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Abstract

Fluoride contamination is a major problem in wastewater treatment. Metaettringite (which

has previously shown enhanced anion adsorption) was investigated as a possible adsorbent

to remove fluoride from low-concentration solution (25 mg-F/L). The fluoride removal proper-

ties of ettringite and metaettringite were first compared at pH 10, and metaettringite was

found to be more effective. The dominant reaction mechanism for fluoride adsorption in

metaettringite was found to be recrystallization of metaettringite by rehydration; this was

accompanied by precipitation of calcium fluoride. The adsorption kinetics followed the

pseudo-second order model. Metaettringite was also able to remove fluoride effectively in

low pH environment (i.e., at pH 3.5). The influence of coexistence of sulfate ions in solution

on the fluoride removal performance was investigated, and a small decrease in performance

was noted. The residual fluoride concentrations obtained with higher doses of metaettringite

were lower than those specified by the Japanese effluent standard (non-coastal areas: 8

mg-F/L; coastal areas: 15 mg-F/L). The fluoride removal capacity of metaettringite was com-

pared with those of other solid materials. The observed maximum capacity was 174.7 mg-F/

g-metaettringite. In the case of high fluoride concentration solution, the main removal mecha-

nism will be changed to calcium fluoride precipitation. In general, metaettringite is regarded

as promising material for fluoride removal in wastewater treatment.

1. Introduction

In the past, compared with the attention given to heavy metals and organic pollutants, the

importance of fluoride contamination in effluent has usually been underestimated. However,

people have recently begun to notice that the impact of water and soil pollution from fluoride is

a serious problem. Although humans require trace amounts of fluoride [1], exposure to excess

fluoride has negative impacts on humans and livestock [2]. Unfortunately, many industries pro-

duce wastewater that exceeds allowable fluoride levels for human consumption or environmen-

tal discharge [3]. Thus fluoride removal is a critical part of water treatment.

High fluoride content is commonly found in wastewaters from industries including the min-

ing [4], semiconductor [5, 6], fertilizer [7, 8] and photovoltaic [9] sectors. This means that a
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broad range of options to remove fluoride and prevent fluoride contamination are needed. The

conventional treatment is to add chemicals (usually Ca(OH)2) to precipitate fluoride as CaF2.

However, CaF2 precipitation is difficult to treat in low-fluoride-concentration water since the

final fluoride concentration can only be reached by 10–20 mg/L due to the solubility of CaF2

[10]. Recent reviews have summarized and detailed the development of various fluoride

removal technologies, including membrane [11], adsorption [12], electrocoagulation [13] and

coagulation-precipitation [14] techniques. Among them, the use of adsorbents seems one of the

most promising methods for fluoride removal [10, 15], because it is cost-effective and easy to

implement; moreover, it can have high removal capacity and can be reused [10]. Functional

metal oxides with nanostructures, such as porous nano-MgO [16–18] and La@MgAl nanocom-

posites [19], show superior fluoride adsorption performance. Recently, various adsorbents,

such as shells [20–22], food waste biochar [23], sepiolite [24], dolomite [25], and crushed con-

crete [26], have been developed for fluoride removal. In the adsorption field, the research trend

is toward studying the potential of by-products and waste as adsorbents for fluoride removal.

Ettringite (Ca6Al2(SO4)3(OH)12�25–26H2O) is a mineral that forms during the hydration of

Portland cement, and is typically found in cementitious material; however, it is also attracting

significant attention as an adsorbent because of its anion-exchange ability [27]. The SO4
2- ions

in ettringite can be ion-exchanged with other anions, such as B(OH)4
- [28–31], F- [32, 33],

PO4
3- [34], AsO4

3- [35, 36] and CrO4
2- [37]. Besides, adsorbents containing ettringite can be

prepared from wastes, such as waste concrete [35, 38], concrete sludge [32, 39] and by-product

gypsum [40]. Based on the above points, ettringite seems promising for F- adsorption.

In our preliminary study [29], we modified ettringite by heat treatment at relatively low

temperature to form metaettringite and found that the boron-adsorption performance was

greatly enhanced. This finding suggests potential for adsorption of other anions using metaet-

tringite, but thus far studies of removal of other anions by metaettringite are still limited.

Therefore, the adsorption performance of metaettringite should be investigated further.

Because metaettringite can be prepared from waste, it is in line with current research trends,

and thus it is important to determine the fluoride removal performance of this adsorbent;

therefore, this study was conducted as a basic investigation of this topic.

2. Materials and methods

2.1. Materials

We have previously investigated the preparation of metaettringite from ettringite in detail [29]

and prepared the metaettringite used in this study in a similar way. Ettringite was first synthe-

sized from Ca(OH)2 (99%, Wako Pure Chemical Industries, Osaka, Japan), Al2(SO4)3 (85%,

Wako Pure Chemical Industries, Osaka, Japan) and CaSO4�2H2O (98%, Wako Pure Chemical

Industries, Osaka, Japan). 0.6 mol Ca(OH)2 and 0.1 mol Al2(SO4)3 were each dissolved in 1 L

distilled water. Then, the Ca(OH)2 solution (slurry-like solution) and Al2(SO4)3 solution were

mixed with saturated CaSO4�2H2O solution (1 L) for 4 h at 80˚C. Then, the slurry was filtered

by pressure filtration and the solids were freeze-dried overnight before being crushed with a

muddler. The ettringite structure was confirmed by X-ray diffraction (XRD; RINT2000,

Rigaku, Tokyo, Japan). Metaettringite was then prepared by calcination of ettringite at 65˚C

for 72 h, as described in Eq 1. The particle size of metaettringite was selected in the range of 53

to 106 μm in this study.

3CaO � Al2O3 � 3CaSO4 �mH2O)

3CaO � Al2O3 � 3CaSO4 � nH2Oþ ðm � nÞH2O; ð31≦m≦32Þ
ð1Þ
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2.2. Fluoride-ion removal experiments

Table 1 shows the standard conditions used for fluoride-ion removal experiments. The aque-

ous solution was prepared from guaranteed reagent-grade sodium fluoride (NaF, 99%, FUJI-

FILM Wako Pure Chemical Corporation, Osaka, Japan) and distilled water. The initial

fluoride concentration was set at 25 mg/L to simulate the fluoride concentration in mine

wastewater in Japan. Saturated calcium hydroxide solution and 1% nitric acid solution, pre-

pared from calcium hydroxide (Ca(OH)2, 99.9%, FUJIFILM Wako Pure Chemical Corpora-

tion, Osaka, Japan) and nitric acid (HNO3, 70%, FUJIFILM Wako Pure Chemical

Corporation, Japan), respectively, were used to adjust the pH to the desired value (as measured

with a pH meter, AUT-701, TOA DKK, Tokyo, Japan). Selected amounts of prepared ettringite

or metaettringite were added into 500 mL of fluoride solution in a beaker, stirred at 400 rpm,

and allowed to react for 120 mins. Samples (15 mL) were taken using a syringe (SS-20LZ, Ter-

umo, Tokyo, Japan) with a 0.45 μm syringe filter (25AS045AN, ADVANTEC, Tokyo, Japan) at

reaction times of 0, 5, 10, 20, 30, 60, and 120 min. An Ion Chromatography System (ICS-1500,

Dionex, Sunnyvale, CA, USA) was used to analyze the concentration of fluoride in solution.

The eluent was a solution comprising 4.5 mmol/L Na2CO3 and 1.4 mmol/L NaHCO3, and the

flow rate was 1.2 mL/min. Inductively coupled plasma atomic emission spectrometry measure-

ments (ICP-AES, SPECTRO ARCOS EOP, SPECTRO, Germany) were used to analyze the

concentrations of other elements.

The performance of ettringite was compared with that of metaettringite at pH 10 and

solid–liquid ratios of 1 and 10 g/L. The results of metaettringite were selected to investigate the

adsorption kinetics using three conventional kinetics models (i.e., pseudo-first order model,

pseudo-second order model, and intra particle diffusion model). The influence of the solid–

liquid ratio of metaettringite was evaluated at pH 10; solid–liquid ratios of 1, 3, 5 and 10 g/L

were used. The adsorption performance of metaettringite was also tested at pH 3.5, again

using solid–liquid ratios of 1, 3, 5 and 10 g/L. To evaluate the influence of the presence of sul-

fate ions, 100 or 200 mg/L of sulfate were added in the form of sodium sulfate (Na2SO4, 99%,

FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). Sorption isotherms were mea-

sured at pH 10 and a solid–liquid ratio of 5 g/L; the initial fluoride concentration was varied

from 10 to 1000 mg/L.

3. Results

3.1. Performance comparison between ettringite and metaettringite

Fig 1 compares the fluoride concentrations as a function of time for solutions treated with

ettringite and metaettringite. The fluoride concentration curves obtained using ettringite are

very similar at solid–liquid ratios of 1 and 10 g/L. At both solid–liquid ratios, the fluoride con-

centration obtained with metaettringite is lower than that obtained with ettringite. In the

Table 1. Standard conditions for adsorption experiments.

Conditions

Initial fluoride concentration (mg/L) 25

Solution volume (mL) 500

Solution temperature (˚C) 23±0.5

Adsorption time (min) 120

Stirring rate (rpm) 400

Particle size of sample (μm) 53–106

https://doi.org/10.1371/journal.pone.0265451.t001
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metaettringite tests, the fluoride concentration decreased immediately after the reaction

started. In contrast, in the ettringite tests, the fluoride concentration remained quite constant

over the first 30 mins. The final fluoride removal percentage of metaettringite was ~89.7% for

a solid–liquid ratio of 10 g/L. As well as this, the ratio of the amount of solid phase after fluo-

ride removal to the amount of solid initially added was higher for metaettringite (100.5%) than

for ettringite (83.9%) at a solid–liquid ratio of 10 g/L. To determine the adsorption kinetics

using metaettringite as the adsorbent, the results of metaettringite were fitted to the pseudo-

first order model, pseudo-second order model, and intra particle diffusion model. The exam-

ined results are shown as Table 2. The correlation coefficient R2 values indicated that among

the three models, the pseudo-second order model provided the best agreement (R2 = 0.998

and ~1.000). The overall pseudo-second order rate constant (k2, g/mg/min) and adsorbate

concentration at equilibrium (qe, mg/g) were obtained to evaluate the adsorption kinetics.

3.2. Influence of solid–liquid ratio

Solid–liquid ratio is an important parameter that significantly affects the adsorption reaction.

Fig 2 indicates that the fluoride removal percentage is greater at higher solid–liquid ratios. The

fluoride removal percentages were 11.3%, 43.7%, 65.1% and 89.7%, and residual fluoride

Fig 1. Comparison of time-dependent fluoride removal performance of ettringite and metaettringite.

https://doi.org/10.1371/journal.pone.0265451.g001
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Table 2. Parameters of the kinetics models for fluoride adsorption using metaettringite at solid–liquid ratios of 1

and 10 g/L.

Dosage 1 g/L 10 g/L

Pseudo-first order model

qe (mg/g) 0.961 0.411

k1 (1/min) 0.044 0.041

R2 0.767 0.687

Pseudo-second order model

qe (mg/g) 2.83 2.24

k2 (g/mg/min) 0.159 0.499

R2 0.998 1.000

Intra particle diffusion model

ki (mg/g/min1/2) 0.212 0.148

R2 0.552 0.340

https://doi.org/10.1371/journal.pone.0265451.t002

Fig 2. Final fluoride concentration and percentage of fluoride removed at various solid–liquid ratios for metaettringite.

https://doi.org/10.1371/journal.pone.0265451.g002
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concentrations were 22.2, 14.1, 8.73 and 2.57 mg/L when solid–liquid ratios were 1, 3, 5 and 10

g/L, respectively.

Fig 3 shows the variation of pH with time at various solid–liquid ratios. The pH increased

immediately and then leveled off. The pH trends were similar for various solid–liquid ratios

and the final pH was 11±0.1 for all metaettringite concentrations studied.

To help understand the mechanism of fluoride removal by metaettringite, the relationship

between decreased fluoride concentration and the increased SO4
2- concentration released into

solution was determined for different solid–liquid ratios. The decreased fluoride concentration

and increased SO4
2- concentration were defined as the concentration change of the initial and

final concentration of the fluoride and SO4
2-. Fig 4 shows that the slope of increased SO4

2- con-

centration to decreased fluoride concentration with increasing solid–liquid ratio is approxi-

mately 0.39 with an R2 of 0.98. The intercept of the linear fit is approximately 0.24.

3.3. Adsorption performance in low pH environment

Ettringite is unstable and partly dissolves in a low-pH environment [41]. Since metaettringite

is obtained from ettringite, the adsorption performance of metaettringite in a low-pH environ-

ment must be determined. Removal tests were performed at an initial pH of 3.5 with solid–liq-

uid ratios of 1, 3, 5 and 10 g/L. Fig 5 shows the variation of pH with time during this test; the

Fig 3. Variation of pH with time at various solid–liquid ratios for metaettringite.

https://doi.org/10.1371/journal.pone.0265451.g003
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pH immediately increased in all cases and reached 10.7–10.9 at 120 min. Fig 6 compares the

fluoride removal percentages obtained for initial pH values of 10 and 3.5. The fluoride removal

percentage is lower at an initial pH of 3.5 than at an initial pH of 10 for a solid–liquid ratio of

10 g/L. The final fluoride removal percentage for an initial pH of 3.5 and solid–liquid ratio of

10 g/L was 79.5%, corresponding to a final fluoride concentration of 5.12 mg/L.

3.4. Influence of coexistence of sulfate ions

In the compositions of mine wastewater, sulfate ions usually coexist with fluoride ions. There-

fore, the influence of coexistence of sulfate ions was tested, as shown in Fig 7. The sulfate con-

centration was set at 0, 100 or 200 mg/L at pH 10 and a solid–liquid ratio of 5 g/L. A higher

sulfate concentration in solution resulted in a slightly higher final fluoride concentration and

lower fluoride removal percentage.

3.5. Adsorption isotherm

To determine the fluoride removal performance of metaettringite, the apparent adsorption iso-

therm was investigated by varying the initial fluoride concentration at a fixed initial pH of 10

Fig 4. Relationship between decreased fluoride concentration and increased SO4
2- concentration in solution at different

proportions of metaettringite.

https://doi.org/10.1371/journal.pone.0265451.g004
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and solid–liquid ratio of 5 g/L. Fig 8 shows that the fluoride-adsorption uptake by metaettrin-

gite increases with increasing initial fluoride concentration, accompanied by increased residual

fluoride concentration. At low initial fluoride concentration, fluoride ions are almost

completely removed from the aqueous solution. The observed maximum adsorption capacity

is 174.7 mg-F/g-metaettringite with a residual concentration of 126.6 mg-F/L of aqueous solu-

tion. Fig 9 shows the XRD patterns of metaettringite before and after fluoride removal with dif-

ferent initial fluoride concentration. It indicates that the peak of ettringite becomes stronger

after fluoride removal and the peak of gypsum also appears. Besides, with the higher initial fluo-

ride concentration, the peaks of ettringite and gypsum become weaker, and the peak of fluorite

starts to appear while the initial fluoride concentration is greater than 500 mg-F/L. Moreover,

conventional isotherm models (i.e., Langmuir isotherm and Freundlich models) were used to

describe the isotherm behavior, as shown in Table 3. The results indicated that the two models

did not adequately describe the observed adsorption, with correlation coefficient R2 values of

0.844 and 0.891 using the Langmuir isotherm and Freundlich models, respectively.

4. Discussion

We investigated fluoride removal by metaettringite. The ettringite structure is composed of

columns (i.e., {Ca6[Al(OH)6]2.24H2O}6+) and intercolumn spaces that contain substitutable

Fig 5. Variation of pH with time; initial pH of 3.5.

https://doi.org/10.1371/journal.pone.0265451.g005
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sulfate ions and water molecules. The mechanism for adsorption of fluoride by ettringite is ion

exchange of sulfate ions with fluoride ions. It has been suggested that the ion exchange of sul-

fate ions in ettringite might only occur in the surface layer [30]. Compared with ettringite,

metaettringite produced a far lower final fluoride concentration in the solution. The ideal

adsorption capacities per mole should be the same for ettringite and metaettringite, since their

contents of sulfate ions are the same. In fact, the key reason for the greater fluoride-adsorption

performance of metaettringite is that metaettringite has greater accessibility for ion exchange.

The ion-exchange rate is enhanced by dehydration. According to our preliminary study [29],

two different types of water molecules in ettringite are removed at 65˚C (i.e., 2 water molecules

from the intercolumn space and 12 water molecules weakly bound in additional vertices of the

trigonal prisms). With treatment at elevated temperature, ettringite becomes amorphous

metaettringite. During the fluoride removal experiment, the recrystallization of metaettringite

by rehydration is the main reaction mechanism. The ion exchange in metaettringite is consid-

ered to be dual synergistic ion exchange, [31] which not only takes place in the surface layer

during recrystallization of metaettringite through rehydration, but also in the intercolumn

space. Additionally, a high specific surface area is achieved in metaettringite. Therefore, the

adsorption performance of metaettringite is much greater than that of ettringite. In addition,

Fig 6. Effect of initial pH and solid–liquid ratio on percentage of fluoride removed; initial pH of 3.5 and 10.

https://doi.org/10.1371/journal.pone.0265451.g006
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the ratio of the amount of solid phase after fluoride removal to the initial feed amount is higher

for metaettringite than for ettringite. This can be attributed to the rehydration of metaettrin-

gite to form an ettringite structure, as previously found in our preliminary study, where we

used ettringite and metaettringite for boron removal [29]. Moreover, the adsorption kinetic

was determined by three conventional models. Among the three models, pseudo-second order

model shows good fits, evidenced by the highest correlation coefficient, close to 1, indicating

adequately described the adsorption kinetics. At solid–liquid ratios of 1 and 10 g/L, the

amounts of fluoride adsorbed at equilibrium (qe) were respectively 2.83 and 2.24 mg/g, which

were similar to the observed qe values of 2.77 and 2.23 mg/g. The good fit of the pseudo-second

order model indicates that the adsorption reaction rate is controlled by chemisorption, which

is the hypothesis of this model [42]. It also indicates that the adsorption capacity is propor-

tional to the active sites on the adsorbent surface, which is consistent with the reaction mecha-

nism of metaettringite recrystallization by rehydration.

At a higher solid–liquid ratio, greater fluoride removal percentage and lower remaining

fluoride concentration were obtained. This is because more sulfate ions from metaettringite

are accessible to react with fluoride ions through ion exchange. According to Fig 2, when the

solid–liquid ratio increases to 3 mg/L, the final fluoride concentration meets the Japanese

Fig 7. Influence of SO4
2- concentration in solution on fluoride adsorption.

https://doi.org/10.1371/journal.pone.0265451.g007
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effluent standard for coastal areas (15 mg-F/L) [43]. When the solid–liquid ratio increases to 5

mg/L, the final fluoride concentration meets the Japanese effluent standard for non-coastal

areas (8 mg-F/L) [43]. The final pH was ~11 at all solid–liquid ratios. It is worth mentioning

that the pH range where ettringite is stable is 10.5–13 [41], which implies that the recrystallized

ettringite after rehydration is stable at all solid–liquid ratios tested.

The relationship between decreased fluoride concentration and increased SO4
2- concentra-

tion in solution with different solid–liquid ratios was determined. Theoretically, two F- can be

ion-exchanged with one SO4
2- in the ettringite structure, as shown in Eq 2.

½Ca6½AlðOHÞ6�2 � 24H2O�
6þ
½3ðSO4

2-Þ�6- þ 6F- ,

½Ca6½AlðOHÞ6�2 � 24H2O�
6þ
½6ðF-Þ�6- þ 3SO4

2- ð2Þ

However, according to Fig 4, the slope is ~0.39, which indicates that the increase of

removed fluoride ions is higher than the theoretical increase of SO4
2- (Removed F-: SO4

2- =

2.56: 1). This indicates that the fluoride removal mechanism is not only ion exchange with

SO4
2-, but also includes precipitation of calcium fluoride. According to the concentrations of

calcium (over 70 mg/L in all cases) and fluoride in solution, the value of ion product exceeds

the solubility product constant of CaF2 (Ksp = 3.9 × 10−11 mol3/L3 at 25˚C [44]), so calcium

Fig 8. Adsorption isotherm of fluoride on metaettringite.

https://doi.org/10.1371/journal.pone.0265451.g008

PLOS ONE Removal of fluoride ions from aqueous solution by metaettringite

PLOS ONE | https://doi.org/10.1371/journal.pone.0265451 March 14, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0265451.g008
https://doi.org/10.1371/journal.pone.0265451


fluoride precipitation is expected. The increase of solution pH and calcium concentration after

the addition of metaettringite is due to the partial dissolution of metaettringite and recrystal-

lized ettringite. The intercept of the linear fit in Fig 4 is about 0.24, which indicates that the

released amount of SO4
2- is about 0.24 mmol/L (23.5 mg/L) even though no fluoride has been

removed. This may be because of partial dissolution of metaettringite, resulting in a certain

amount of SO4
2- from metaettringite being released into solution, which is consistent with ear-

lier results in this study.

Fig 9. XRD patterns of metaettringite before and after fluoride removal with different initial fluoride concentration; symbol●
(ettringite, PDF No. 00-037-1776), � (fluorite, PDF No. 01-070-2782),◆ (gypsum, PDF 00-006-0047).

https://doi.org/10.1371/journal.pone.0265451.g009

Table 3. Parameters of the isotherm models for fluoride adsorption using metaettringite.

Langmuir isotherm model

qmax (mg/g) 25.0

b (L/mg) 0.041

R2 0.844

Freundlich isotherm model

Kf 0.604

n 0.841

R2 0.891

https://doi.org/10.1371/journal.pone.0265451.t003
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Metaettringite was determined to be able to remove fluoride ions at pH 3.5. The pH imme-

diately increased from 3.5 to over 10.5 at all solid–liquid ratios tested. The removal percentages

were lower than those obtained when the initial pH was 10. This may be attributed to the par-

tial dissolution of metaettringite and recrystallized ettringite. The dissolution of metaettringite

can be described by Eq 3. However, the final pH is 10.8±0.1, which is in the stability region of

ettringite [41]. The fluoride removal performance of metaettringite is still able to meet the

effluent standard for non-coastal areas (8 mg-F/L) in Japan [43] even though the initial pH

was acidic, demonstrating that the metaettringite has the potential to remove fluoride ions in

acidic solution.

3CaO � Al2O3 � 3CaSO4 � nH2O ðn≦32Þ ) Al2O3 þ 3CaSO4 þ 3Ca2þ þ 6OH- þ ðn � 3ÞH2O ð3Þ

Coexistence of sulfate ions in solution were found to slightly decrease the fluoride-removal

percentage. This can be explained by the relative ion-exchange priorities of sulfate and fluoride

ions, and is consistent with the results of a previous study [41]. When sulfate ions exist in an

aqueous solution, they will be incorporated into ettringite in preference to other ions. Thus,

for fluoride removal, the coexistence of sulfate ions in solution will affect the adsorption per-

formance and the competition of fluoride ions and sulfate ions must be considered, depending

on their relative concentration in solution.

The adsorption isotherm was investigated by changing the initial fluoride concentration

(10–1000 mg-F/L). The result implied that the maximum fluoride uptake capacity was not

reached during the test. Conventional adsorption isotherm models (i.e., Langmuir and Freun-

dlich) were used to fit the results of this study. The correlation coefficient was better with the

Freundlich isotherm model (R2 = 0.891) in the plot of log(qe) versus log(Ce) than with the

Langmuir isotherm model (R2 = 0.844) in the plot of 1/qe versus 1/Ce, indicating that, of the

two models, the Freundlich isotherm model was more suitable for describing the experimental

results, although R2 was not greater than good. This indicates that the adsorption of fluoride is

likely controlled by the heterogenous nature of the adsorbent with an exponential distribution

of adsorption energy on the surface sites instead of monolayer adsorption at homogenous sites

[45]. The reason for the poor fits using the two conventional isotherm models is related to the

actual adsorption reaction, which is metaettringite recrystallization by rehydration accompa-

nied by precipitation of calcium fluoride; therefore, the actual reaction did not obey the model

assumptions. Considering the ion product with solubility product constant of calcium fluo-

ride, the adsorption capacity was contributed by ion exchange and precipitation of calcium

fluoride. The XRD patterns of residual solids proves the occurrence of recrystallization of

metaettringite and the precipitation of calcium fluoride and gypsum. The precipitation of gyp-

sum shows that the fact of variation of SO4
2- is not only from ion exchange with F- but also

precipitation with Ca2+. Besides, under the condition of low initial concentration of fluoride,

the fluoride is mainly removed by ion exchange during the recrystallization of metaettringite

by rehydration. It is proved by the occurrence of strong peak of ettringite under cases of 10

and 100 mg-F/L. However, when the initial concentration of fluoride is high, the fluoride is

mainly removed by the precipitation of calcium fluoride. This is because the abundant amount

of fluoride promotes fluoride ions to react with calcium ions and precipitate as calcium fluo-

ride instead of ion-exchanging with sulfate ions. In contrast, when the initial concentration of

fluoride is low, because of the limitation of calcium fluoride solubility, the fluoride can only be

effectively removed by ion exchange, resulting in no peak of calcium fluoride.

Compared with results of previous studies (Table 4), the fluoride-adsorption capacity found

for metaettringite is high. In general, cementitious solid adsorbents use the ettringite compo-

nent in cement to remove fluoride. However, in this study, the ettringite was changed to

PLOS ONE Removal of fluoride ions from aqueous solution by metaettringite

PLOS ONE | https://doi.org/10.1371/journal.pone.0265451 March 14, 2022 13 / 18

https://doi.org/10.1371/journal.pone.0265451


metaettringite, which enhanced the fluoride uptake capacity, resulting in greater adsorption

performance. Moreover, most of the adsorbents prepared from by-products or waste require

thermal treatment (315–800˚C) to activate their performance. Compared with the temperature

required for those adsorbents, that required for thermal treatment in this study is low (65˚C),

indicating that relatively low cost and low power consumption can be achieved for the thermal

treatment in this work. Treatment at relatively high temperatures is required to activate those

above-mentioned adsorbents, thus transforming calcium-related compounds into calcium

oxide or biomass into metal-biochar composites. However, the use of metaettringite, usually

prepared from waste concrete and concrete sludge, does not require the conversion of cal-

cium-related compounds. In addition, adsorbents made from ettringite can be regenerated by

heat treatment, improving the economic benefit from an industrial point of view [31]. Anion-

loaded ettringite may also be directly reused as a filler in concrete production [34]. However,

fluorine is unacceptable in cement and concrete production. It is difficult to reuse F-loaded

metaettringite, which is the same as other adsorbents, although a relatively high adsorption

capacity can be realized. In summary, metaettringite is a promising material to remove fluo-

ride from aqueous solutions.

5. Conclusions

The ability of metaettringite to adsorb fluoride ions from a low-concentration solution (25

mg-F/L) was investigated. The fluoride-removal performance of metaettringite was far greater

than that of ettringite. The recrystallization of metaettringite by rehydration is the main reac-

tion mechanism. The ion exchange by metaettringite is considered to be dual synergistic ion

exchange, which not only occurs in the intercolumn space, but also in the surface layer during

recrystallization of metaettringite through rehydration. The pseudo-second order model

described the results obtained for fluoride removal by metaettringite, indicating that the rate-

controlling step is likely chemisorption of the adsorbate on the adsorbent. Higher solid–liquid

ratios, resulting in more accessible sulfate ions from metaettringite, produce higher fluoride-

Table 4. Comparison of the fluoride removal capacities of metaettringite and other solid materials prepared from by-products or waste.

Material Capacity (mg-

F/g)

Remarks Ref.

Metaettringite (this study) 1.67–174.7 Initial fluoride concentration: 10–1000 mg/L, initial pH = 10, reaction time = 120 min. The

sorbent was prepared by thermal treatment at 65˚C.

Solid adsorbent derived from calcined

Patinopecten yessoensis shells

159.62 Maximum adsorption capacity in the Langmuir model. The sorbent was prepared by thermal

treatment at 800˚C.

[20]

Solid adsorbent derived from eggshells 253.28 Maximum adsorption capacity in the Langmuir model. The sorbent was prepared by thermal

treatment at 800˚C. Initial fluoride concentration: 200–1000 mg/L.

[21]

Solid adsorbent derived from Mytilus
coruscus shells

82.93 Maximum adsorption capacity in the Langmuir model. The sorbent was prepared by thermal

treatment at 800˚C. Initial fluoride concentration: 100–700 mg/L.

[22]

Solid adsorbent derived from aluminum-

modified food waste biochar

123.4 Maximum adsorption capacity in the Langmuir model. The sorbent was prepared by thermal

treatment at 315˚C. Initial fluoride concentration: 10–900 mg/L.

[23]

Al-Cu oxide nanoparticles supported on steel

slag waste

3.99 Maximum adsorption capacity in the Langmuir model. Initial fluoride concentration: 1–30 mg/

L

[46]

Solid adsorbent derived from pine wood char 7.66 Maximum adsorption capacity in the Langmuir model. The sorbent was prepared by thermal

treatment at 400˚C. Initial fluoride concentration: 1–100 mg/L

[47]

Solid adsorbent derived from pine bark char 9.77 Maximum adsorption capacity in the Langmuir model. The sorbent was prepared by thermal

treatment at 450˚C. Initial fluoride concentration: 1–100 mg/L

[47]

Solid adsorbent derived from cement paste 79.6 Initial fluoride concentration: 400 mg/L [48]

Solid adsorbent derived from cement paste 149 Initial fluoride concentration: 100 mg/L [49]

https://doi.org/10.1371/journal.pone.0265451.t004
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removal percentages. A further fluoride-removal mechanism (in addition to ion exchange) is

the precipitation of calcium fluoride. The potential of metaettringite for fluoride removal in a

low-pH environment was preliminarily investigated. Metaettringite can be applied even in

acidic environments, although its performance will be diminished. The residual concentration

in the low-pH solution was less than the effluent standard (8 mg-F/L) in Japan. The influence

of coexistence of sulfate ions in solution was also investigated. Extra sulfate ions will slightly

decrease the fluoride-removal percentage due to the priority of ion exchange. Besides, com-

pared with the mechanism under low fluoride concentration, the main fluoride-removal

mechanism of metaettringite with the high fluoride concentration solution was calcium fluo-

ride precipitation promoted by the abundant amount of fluoride ions.

The fluoride-removal capacity of metaettringite was comparable with or better than those

reported for other solid materials, showing that metaettringite has great capacity owing to its

enhanced ion-exchange property. Metaettringite is an extremely promising material to treat

fluoride-containing wastewater. The use of metaettringite for various types of wastewaters

containing fluoride will be interesting.
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