the estimated local level 
of ibd sharing to the squared sum and the squared 
difference in the quantitative trait of interest. All 
covariates mentioned above were included in the 
linkage analysis as well.

Association analysis within linkage regions
Family-based association analyses between indivi-
dual SNPs and microbiome traits were performed 
in the candidate chromosomal regions identified 
before through linkage analysis. The analyses were 
limited to the classical so-called ‘n-unit support 

interval’, defined as the chromosomal region in 
which the LOD score of SNPs differs by less than 
n units from the maximum LOD score.54

A LOD score >3 classically has been considered 
indicative of statistically significant linkage because it 
implies that the likelihood ratio of two loci being 
linked rather than unlinked is at least 1000. Yet, two 
randomly chosen loci in the human genome are about 
50 times more probable to be unlinked so that the 
prior odds of linkage equal 1:50. Taken together, 
a LOD score >3 thus corresponds to posterior odds 
of linkage >20, so that p < .05.55 The classical 
approach of adopting a one-unit support interval as 
a surrogate 95% confidence intervals for the location 
of a peak LOD signal is based upon the theory of 
maximum likelihood (ML) estimation, equating sam-
pling variance of the ML estimate to the steepness of 
the likelihood curve around the ML estimate.56 This 
approach has been criticized before for providing too 
narrow an interval at times so that we chose to adopt 
a two-unit support interval instead.

Statistical testing was performed with the 
WISARD workbench,57 which is an implementa-
tion of the genome-wide efficient mixed-model 
association algorithm (GEMMA)58 to fit a linear 
mixed model under the inclusion of a kinship 
matrix accounting for familial relationships. All 
covariates mentioned above were also included in 
the GEMMA analysis.
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