
1Scientific Reports |         (2019) 9:16084  | https://doi.org/10.1038/s41598-019-52503-z

www.nature.com/scientificreports

Feasibility of Using Rice Leaves 
Hyperspectral Data to Estimate 
CaCl2-extractable Concentrations 
of Heavy Metals in Agricultural Soil
Weihong Zhou1,2, Jingjing Zhang1, Mengmeng Zou1, Xiaoqing Liu1, Xiaolong Du1, 
Qian Wang1, Yangyang Liu1, Ying Liu1 & Jianlong Li   1*

Heavy metals contamination is a serious problem of China. It is necessary to estimate bioavailability 
concentrations of heavy metals in agricultural soil for keeping the food security and human health. 
This study aimed to use hyperspectral data of rice (Oryza sativa) leaves as an indicator to retrieve the 
CaCl2-extractable concentrations of heavy metals in agricultural soil. Twenty-one rice samples, soil 
samples and reflectance spectra of rice leaves were collected, respectively. The potential relations 
between hyperspectral data and CaCl2-extractable heavy metals (E-HM) were explored. The partial 
least-squares regression (PLSR) method with leave-one-out cross-validation has been used to predict 
concentrations of CaCl2-extractable cadmium (E-Cd) and concentrations of CaCl2-extractable lead (E-Pb) 
in farmland soil. The results showed that the concentrations of E-Cd in soil had significant correlation 
with concentrations of Cd in rice leaves; the number of bands associated with E-Cd was more than that 
of E-Pb. Four indices (normalized difference vegetation index (NDVI), carotenoid reflectance index 
(CRI), photochemical reflectance index 2 (PRI2), normalized pigments chlorophyll ratio index (NPCI)) 
were significant (P < 0.05) and negatively related to the E-Cd concentrations. The PLSR model of E-Cd 
concentrations performed better than the PLSR model of E-Pb concentrations, which with R2 = 0.592 
and RMSE = 0.046. We conclude that if the rice was sensitive to E-HM and/or the crop was stressed by 
the E-HM, the hyperspectral data of field rice leaves hold potentials in estimating concentration of 
E-HM in farmland soil. Therefore, this method provides a new insight to monitoring the E-HM content in 
agricultural soil.

Heavy metals in agricultural soil are very persistent, they do not be biodegrade and they readily accumulate to 
toxic levels1. In general, heavy metals can migrate from polluted soil and/or irrigation water to vegetables and 
crops, leading, after chronic consumption, to food security and to health problems2. Therefore, the situation of 
soil especially agricultural soil heavy metal pollution in the farmland soil cannot be ignored.

Rice is the most widely consumed cereal grain on earth, the global rice production was over 740 million 
tonnes in 2014, with Asian countries, including China, Thailand, Japan, and Indonesia dominating the global rice 
production3. Rice cultivated in the polluted paddy soil area can affect human health detrimentally4. It has been 
reported that the soils in China polluted by heavy metals alone account for almost one-sixth of the total cultivated 
land and those polluted soils are mainly distributed in the intensively cultivated areas5, so, many rice are still cul-
tivated in the large-scale slightly and moderately heavy metal contaminated soil6.

Given the concerns of monitoring heavy metals in farmland, numerous research efforts have been conducted 
to assess the total amount of heavy metals in farmland soil7,8. But currently researchers realized that the total 
metal content in the solid phase often does not well predict toxic effects in soil dwelling organisms and plants9–11. 
Instead, organisms respond only to the fraction that is biologically available for that organism11. In the last few 
decades, researchers have followed different extraction techniques to estimate the fractionation of metals in soil/ 
sediments12–14. 0.01 M CaCl2 is a commonly used selective chemical extractant15–17, because 0.01 M CaCl2 solution 
matches the soil solution with respect to pH, concentration and composition18. Novozamsky et al. (1993) reported 
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that a close relationship was found between the Cd concentration in vegetables and its concentration in the 
CaCl2-extract19. Anjos et al.(2012) use five extractant solutions evaluate the available fraction of aluminium (Al), 
Pb, manganese (Mn) and zinc (Zn) in the Pb mine, and found that CaCl2 seems to be a good extractant medium20.

However, traditional CaCl2-extract methods is time-consuming and expensive21. And it is highly challenging 
to use the field sampling and wet chemistry methods for regular monitoring of heavy metal uptake at large scales. 
Compared with most chemical analysis, remote sensing technology has the advantages of simple, time-saving and 
labor-saving in soil monitoring22, especially the emergence of hyperspectral remote sensing technology makes 
it possible to monitor soil minerals, water, nutrients, salinity and other elements. With the continuous sampling 
and the high spectral resolution (<5 nm), hyperspectral sensors can discriminate critical spectral differentials in 
detail23. Some researchers have applied hyperspectral reflectance to detect the heavy metal in soil8,24,25. However, 
in the present study, some heavy metals are spectrally featureless in the visible and near-infrared parts of the 
electromagnetic spectrum26.

Compared with straightforward to derive heavy metal concentrations in soil, indirect access to soil heavy metal 
concentrations by plants is more practical. When plants are stressed, the biochemical contents (e.g., chlorophyll) of 
their leaves may change, and the spectral properties (reflectance and transmittance) at specific wavelengths (e.g., red, 
green, blue and red edge bands) will change with the biochemical contents of plants leaves27. Therefore, plants can 
be used as bridges to detect the elements in the soil using hyperspectral remote sensing techniques. Hyperspectral 
remote sensing has been used to detect stress in plants before visible symptoms have been observed28–30, such as 
water deficiency31, metal accumulation32, diseases33 and salt34. Compared with monitoring stress in plants, use plant 
as an indicator to estimating CaCl2-extractable concentrations of heavy metals in agricultural soil by use the remote 
or proximal sensing is less studied and rarely reported in the literature according to our reviews.

The main objective of this study was to evaluate the effectiveness of using spectral reflectance at leaf scales 
to quantify the heavy metal concentrations in agricultural soil in Zhangjiagang, Suzhou, China. The aims 
of our study were: (1) to analysis the relationship between heavy metals concentrations in rice leaves and 
CaCl2-extractable heavy metals (E-HM) concentrations in soil; (2) to determine the optimum variables that pro-
vide great sensitivity to E-HM concentrations; and (3) to establish the PLSR model for estimating E-HM concen-
trations in agricultural soil using optimum sensitive variables of hyperspectral data of rice leaves.

Materials and Methods
Description of study area.  Located on the eastern of the Yangtze River Delta (31°43′-32°02′N, 120°21′-
120°52′E), Zhangjiagang city is approximately 999 km2, of which 799 km2 are terrestrial areas (Fig. 1). The aver-
age annual temperature is 17.3 °C and the average annual precipitation is 1556.5 mm35. The soil type is mainly 
fluvo-aquic soil and paddy soil36. Because of the developed chemical industry, metallurgy, electroplating industry, 
printing and dyeing papermaking, et al., the Zhangjiagang city is one of the fastest growing cities in the Yangtze 
River Delta.

Figure 1.  Location of the Zhangjiagang city and field sample sites.
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Field sampling and hyperspectral measurement.  A total of 21 sampling sites (Fig. 1) were set during 
September, 2017 in agricultural areas. At each sampling site, hyperspectral reflectance of the rice leaves, samples 
of rice and their root-soil (0–20 cm depth) were taken. The rice samples and soil were packed into polyethylene 
bags. Five random samples on each site were taken and bulked together as one composite sample. The location 
of each sampling site was acquired using a Global Positioning System (GPS, UniStrong G120) with an accuracy 
of about 3 m.

The hyperspectral reflectance of the rice leaves was obtained using a field portable spectrometer (UniSpec, 
PP systems, Haverhill, MA, USA). Spectral range and the spectral resolution of the sensor were 310–1100 nm 
and 3.3 nm, respectively. A bifurcated fiber optic cable and a leaf clip (models UNI410 and UNI501, PP Systems, 
Haverhill, MA, USA) were used to measure leaf reflectance of rice. The leaf clip held the fiber at a 60° angle to 
the leaf surface. Leaf illumination was provided by a halogen lamp in the spectrometer through one side of the 
bifurcated fiber. To minimize the measurement noise of the reflectance spectral, three spectral measurements of 
the fully-expanded leaves near top of each bundle were made and the 15 results averaged as one spectral meas-
urement for the sampling site. A barium sulfate panel was used as a white reference standard to calibrating and 
optimizing the spectral before each measurement.

Laboratory analysis.  Soil heavy metals concentrations measurements.  Soil samples were air-dried at room 
temperature (26–28 °C), and then sieved through a 2-mm nylon mesh to remove stones or other debris. Total 
concentrations of Cd and Pb in the soil were determined as following steps: 0.2 g soil was digested with 10 ml 
mixed solution of HNO3, HClO4 and HF (1:1:2, v/v/v) in a polytetrafluoroethylene digestion tank, microwave 
digestion for 15 minutes (according to different sample conditions, the proportion of acid and digestion time can 
be adjusted), the final solution was diluted to 50 ml using deionized distilled water and analyzed with inductively 
coupled plasma atomic mass spectrometry (ICP-MS, X2, Thermo Electron Corporation) after digestion by a 
mixture of concentrated37,38.

CaCl2-extractable concentrations of Cd and Pb were determined as following steps: a 25 ml aliquot of 0.01 M 
CaCl2 solution was added into a 5 g soil (<2 mm) sample in a 100 ml conical flask and the suspension was shaken 
at 250 rpm at 25 °C. After 12 h of shaking, the supernatant was separated from the solid phase by centrifugation at 
3000 rpm for 20 min. The concentrations of Pb and Cd in the supernatant were analyzed with ICP-MS18.

Rice samples were thoroughly washed in deionized water, oven-dried at 70 °C until constant weight. For ana-
lyzing Cd and Pb concentration in rice leaves, 0.2 g sample was digested with 5 ml mixed solution of 5:2 HNO3: 
H2O2 (v/v) in centrifuge tubes at room temperature. Then this solution was heated in a microwave accelerated 
reaction system (Anton-Paar PE Multiwave 3000) for 20 min. The digested substrate was then diluted with 43 ml 
deionized water and analyzed for total Cd and Pb with ICP-MS.

Hyperspectral data pretreatment.  The original hyperspectral signal is susceptible to the environment, 
so original spectra data were preprocessed to enhance the spectral features and to acquire more informa-
tion about heavy metals in the soil. Wavelengths shorter than 420 nm and longer than 980 nm were not ana-
lyzed due to excessive noises39, thus a total of 560 wavelengths were used as the raw spectral reflectance and 
were automatically interpolated from 3.3 nm to 1 nm in calibration23. This process was done using Excel 2007 
(Microsoft Inc.).

Derivative transformation can remove the interferences of background, resolve overlapping spectra, and min-
imize the baseline drift of raw spectra that is caused by differences in grinding and optical setups40. The first deriv-
ative transformation and second derivative transformation were done using OriginPro 8 software.

Spectral indices calculated.  Ten commonly used spectral indices were calculated (Table 1). As shown in 
Table 1, except for water index (WI), all other spectral indices are related to chlorophyll or pigment.

Variables selected and partial least-squares regression model built.  Correlation analysis of E-HM 
concentrations with the raw spectral reflectance (R), first-order differential of R (R′), second-order differential of 
R (R′′) and spectral indices respectively were performed in SPSS (IBM SPSS Statistics 22) using bivariate related 
analysis. Variables with a significant correlation (P < 0.05) were selected for use in the model.

The partial least-squares regression (PLSR) with leave-one-out cross-validation was used to predict E-HM 
concentrations in farmland soil using selected variables and spectral indices. PLSR is one of the most frequently 
used methods for the estimation of soil heavy metal concentrations with visible and near-infrared reflectance 
spectroscopy (VNIRS)40–42. It can process data with strong collinearity and noise, and is well suited for situa-
tions where the number of variables considerably exceeds the number of available samples43,44. The PLSR and 
cross-validation were performed in TQ Analyst (8.3.125, Thermo Fisher Scientific Inc.). The performances of 
PLSR were assessed with two evaluation parameters between the measured values and predicted values: the coef-
ficient of determination (R2) and root mean square error (RMSE). The R2 and the RMSE are commonly calculated 
using the following formulas45:
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where xp and xp are the predicted value and the average predicted value of E-HM concentrations, xm and xm are 
the measured value and the average measured value of E-HM concentrations and n is the number of samples.

Results and Discussion
Heavy metal concentrations in agricultural soil.  Descriptive statistics of concentration of Cd, Pb were 
reported in Table 2. It illustrated that the average concentrations of Pb (29.193 mg kg−1) was below the limit 
(80 mg kg−1) set by Ministry of Ecology and Environment of the People’s Republic of China (MEEPRC)46, while 
the average concentration of Cd (0.301 mg kg−1) may be affected by human activities was slightly higher than the 
limit (0.3 mg kg−1) set by MEEPRC. In addition, the concentration of Cd in four samples (4 out of 21) exceeded 
the limit set by MEEPRC. Also, the mean concentration of Pb was bigger than the mean concentration of Cd, but 
the relationship between the mean concentration of E-Pb and E-Cd was reverse. That was because Cd is more 
available than Pb in soil47,48.

The mean SD and CV of E-Cd concentrations and E-Pb concentrations were also shown in Table 2. The CV of 
E-Cd concentrations and E-Pb concentrations were different from it of Cd concentrations and Pb concentrations. 
Forevermore, the soil with high concentrations of Cd and Pb may not have high concentrations of E-Cd and E-Pb. 
That may because that the E-HM concentrations in natural soils depends on differences soil environment, such as 
pH, concentrations of clay, sand and organic matter9.

Relationship between heavy metals concentrations in soil and those in rice leaves.  The 
Pearson’s correlation coefficients between heavy metals concentrations in soil and in rice leaves are shown in 
Table 3. Only the significance of Pearson’s correlation coefficients between E-Cd in soil and Cd in rice leaves was 
0.649, which reached to the level of 0.05; While the significance of Pearson’s correlation coefficients between Pb in 
soil and Pb in rice leaves were 0.340 for concentration of E-Pb and 0.222 for total concentration of Pb. Compared 
with concentrations of E-Pb, the concentrations of E-Cd had higher correlation with Cd concentrations rice 
leaves relatively in our study. Earlier studies found that, at common soil pH range, the stability of Cd is lower than 
that of Pb49,50. Meanwhile, rice tends to accumulate Cd, and the accumulation of Cd in rice is often controlled to 
greater extent by its bioavailability than its total content in the soil3. Therefore, the concentrations of Cd in rice 
leaves had higher correlation with E-Cd.

Relationship of E-HM concentrations against hyperspectral data.  The Pearson’s correlation coeffi-
cients of the E-HM concentrations and their processed reflectance (R, R′ and R′′) are shown in Fig. 2 and Table 4, 
and the Pearson’s correlation coefficients between the E-HM concentrations and spectral indices are summarized 
in Table 5. The wavelengths with significant at P < 0.05 indicate that these bands are sensitive to E-HM.

Spectral indices name Abbreviation Formulation Reference

1. Normalized difference vegetation index NDVI (R800 − R670)/(R800 + R670) 60

2. Simple ratio index SR R750/R705 61

3. Vogelmann red edge index VOGI R740/R720 62

4. Modified simple ratio index mSR705 (R750 − R445)/(R705 − R445) 63

5. Anthocyanin reflectance index ARI (1/R550) − (1/R700) 64

6. Water index WI R900/R970 65

7. Photochemical reflectance index 2 PRI2 (R570 − R539)/(R570 + R539) 66

8. Carotenoid reflectance index CRI (1/R510) − (1/R550) 67

9. Normalized pigments chlorophyll ratio index NPCI (R680 − R460)/(R680 + R460) 68

10. Red-edge vegetation stress index RVSI ((R714 + R752)/2) − R733
69

Table 1.  Spectral indices used in this study. Rx is the reflectance at x nm.

Heavy metal 
concentrations Range Mean Median SD CV % EN ER %

Cd 0.110–1.416 0.301 0.209 0.297 98.480 4 19.048

Pb 20.595–57.186 29.193 26.842 8.001 27.407 0 0

E-Cd 0.007–0.257 0.051 0.022 0.0693 135.861 — —

E-Pb 0.002–0.078 0.01 0.003 0.0173 173.231 — —

Table 2.  Heavy metal concentrations (mg kg−1) of agricultural soil (n = 21) in Zhangjiagang city. SD, standard 
deviation; CV, coefficient variation; EN, the number of samples exceeded the limit set by MEEPRC; ER, the rate 
of samples exceeded the limit set by MEEPRC.
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From Table 4, we could see that the maximum positive correlation waves and the minimum negative corre-
lation waves between E-Cd and E-Pb were different. As shown in Fig. 2a, the number of bands associated with 
E-Cd gradually decreases as the processing progresses. There were 277 bands (in the range of 420–696 nm) of R, 
68 bands of R′ and 37 bands of R′′ had significant relationship (P < 0.05) with E-Cd concentrations in soil. The 
correlation bands of R were continuous, while the correlation bands of R′ and R′′ were dispersed. In some litera-
ture correlation, the similar relationship between heavy metals and spectral data were shown51,52. This indicated 
that heave metal stress leads to spectral response, but redundant information was contained among the very 
close spectral bands53,54. Pre-processing techniques could remove redundancy information and made some subtle 
information clear in the spectral in order to improve the subsequent multivariate regression55.

While in Fig. 2b, we could see that the trend of the relationships between spectral and E-Pb concentrations was sim-
ilar to that between spectral and E-Cd concentrations, but whether it in R, R′ or in R′′ correlograms, there correlations 
coefficient were not reach the 0.01 significance level (Table 4). That may be due to the low concentrations of E-Pb in the 
agricultural soil, which has not caused obvious stress on rice and has no obvious effect on the leaf spectra.

As shown in Table 5, spectral indices showed a wide range of correlations with the concentrations of E-Cd 
(−0.705–0.222) and E-Pb (−0.35–0.259). All spectral indices were negatively related to E-Cd concentrations, 

Concentrations in soil

Cd E-Cd Pb E-Pb

Concentrations 
in rice leaves

Cd 0.169 0.649* — —

Pb — — 0.222 0.340

Table 3.  The Pearson’s correlation coefficients between heavy metals concentrations in the soil and the heavy 
mental concentrations in rice leaves. *means at the 0.05 significance level.

Figure 2.  Correlations between processed reflectance (R- raw reflectance; R′- the 1st derivative spectra; R′′- the 
second derivative spectra) spectra and E-Cd (a) and E-Pb (b) concentrations in soil from Zhangjiagang city.

Heavy 
metal

Types of spectral 
processing

Maximum positive 
correlation wave (nm)

Correlation 
coefficient

Confidence 
level

Minimum negative 
correlation wave (nm)

Correlation 
coefficient

Confidence 
level

E-Cd

R 480 0.761 ** — — —

R' 939 0.480 * 439 −0.696 **

R′′ 824 0.680 ** 569 −0.542 *

E-Pb

R 420 0.511 * 950 −0.050 —

R' 711 0.391 — 926 −0.462 *

R′′ 625 0.421 * 559 −0.450 *

Table 4.  Correlation analysis between E-HM concentrations and transformations of spectra. **means at the 
0.01 significance level, *means at the 0.05 significance level.
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four of them (NDVI, CRI, PRI2 and NPCI) had significant correlation (P < 0.05) with E-Cd content, while none 
index had significant correlation with E-Pb concentrations. The four spectral indices associated with E-Cd con-
centrations were leaf pigment-related indices. The index related to leaves water content (WI) had no significant 
correlation with E-Cd concentrations. Because Cd can damage the structure of chloroplasts, as manifested by 
the disturbed shape and the dilation of the thylakoid membranes56, so the indices associated with leaf pigment 
were more susceptible to Cd. However, rice water content is resistant to Cd when the mass fraction of Cd in 
2.0–3.0 mg/kg in farmland soil57. According to Table 2, the mean content of Cd in agricultural soil was 0.3 mg/
kg, which in the region of the resistant. Therefore, the spectral index related to water content had no significant 
associate with E-Cd concentrations.

Model development and validation.  We selected 386 and 209 variables for the model of E-Cd concen-
trations and E-Pb concentrations respectively, and the number of the samples was 21, meanwhile, most of the 
selected variables have strong collinearity, so the PLSR models was very suitable for this study.

The relationship between measured concentrations of E-HM and predicted concentrations of E-HM were 
presented in Fig. 3. A proper model should have low RMSE and R2 should be close to 17. It was clear that the PLSR 
model had the capacity to predict E-Cd content, due to its higher coefficients of determination (R2 = 0.592) and 
low RMSE (0.046) (Fig. 3a). While, the prediction of the PLSR for E-Pb concentrations with the RMSE value 
was 0.019 and R2 only achieved 0.013, did not show good (Fig. 3b). It is known from the literature that Cd is the 
best-known toxic heavy metal and it is taken up by the calcium uptake system in plants58, while the soil has a 
higher binding capacity for Pb than for Cd59, making Pb less bioavailable. And from Table 2 we also knew that the 
ratio of the E-Cd concentrations in the total Cd (E-Cdmean/Cdmean = 0.051/0.301 = 0.17) was higher than the ratio 
of E-Pb concentrations in the total Pb (E-Pbmean/Pbmean = 0.01/29.193 = 0.0001), so rice may stressed by Cd not 
by Pb. The accurate of the PLSR model of E-Cd concentrations was not very high, that may contribute to only 21 
sampling points were used for model development and validation, which impact on the robustness of the models.

In summary, it was demonstrated that, if the rice was sensitive to E-HM or it was stressed by a certain concen-
tration of E-HM, the PLSR model based on pretreatment reflectance from hyperspectral data of rice leaves had 
the capability to estimate E-HM concentrations.

Conclusions
In present study, the concentration of Cd in 19.05% of samples points exceeded the limit set by MEEPRC in 
agricultural soil of Zhangjiagang city, and the concentration of E-Cd in soil had significant correlation with con-
centration of Cd in rice leaves. However, due to the low concentration and the low bioavailability of Pb, the con-
centration of E-Pb in soil had no significant correlation with concentration of Pb in rice leaves.

The raw reflectance had redundant information, and pre-processing techniques could remove redundancy 
information and made some subtle information clear in the spectral. So the number of bands associated with 
E-HM gradually decreases as the processing progresses (R > R′ > R′′). The number of bands associated with E-Cd 

NDVI SR VOGI mSR705 ARI WI PRI2 CRI NPCI RVSI

E-Cd −0.705** −0.411 −0.416 −0.222 −0.269 −0.235 −0.525* −0.665** −0.477* −0.3

E-Pb 0.259 0.191 0.193 0.096 −0.163 0.195 0.002 −0.02 0.1 −0.35

Table 5.  The Pearson’s correlation coefficients between the E-HM concentrations and spectral indices. **means 
at the 0.01 significance level, *means at the 0.05 significance level.

Figure 3.  The relationship between measured and predicted E-Cd (a) and E-Pb (b) concentration in soil based 
on PLSR models.
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was more than that of E-Pb; the correlation between E-Cd concentrations and spectral data was higher than that 
between E-Pb concentrations and spectral data. Meanwhile, because of the low concentration of the E-Pb and the 
Cd resistant of rice water content, there were four indices (NDVI, CRI, PRI2 and NPCI), which related to chloro-
phyll or pigment were significant correlated with E-Cd concentrations.

The PLSR model had the capacity to estimate E-Cd concentrations in agricultural soil, but cannot estimate E-Pb 
concentrations in agricultural soil because of the low concentration of E-Pb. So, if the crop was sensitive to E-HM 
or the crop was stressed by the E-HM, the PLSR model had the capacity to estimate E-HM concentrations in soil.

Using hyperspectral data to evaluate E-HM content in agricultural soil is not affected by soil chemical prop-
erties (such as soil pH, organic matter content and soil texture), which can directly reflect the toxicity of heavy 
metals in soil and has a wider range of applications and a more accurate result compared with the total heavy met-
als concentration assessment method. This method may provide a new insight to monitoring the E-HM content 
in agricultural soil. However, the number of samples was too low to use an external validation, so more samples 
will be collected in the future to improve the predictive performances, and more heavy metals will be estimated 
to test robustness of the model.
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