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Van der Waals five‑body 
size‑energy universality
Petar Stipanović1*, Leandra Vranješ Markić1 & Jordi Boronat2

A universal relationship between scaled size and scaled energy is explored in five‑body self‑bound 
quantum systems. The ground‑state binding energy and structure properties are obtained by means 
of the diffusion Monte Carlo method. We use pure estimators to eliminate any residual bias in the 
estimation of the cluster size. Strengthening the inter‑particle interaction, we extend the exploration 
from the halo region to classical systems. Universal scaled size‑scaled energy line, which does 
not depend on the short‑range potential details and binding strength, is found for homogeneous 
pentamers with interaction potentials decaying at long range predominantly as r−6 . For mixed 
pentamers, we discuss under which conditions the universal line can approximately describe the size‑
energy ratio. Our data is compatible with generalized Tjon lines, which assume a linear dependence 
between the binding energy of the pentamers and the one of tetramers, when both are divided by the 
trimer energies.

Universality in few-body systems connects physical systems at vastly different energy and length scales. It mani-
fests as the independence of system’s characteristics upon the shape of the interaction potential and the length 
scale. The most famous universal phenomenon is the Efimov’s  prediction1 of the geometric series of three-body 
bound state levels which occur when two-body state has zero energy, i.e., in the unitary limit. Although the first 
Efimov candidates were expected in nuclear physics,2,4,4 the first signature came from an ultracold gas of cesium 
 atoms5. This was possible due to the ability to control interactions between atoms by a magnetic field, thanks 
to the presence of Feshbach resonances. The Efimov effect was very soon observed in other cold atom systems, 
including those with non-identical particles and (N > 3)-body systems, in which a variety of universal bound 
states linked to the Efimov trimer was found.6–10. A further unexpected van der Waals universality appeared for 
three atoms interacting with potential −C6r

−6 in the ultracold regime, near Feshbach  resonances6,7,11–13. The 
ground-state trimer dissociation scattering length a(0)−  , which acts as a three-body parameter, appeared universally 
proportional to the van der Waals length lvdW . Wang et al.13 explained the emergence of an effective repulsive 
three-body barrier, which prevents the three particles from getting close together, thus preventing configurations 
with small hyperradii, ρ > 2lvdW . In the limit of zero-range interactions and large scattering lengths, there are 
 evidences14–16 for scales beyond three-body and the consequent necessity of a four-body scale when particles 
interact through an attractive  contact15,16 or soft  core17 pairwise potential.

The Efimov effect was also observed by the Coulomb explosion  imaging18 in the experimentally elusive atomic 
trimer 4He3 , which is weakly-bound under natural conditions. Clusters which are even more weakly bound 
than 4He3 present also different types of universality. Importantly, they are examples of quantum halo states, 
i.e., systems which prefer to be in classically forbidden regions of the space. Their large spatial extent makes the 
details of their interparticle interactions less important, leading to universal properties. The search for a universal 
relation between size and energy, in quantum halo states, began in nuclear  physics2–4 and was later continued in 
atomic systems. The precise knowledge of the interparticle interactions in atomic  clusters19,20 made it possible 
to determine universal ground-state size-energy ratios in weakly-bound dimers, trimers, and  tetramers21,22. 
The progress in Coulomb explosion imaging enabled measurements of the distribution functions in dimers, 
trimers, and tetramers of Argon and  Neon23, as well as weakly-bound Helium  trimers18,24,25 and dimer 4He226. A 
thorough analysis for a large set of pure and mixed weakly-bound atomic dimers, trimers, and tetramers showed 
that universal size-energy scaling extends even below the halo  area21, in the so called quasi-halo region. Four-
body systems with large size were found in Helium and Helium-alkali  tetramers27,28, but also in  pentamers29. It is 
therefore interesting to explore the existence of a universal relation between energy and size of five-body clusters, 
in a wide range extending from weakly-bound quantum halo systems to classical ones.

Close to the unitary regime,  Tjon30,31 predicted a linear relation between the binding energy of the α particle 
and the triton, which was shown to approximately hold for different nuclear models. It was argued that, in the 
universal regime, a four-body parameter is not needed for determining the energy of the four-body  cluster6. The 
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so-called Tjon lines were later investigated in atomic systems close to  unitarity32–36. Hanna and  Blume33 did not 
find that the energies of EN+1 and EN clusters are well described by linear relations. However, they and  others34–36 
showed an approximate validity of generalized Tjon lines connecting linearly the relative energies, EN+1/EN−1 
and EN/EN−1 . There are some differences between the predictions of the generalized Tjon lines slope in previous 
studies, that occur most likely due to analysis of different ranges around the universality  limit33. Additionally, 
Yan and  Blume37 showed that, at unitarity, the energies of few-body systems are not fully independent of the 
shape of the two-body short-range potentials. However, they found that in the case of van der Waals two-body 
interactions the binding energies at unitarity are approximately given solely in terms of the van der Waals length. 
It has not been reported how the relationship between EN+1/EN−1 and EN/EN−1 changes when moving away 
from the unitary limit, in direction of even more weakly bound states or when approaching the classical limit, or 
how well realistic atomic clusters approach the results obtained by model Lennard-Jones systems in these limits. 
Such findings are relevant for a better understanding of the limits of universality in Lennard-Jones systems.

In the present work, we study the energies and sizes of five-body Lennard-Jones clusters with the goal of 
determining the extension of their universality, from strongly to extremely weakly bound systems, that can be 
regarded as quantum halo states. Besides model systems, we study a range of realistic clusters containing up 
to three different atomic species. We rely on the use of quantum Monte Carlo simulations which provide exact 
results, within some statistical errorbars. We also compare the obtained five-body energies with the energies of 
four and three-body Lennard Jones systems in order to test the accuracy of generalized Tjon lines.

The rest of the paper is organized as follows. Section Methods describes the quantum Monte Carlo methods 
used in our work and introduces the energy and size scaling. Section Results discusses first five-body size-
energy universality and then the obtained Tjon lines. The main conclusions of our work are summarized in 
Sect. Conclusions.

Methods
The ground-state properties, energy E and mean square of inter-particle separations 〈r2〉 , were obtained by solv-
ing the Schrödinger equation

written in imaginary-time τ = it/� , for the Hamiltonian H. The reference energy Er is introduced for 
numerical convenience. The positions of particles in five-body systems are stored in the so-called walker 
R ≡ (r1, r2, r3, r4, r5) . The Schrödinger equation is solved stochastically utilizing the second-order diffusion 
Monte Carlo (DMC)  method38 which, within statistical errorbars, leads to the calculation of the exact binding 
energy B = −E , when the time-step �τ → 0 , the imaginary time τ → ∞ , and the number of walkers → ∞ . 
As usual, importance sampling is introduced in  DMC38 to reduce the variance by multiplying the ground-state 
wave function by a trial wave function optimized using the variational Monte Carlo (VMC) method. Estimators 
which do not commute with the Hamiltonian, e.g. 〈r2〉 , can be biased by the mixed distributions produced by 
the use of importance sampling. In order to completely remove any bias from the trial wave function, we do not 
use the extrapolation approximation �r2�ex ≈ 2�r2�DMC − �r2�VMC , but implement much more sophisticated 
pure  estimators39 to get unbiased estimations. Masses and trial wave-functions were taken from our previ-
ous  works21,22,27,29,40. The use of pure estimators proved to be successful in Helium  clusters41, where theoretical 
predictions on distribution functions reproduced accurately experimental  results18,24 drawn from Coulomb 
explosion imaging.

We are interested in universal relations, so it is not crucial for us to use the most realistic potential, 
but to calculate accurately the ground-state energy and size of a system, for a given potential and particle 
masses. Our potential function sums only pair interactions. We take the Lennard-Jones (LJ) 12–6 model 
V(r) = 4ε[(σ/r)12 − (σ/r)6] , with adjustable depth ε and zero-point distance σ , for a systematic exploration 
of van der Waals pentamers. For real clusters, we use the following model potentials:  JDW42 for spin-polarized 
hydrogen isotopes 2,3H ↓ , denoting 3H also as T;  Silvera43 for hydrogen molecules H2 ; TWW 44,  DWW45,  TY46, 
 MF47 and  MFmod48 for He-H ↓ ; semi-empirical  HFDB49 for helium isotopes 3,4He ; KTTY 50 for interaction of 
an alkali metal isotope and a helium isotope; and  TT51 for noble gases Ne and Ar.

To be able to compare quantities differing in several orders of magnitude, we scale the energy and the size 
with a characteristic length and analyze dimensionless quantities. Similar to what was done in previous  works3,21, 
we measure the size of the system by the mean-square hyperradius with subscript r,

with rik = |rk − ri| and M the total mass of the N-body system. The particle masses mi are given in an arbitrary 
mass unit m. The characteristic hyperradius ρ2

R
 is defined by substituting in Eq. (2) the pair size r2

ik
 by the square 

of the corresponding van der Waals length,

where C6 is the dispersion coefficient and µ = mimk/(mi +mk) the reduced mass of a given pair. Notice that there 
is a different definition in the  literature6 for this length, lvdW = 0.5R . In previous research of four-body  systems22, 
we showed that the van der Waals length R is convenient for scaling weakly and strongly bound systems, and 
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it was also used in the context of universal  relations6. We scaled the size of the pentamers as Yρ = ρ2
r ρ

−2
R

 and 
analyze in the next Section how it depends on the dimensionless scaled binding energy, XE = mBρ2

R
�
−2.

Results
First, we discuss homogeneous five-body quantum systems A 5 , i.e., van der Waals clusters of five identical atoms 
or molecules A. In a previous study of four-body  systems22, no mass effect on scaling was noticed. Therefore, and 
for practical reasons, we first explored clusters of particles with equal mass mi = 4u , multiple of the atomic mass 
constant u. As a pair-potential model, we chose LJ 12-6 V(r) = ε[(rm/r)12 − 2(rm/r)

6] = 4ε[(σ/r)12 − (σ/r)6] , 
where −ε is the minimum at inter-particle separation r = rm = 6

√
2σ , and r = σ is the zero-point of the poten-

tial. The dispersion coefficient in this case has the simple form C6 = 2εr6m . We used a repulsive core σ = 4 Å  
and varied the potential depth ε . This allowed us to explore a wide range of binding strengths, from 0.08 mK 
for weakly-interacting ( ε = 3.32 K, σ = 4 Å) to 50.752 K for strongly-interacting ( ε = 20 K, σ = 4 Å) pentam-
ers. Corresponding 〈r2〉 appear in reverse order, from 990 Å2 to 36 Å2 . The scaled size Yρ = ρ2

r ρ
−2
R

 and energy 
XE = mBρ2

R
�
−2 for these model systems are shown with points in panel (a), Fig. 1. They span many orders of 

magnitude so a logarithmic scale is used.
In an homogeneous pentamer A5 , there are 10 equal A-A pairs of particles so we distinguish between clusters 

with zero or ten self-bound sub-dimers, represented with empty and full symbols, respectively. As one can see, 
all pentamers in Fig. 1 follow the same law, regardless of the interaction potential and number of sub-dimers. 
The empirical function, similar to the four-body  universality22,

fitted well (thin blue line) the obtained data for the scaled energies below 106 . The parameters of the best fit are 
reported in the Table 1.

In the limit T → 0 and for strong interactions (B → ∞) , a system becomes classical and its structure is 
defined by its minimum potential energy. Two-, three- and four-body classical systems rest in equilateral geo-
metrical arrangements with all inter-particle separations equal to the position of the pair-potential minimum 
r = rm . Respectively, particles are located at the vertices of the line segment, triangle and tetrahedron, which are 
one-, two- and three-dimensional geometry objects. The structure of a five-body system is more complicated 
because it is not possible to form a geometrical structure in three-dimensional space where all vertices are equally 
separated. As an optimal structure in this case, we take a triangular dipyramid, i.e., a double tetrahedron with 
common base. Then, nine pairs span 9 edges of length rm and contribute to the binding energy by ε . The 

(4)Y(X) = Y0 exp

{

X0

(

1+ ξXk

)−1/n
}

,

Figure 1.  Scaled size-energy fit for various homogeneous quantum five-body systems A 5 . Interactions are 
modeled by (a) LJ 12-6 pair potential and (b) potentials for realistic systems. Pentamers are classified according 
to the number of self-bound sub-dimers. For comparison, we report the classical approximation, with YCL

ρ  given 
by Eq. (7).

Table 1.  Parameters of Eq. (4) that fit the DMC data in Fig. 1. Figures in parenthesis are the statistical errors.

Y0 X0 ξ k n

10−6 16.5348(64) 8.86(38) 0.8830(61) 28.88(29)
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remaining pair spans the only spatial diagonal whose length corresponds to double height of tetrahedron, 
2H =

√
8/3rm , and thus contributes to the binding by an amount ε

∣

∣

∣

(

rm
2H

)12 − 2
(

rm
2H

)6
∣

∣

∣
 . If we take the mass of a 

particle as the mass unit, the hyperradius simplifies,

Scaling the size (5) with the characteristic hyperradius ρ2
R
= 2R2 , as well as the binding energy,

leads to a straightforward relationship between scaled size and energy of classical systems,

This classical line is plotted in Fig. 1 as a thick dashed cyan line which, for scaled energies larger than 103 , 
smoothly continues the trend shown by quantum pentamers. All data of analyzed homogeneous five-body sys-
tems follow the same line. Thus, the universal law applies starting from purely quantum systems, defined by the 
relation (4), and then extends to classical systems, where for XE > 103 it asymptotically takes a much simpler 
form (7). The universal quantum law starts differing from the simple classical estimation for scaled energies 
XE < 103 , when the contribution of the kinetic energy becomes significant, producing larger spatial structures 
than classical ones.

When mean particle separations become few times larger than van der Waals radius R ∼ ε1/4 , while decreas-
ing ε , the binding energy rapidly vanishes ( B → 0 ), but the size barely changes. In this case, particles are far away 
and pair potentials barely affect the probability outside the range of the van der Waals potential. That scenario 
is similar to the one of finite and contact interactions and thus, it is in agreement with previous theoretical 
 findings10,52 that scaled size saturates in the weak binding limit. Weak binding, which does not support smaller 
clusters, holds pentamers through mediated interactions of additional particles.

If we change the short-range part, i.e., reduce the core size two times, σ = 2 Å, we can see no effect in the 
scaling law thus confirming the universal ratio. Pentamers (8u)5 for potential depths ε = 8, 9, 14 K, respectively, 
have ground-state binding energies B = 554, 1318, 8768 mK and sizes �r2� = 47.6, 34.0, 17.1 Å2 , which when 
scaled, XE = 3.36, 8.47, 70.3 , Yρ = 2.59, 1.74, 0.70 , fit to the universal line.

In addition, we test the validity of the obtained law for the case of realistic homogeneous pentamers, whose 
interaction is formulated with elaborated potentials describing particles as induced fluctuating electric multipoles. 
Although their pair-potentials have different sort-range parts, they share the common feature that fall quickly 
with separation r and so the London dispersion energy −C6r

−6 dominates at large r. The ground-state binding 
energy and size for the studied realistic systems (T ↓)5 , 4He5 , (H2)5 , Ne5 and Ar5 are reported in Table 2 and 
compared with the universal line in panel (b) of Fig. 1. They follow the universal line equally well, both in the 
regime of weak and strong binding.

Second, we test the validity of the obtained universal law for mixed realistic five-body systems consisting of up 
to three different components: spin-polarized H and He isotopes, an alkali atom, Ne, Ar, and hydrogen molecules 
H 2 . Our results are summarized in Fig. 2.

In panel (a), different symbols are used to distinguish different species of particles that form the pentamer, 
while different filling of symbols is used to distinguish types of pentamers with regard to the number of self-
bound sub-dimers. Among studied clusters, we distinguish pentamers that have 0 (empty symbols), 1 (quarter 
full), 3 (three quarter full), 5 (square with dash), 6 (two quarter full), 7 (two quarter empty), and 10 (full symbols) 
self-bound sub-dimers, as it is noted in the legend. The results with the realistic potential models are noted with 
additional black dots. Different symbols are spread everywhere and, at the first sight, it seems that no rule can 
be extracted regarding components, pentamer types or other characteristics. Only pentamers with all self-bound 
sub-dimers are always close to the A5 line, while all other types can be on the line or above it. Only mixtures of 
Helium isotopes and an alkali atom sometimes go below the line. The latter can be understood in the following 
way. An alkali atom has a much larger electronic cloud repulsive core than Helium isotopes, so Helium isotopes 
tend to form a cluster on one side of an alkali  atom29. This feature limits the arrangements that the pentamer can 
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Table 2.  The ground-state binding energy B, mean square pair size 〈r2〉 , scaled energy XE , and scaled size Yρ 
for five-body realistic clusters. Figures in parenthesis are errorbars.

Cluster B / K 〈r
2
〉 / Å 2 XE Yρ

(T ↓)5 0.399(9) 158.5(9) 2.63 2.99
4He5 1.335(1) 59.4(4) 6.37 2.05

(H2)5 44.34(2) 27.8(4) 218 0.470

Ne5 224.29(2) 11.1(2) 24970 0.082

Ar5 1110.1(3) 14.67(2) 1108500 0.024
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exhibit, and its size is reduced. Other mixed systems separate from the line at different points; separation points 
also differ for the same type of pentamers.

Fragmented-like systems separated from the line share a common feature; all of them have at least one particle 
which appears less bound than the others and that is significantly separated from the others. In panel (b) of Fig. 2 
we made a different analysis. In this case, the ratio of largest 〈r2Max〉 and smallest 〈r2min〉 pairs are compared. One 
can notice that if all pairs are similarly bound, strongly or weakly, i.e., if the ratio is between 1 and 1.5, mixed 
systems (circles) follow the A5 line. Triangles and diamonds are also close to the line. Thus, if the ratio is below 
4, noticeable deviations from the A5 line can happen only for very weakly bound quantum systems, i.e., in the 
area where scaled energies are less than XE < 1 , while in other areas only small deviations can occur. Accord-
ing to the position on the graph, each system can be recognized from the panel (b) of Fig. 1 and the panel (a) 
of Fig. 2. The larger the ratio is, the larger are the energies for which begining of the start of separation can be 
expected. This happens because a very weakly bound component makes negligible contribution to the system 
energy, but significantly increases its size. In this case, a small displacement along XE axis results in a significant 
displacement along Yρ axis and the separation occurs. Thus, separations which occur for large scaled energies 
diverge faster, feature which was also noticed in the case of  tetramers22.

To illustrate the separation from the universal line, some estimated quantities are extracted in Table 3 for the 
cluster 4He4T ↓ , using different potential models for the 4He–T ↓ interaction. This allowed modeling different 
strengths of the 4He–T ↓ interaction, which is in neither case strong enough to support a dimer bound state. 
Thus, 4He4T ↓ has 6 self-bound sub-dimers. The results from Table 3 are shown by five two-quarter full cyan 
symbols that are furthest to the right and above the line in the panel (a) of Fig. 2, connected by a short dashed 
blue line to guide the eye. They deviate very fast from the universal line when the 4He–T ↓ attraction decreases, 
starting from the symbol with black point on the line. In the case of the strongest 4He–T ↓ interaction model 
 MFmod48, which is the most realistic one, mean square 4He–T ↓ pair size is already 1.58 times larger than 4He
–4He and it is exactly on the universal line. Using less attractive 4He–T ↓ models, respectively,  MF48,  DWW45, 
 TY46, TWW 44, binding weakens up to 25% , almost reaching the pentamer threshold limit, i.e., the ground-state 
energy of 4He4 −577.6(3)  mK27, while ratio of squared pair sizes doubles. Further weakening of the 4He–T ↓ 

Figure 2.  Scaled energies XE and sizes Yρ of various pentamers. (a) The fit obtained in Fig. 1 for homogeneous 
systems A 5 is compared with five-body mixed realistic systems, using accurate (additional black dot) and 
previous models of interaction. Blue dashed line is a guide to the eye connecting pentamers 4He4T ↓ which 
separate due to weakening of the He–T ↓ interaction. (b) Separation of mixed clusters from the homogeneous 
universal line is analyzed, comparing ratios of pair sizes.
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interaction would cause distancing of the T atom from the remaining tetramer, i.e., scaled size would diverge 
fast in logarithmic scale because scaled energy XE = 3.29 is already close to the threshold limit XE = 2.74 , when 
the pentamer dissociates into 4He4 and far away free T atom. The ground-state properties for all studied realistic 
systems are given in Supplementary Table S1 online.

Among the studied realistic clusters, the largest ratios of mean square radii are in 4He3(D ↓)2 , where 
�r2� = 106, 940, 1900 Å2 , respectively for pairs 4He−4 He , 4He− D ↓ and D ↓-D↓ . Thus �r2Max�/�r2min� = 17.9 , 
while the binding energy is only 7 % larger than the energy of the  trimer41 4He3 . On average He atoms are close 
to each other forming a sub-trimer 4He3 which is surrounded with a halo cloud of far away D ↓ atoms. Their weak 
binding is barely mediated by 4He3 so they very rarely find themselves on the same side of the 4He3 , contributing 
largely to the size of the cluster. Deviation from the line is obvious, XE = 0.58 , Yρ = 18.5 . After substituting D ↓ 
with the heavier isotope T ↓ , which has lower kinetic energy, the cluster becomes homogeneous-like with almost 
ten times lower ratio �r2Max�/�r2min� = 1.85.

Third, we compare the present results with previous findings. The size-energy scaling laws for five-body sys-
tems (4) and (7) are compared in Fig. 3 with the four-body universal  law22. Both lines intersect at (0.059, 11.1). 
In the classical limit, for the same scaled energy, strongly bound pentamers have larger scaled size than tetram-
ers. Weakening the binding, the difference in scaled size decreases and the inverse occurs for XE < 0.059 . In the 
limit of the binding threshold, the scaled size of pentamer converges to Yρ = 15.

Rasmussen et al.10 studied how the two lowest-lying weakly bound states of few bosons depend on the strength 
of two-body Gaussian interactions V(r) = V0 exp(−r2b−2) , where b was chosen as the characteristic length scale. 
Their results are in qualitative agreement with ours. They also predicted that the pentamer has lower scaled size 
than the tetramer at the binding threshold. The quantitative comparison of the system size with our results is 
not possible, because we used long-range decay −C6r

−6 , which is characteristic for London dispersion forces 
between atoms and molecules that are electrically symmetric. Although they explored only the weak-binding 
regime, crossing of tetramer and pentamer curves is also just noticeable close to the end of their researched area. 
Brunnian systems also show qualitatively the same  behavior52.

Having previously studied also the  trimer21 and  tetramers22, we are able to analyze their energies in compari-
son with the present pentamer results. Fig. 4 reports the generalized Tjon line, which describes the dependence 
of the energy ratios E5/E3 and E4/E3 , where EN is the ground-state binding energy of the N-body system.

Hanna and  Blume33 explored a regime close to the unitary limit, i.e., a range 2.6 < E4/E3 < 5 (black symbol 
+ ), and found a linear dependence, with slope 3.10(8) (black line). They also noticed that the slope decreases 
if systems very close to threshold are excluded. The latter was reconfirmed by the calculations of Lekala et al.36 
(sky-blue full circles), whose fit in the range 2.06 < E4/E3 < 2.71 returned a slope of 2.5346 (dotted blue line). 
Bazak et al.35 found that their results, even though not quite close to unitarity, follow the empirical  relation53 
E5/E3 ≈

[

2
√
E4/E3 − 1

]2 (dot-dashed green line). Our results, obtained with the model A5 using the LJ 12-6 

Table 3.  Van der Waals length R, mean square pair size 〈r2〉 , ground-state energy E, scaled energy X and scaled 
size Y, in the pentamer 4He4T ↓ modeled with different pair potentials.

Potential model R / Å 〈r
2
〉 / Å 2 〈r

2
〉Max/

He–He He–T He–He He–T He–He He–T 〈r
2
〉min |E| / mK X Y

HFDB49 MFmod48 5.38 6.69 65(1) 103(2) 1.58 885.7(7) 4.74 2.27

HFDB49 MF47 5.38 6.10 65(1) 106(1) 1.63 866.9(8) 4.30 2.48

HFDB49 DWW45 5.38 5.75 66(1) 121(2) 1.83 791.4(9) 3.75 2.79

HFDB49 TY46 5.38 6.10 67(1) 172(3) 2.57 682.8(9) 3.39 3.22

HFDB49 TWW 44 5.38 6.10 67(2) 202(3) 3.01 662.8(9) 3.29 3.55

Figure 3.  Comparison of the universal size-energy scaling laws for four-22 and five body systems.
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potential (empty symbols) and realistic models 4He5 , (H2)5 are in agreement with their findings. The realis-
tic He-He pair interaction is very close to the unitary limit and perfectly agrees with the empirical relation. 
Approaching the trimer threshold (not shown in Fig. 4 to avoid loss of clarity), the estimated ratios E4/E3 = 11.85 
and E5/E3 = 34.63 for a model system, with σ = 4 Å and ε = 4 K, when E3 = −8 mK, also verify the empirical 
relation.

Recent  estimates15 of 4HeN binding energies, obtained within the framework of effective field theory at leading 
order and next-to-leading-order with a four-body force, that renormalizes the four-body system, respectively, 
E4/E3 = 4.8(1), 4.35 and E5/E3 = 10.8(5), 11.3(3) deviate from the empirical relation, but also have large extrapo-
lation errors. Our results with the HFDB potential are E4/E3 = 4.335(6) and E5/E3 = 10.02(2).

Our results show that the linear law is valid only for a limited range of ratios E4/E3 . Increasing the attraction 
strength, and leaving the regime of weak binding, the slope collapses non linearly and abruptly towards the clas-
sical boundary, where E4/E3 = (6ε)/(3ε) = 2 and E5/E3 = 795405/262144 ≈ 3.03 . Our realistic clusters Ne5 
(2.015, 3.07) and Ar5 (2.004, 3.04) are very close to the classical ratio limit. This is to be expected, as the binding 
energy 1.110 kK of Ar5 is very close to the classical limit 1.306 kK.

Discussion
Five-body systems composed of one, two, and three different particles were explored by means of quantum Monte 
Carlo methods at T = 0 K. Different strengths were analyzed, from very weak binding in quantum systems close 
to the threshold limit, in the halo region, up to the limit of maximum binding of purely classical clusters. The 
interparticle interactions were modeled by pair potentials with different short-range shape, but with the common 
feature of a long-range behavior dominated by −C6r

−6 . This common characteristic enabled a simple choice of 
characteristic length for classical and quantum systems, the van der Waals length, which was used for defining 
the scaling energy and size.

The universal law, which relates scaled size and energy, has been found for homogeneous pentamers in their 
ground-state. For medium and weakly bound systems, it shows a non-linear non-logarithmic shape (4) valid for 
scaled energies XE < 106 , while after XE > 103 it approaches its asymptotic simple linear shape (7) in log-log 
scale. The law is applicable if the pair potential asymptotically follows as −C6r

−6 , while slower or faster decrease 
would produce a universal law with different log-log slope, as it can be deduced from the classical analysis. In 
the limit of the binding threshold, the scaled size of homogeneous pentamers monotonously converge to the 
finite value 15, below the tetramer size of  2522. Noticeably, this plateau is not present in the case of dimers and 
trimers which instead show a diverging size approaching the threshold for  binding3,10,21.

The universal size-energy line is also applicable to mixed systems which are homogeneous-like, i.e., if the 
distance between all the constituents is similar. If the mean square distance of the largest particle pair is few 
times larger than the shortest one, then mixed system could deviate above the line. In addition we find that if the 
cluster is spatially constrained, its size is reduced, so it can appear slightly below the line.

Finally, we analyzed the relationship of pentamer, tetramer, and trimer energies of homogeneous systems, 
confirming the range of approximate validity of generalized Tjon lines and demonstrating the convergence of 
Lennard-Jones systems to the classical limit.

Data availability
The data that support the findings of this study are available within the article and its Supplementary Information.

Figure 4.  Generalized Tjon line. Our results for clusters in Fig. 1 are compared with calculations of Hanna and 
Blume  [HB]33, Bazak et al.  [B]35, and Lekala et al.  [L]36.
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