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Systematic identification of intron retention
associated variants from massive publicly
available transcriptome sequencing data

Yuichi Shiraishi 1,4 , AiOkada1,4, KenichiChiba1,AsukaKawachi2, IkukoOmori2,
Raúl Nicolás Mateos1, Naoko Iida1, Hirofumi Yamauchi2, Kenjiro Kosaki3 &
Akihide Yoshimi 2

Many disease-associated genomic variants disrupt gene function through
abnormal splicing. With the advancement of genomicmedicine, identifying
disease-associated splicing associated variants has become more impor-
tant than ever. Most bioinformatics approaches to detect splicing asso-
ciated variants require both genome and transcriptomic data. However,
there are not many datasets where both of them are available. In this study,
we develop a methodology to detect genomic variants that cause splicing
changes (more specifically, intron retention), using transcriptome
sequencing data alone. After evaluating its sensitivity and precision, we
apply it to 230,988 transcriptome sequencing data from the publicly
available repository and identified 27,049 intron retention associated var-
iants (IRAVs). In addition, by exploring positional relationships with var-
iants registered in existing disease databases, we extract 3,000 putative
disease-associated IRAVs, which range from cancer drivers to variants
linked with autosomal recessive disorders. The in-silico screening frame-
work demonstrates the possibility of near-automatically acquiring medical
knowledge, making the most of massively accumulated publicly available
sequencing data. Collections of IRAVs identified in this study are available
through IRAVDB (https://iravdb.io/).

During the continued innovation in sequencing technology, the
effectiveness of large-scale genome analysis has been thoroughly
validated and widely recognized. Nowadays, national-scale genome
projects have beenmoving forwardworldwide, and genome analysis is
expected to revolutionize the medical system. It is more important
than ever to identify disease-associated variants from a vast list of
mutations obtained by sequencing patients. However, there still
remain many challenges for interpreting the effect of each genomic
variant, especially those that contribute to disease by a different
mechanism than amino-acid substitutions.

One important class of pathogenic variants is those causing
abnormal splicing changes, typically by damaging existing splicing
motifs or creating novel splicingmotifs. Theymay comprise 15–60%of
human disease variants1,2. There have been many attempts to catalog
these splicing associated variants. One approach is to resort to
machine learning-based methods3. However, such approaches are still
in their infancy in terms of precision and recall. In addition, predicting
the consequenceof splicing changes, which is often vital for evaluating
the pathogenicity of variants4, is even more challenging. Another
approach is to perform genome and transcriptome analysis and
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identify pairs of genome variants and the corresponding splicing
changes through some statistical methods5–8. However, this approach
needs a dataset where both genome and transcriptome data are pro-
vided, which is not very common.

Here, to make the most of massive collections of transcriptome
data available in public sequence repositories9,10, we provide a
approach, IRAVNet (https://github.com/friend1ws/iravnet), which can
identify genomic variants that cause specific types of splicing aberra-
tions, intron retention, by using transcriptome sequencing data alone.
Another advantage of IRAVNet is that, unlike previous methods that
assess the association between genomic variant status and the amount
of splicing changes, this pipeline can be run on single transcriptome
sequencing data without gathering or specifying a set of data. This
makes a systematic screening of public repositories much easier. We
confirmed that intron retention associated variants (IRAVs) can be
detected with high accuracy as well as a certain degree of sensitivity
based on transcriptome sequencing data. Using this method, we per-
formed a comprehensive screening of intron retention variants mainly
using massive public transcriptome sequencing data registered in
Sequence Read Archive (SRA). Also, we have prepared a web-based
portal site, IRAVDB (https://iravdb.io/), where users can view various
information about the IRAVs of interest, such as positional relation-
ships with registered pathogenic variants and a list of the SRA samples
with those variants.

Results
Method overview
When a variant is a direct cause of intron retention by disrupting
existing splicing donor/acceptor motifs, we can observe mismatched
bases inmost of the retained short-reads at the exon–intron boundary
(Fig. 1a and Supplementary Fig. 1). We exploited this phenomenon to
develop an algorithm that can precisely identify IRAVs. Briefly, IRAV-
Net first lists up putative variants supported by three or more short
reads around the exon–intron boundaries (three exonic and six
intronic bases for splice donor sites, and six intronic and one exonic
base for splice acceptor sites). Next, IRAVNet only keeps the candi-
dateswhose variants are specifically supported by the intron-retention

supporting reads and not by normally spliced reads (Supplementary
Fig. 2). Finally, IRAVNet removes the potential artifacts such as those
presumably produced by alignment errors around exon-intron
boundaries. We also removed common variants (those whose allele
frequencies are greater than 0.01 by gnomAD database11) to focus on
variants having a significant effect on disease while keeping the false
positive rate low. See the Method section for a more detailed
description.

Application on TCGA dataset
To test the effectiveness of this approach, we conducted a preliminary
analysis using 11,312 transcriptome sequencing data from The Cancer
Genome Atlas (TCGA). In total, 2693 IRAVs were identified after mer-
ging the variants with the same position and substitution found in
multiple samples (Supplementary Data 1). To investigate whether the
predicted IRAVs identified from transcriptome by IRAVNet are truly
genomic variants or not, we developed a framework for assessing the
genomic mutation status of IRAVs using paired exome sequencing
data. We classified the IRAVs into somatic, germline, somatic or
germline, ambiguous, or false positive by exploring the number of
supporting reads and sequencing depths at the positions of IRAVs for
the 2967 corresponding pairs of tumor and matched control exome
sequencing data (Fig. 2a). This revealed that the ratio of false positives
in terms of genomic mutation status was estimated to be as low as
0.96% (Fig. 2b). Next, we evaluated the amount of intron retention for
the samples with IRAVs compared to others. We confirmed that, in
most cases, significantly higher ratios of intron retention were
observed specifically in the samples having IRAVs (Fig. 2c). To evaluate
the sensitivity of the proposed approach, we performed a comparison
with our previous approach, SAVNet5,12 which collects somatic splicing
associated variants making use of paired genome and transcriptome
data. IRAVNet, which just utilizes transcriptome data, detected about
43.1% (1032/2393) of intron retention causing somatic variants identi-
fied by SAVNet. In addition, out of the 1291 variants classified as
“somatic” by the above procedure (Fig. 2a), IRAVNet identified 331
“new” variants, in the sense that they were not identified by SAVNet or
identified as associated with other types of splicing changes than
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Fig. 1 | Schematics of identification intron retention associated variants.
a Examples of transcriptome sequencing alignment around variant causing intron
retention, as well as common patterns of false positives. b Overview of the pro-
posed framework for detecting intron retention associated variants from raw

sequencing data registered in Sequencing Read Archive. Downloaded sequence
data is processed in on-premise or public cloud computing environment and
identified IRAVs are transferred to the IRAV database and provided to the
community.
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Fig. 2 | Assessment of the IRAVNet approach using TCGA transcriptome and
exome sequencing data. a The flowchart showing the classification of genome
level mutation status for IRAVs. Here, according to sequencing depths, the variant
counts (the numbers of intron retention reads), and variant allele frequencies (VAF,
the ratios of intron retention reads to the total number of sequencing reads cov-
ering the corresponding exon-intron boundaries), the status are classified into
“germline,” “somatic,” “somatic or germline,” “ambiguous”, and “false positive.”
b The number of IRAVs categorized by the inferred mutation status for the iden-
tified IRAVs determined by the above procedure. c The boxplot showing how the
intron retention is specific to the samples with the IRAVs. The ends of the boxes
indicate lower and upper quartiles; center line, median; whiskers, maximum and

minimum values within 1.5 × IQR from the edges of the box, respectively. For each
IRAV, the Z-value comparing the ratios of intron retention between samples with
the IRAV and other samples in the same cancer type group is computed. We
observed that most of the Z-values were above the reasonable threshold (>2),
strongly suggesting that most IRAVs certainly generate intron retention. The
information, such as the sample size for each box, is provided in the Source Data
file. d Landscape of IRAVs in frequently altered cancer-related genes (total number
≥5) across cancer types. The point size indicates the number of affected samples.
Genes are sorted by the total number of IRAVs in all cancer types. See also Sup-
plementary Fig. 4.
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intron retention (Supplementary Fig. 3). Therefore, IRAVNet achieves a
certain level of sensitivity and a high rate of precision, even though it
only uses transcriptome data. Furthermore, most of the IRAVs detec-
ted by this approach are thought to actually cause intron retention.
IRAVNet was able to identify 321 distinct IRAVs that affect well-known
cancer genes such as TP53, STK11, SMARCA4, FAT1, and SETD2 (Fig. 2d,
Supplementary Fig. 4, and Supplementary Data 2). In addition, strong
enrichment of several genes on specific cancer types reflected well on
the previous findings (e.g., high concentration of STK11 and KEAP1 in
lung adenocarcinomas13). These results indicate that this approach can
effectively catalog disease-associated variants.

Application on GEUVADIS dataset
We further evaluated the IRAVNet approach using GEUVADIS RNA
sequencing data14. Among 652 transcriptome sequencing data whose
matched whole-genome sequencing data is available, we identified
68 distinct IRAVs (variants sharing the same position and substitu-
tion identified in multiple samples were counted as one). Most of the
IRAVs (66/68) were also detected as genomic variants by standard
variant detection pipeline on independent whole-genome sequen-
cing data15, confirming that these IRAVs are at least actual genomic-
level mutations. To explore whether these IRAVs have certain effects
on intron retention, we divided samples into IRAV positive and
negative groups based on genotyping via whole-genome sequencing
data and compared the amount of intron retention measured by
several methods (IRFinder16 and MAJIQ17,18) for each IRAV. When we
measured the local intron retention ratio around the exon-intron
boundary (IRFinder LocalIRRatio), the effect on intron retention was
rather clear for most IRAVs, corroborating that these IRAVs were
likely to induce intron retention (Z-value ≥2 and p-value ≤0.01 for
97.0% IRAVs, see Supplementary Figs. 5–8). When measuring via
intron-wide sequencing depth (IRFiner IRRatio, MAJIQ), the effect
becomes slightly weaker, possibly because the consequences of
splicing causing variants and their appearance in transcriptome data
are often complex. We also applied IRAVNet to downsampled tran-
scriptome sequencing data to assess the robustness of IRAVNet
approach, confirming a considerable amount of IRAVs could be
reproduced (Supplementary Fig. 9a).

Next, we compared our approach with machine learning-based
splicing effect prediction approaches (SpliceAI3, MMSplice19). The
variants identified by IRAV showed more substantial enrichment of
intron retention events than those predicted by machine learning
prediction methods (Supplementary Fig. 9b). We believe this is
because IRAVNet approach directly observes the variants from tran-
scriptome sequencing data and may have an advantage over purely
predictive approaches based on the nucleotide sequences. In addition,
splicing aberrations caused by genomic variants are heterogeneous
(including exon skipping, alternative 5 and 3′ splice site), and current
machine learning approaches have not been specifically trained to
predict intron retention.

A computational framework for applying Sequence Read
Archive
Next, to obtain a more comprehensive list of IRAVs, we applied this
approach to publicly available transcriptome sequencing data from
SRA20 (Fig. 1b). For this purpose, we developed a cloud-based platform
utilizing Amazon Web Service (Supplementary Fig. 10) as well as on-
premise computational clusters (Supplementary Fig. 11). For the cloud-
based platform, we automated the entire process of analysis using
serverless architecture; download the raw sequencedata, alignment to
the human reference genome, and perform IRAVNet to identify IRAVs.
To make the analysis reproducible, we utilized a container orchestra-
tion framework. Wemade various efforts to keep the cloud usage cost
down by choosing the region where the data is located (to reduce
downloading time), selecting the optimal instance type for each

procedure, setting the right amount of block storage to be reserved,
and usage of spot instances (Supplementary Fig. 12).

Screening of intron retention associated variants using
Sequencing Read Archive
We have analyzed 219,615 transcriptome sequencing data (counted
based on run IDs) and integrated the result into that of TCGA data
(Fig. 3a). In the SRA, there were many sequencing data with different
run IDs that were actually derived from the same individuals as
exemplified by frequently used cell lines with multiple experimental
conditions. Therefore, to avoid double counting of IRAVs, we basically
focused on “distinct IRAVs” in the following, in which those with the
same genomic position and substitution patterns identified from
multiple sequence data are counted as one.

We detected 27,049 distinct IRAVs in total. Of which, 25,849 were
on coding genes defined by RefSeq, and 119, 24,001, and 1729 distinct
IRAVs involved splices sites at 5′UTR, coding, and 3′UTR regions,
respectively. Most of the IRAVs associated with coding regions were
predicted to create premature termination codons (23,525, 98.0%),
23,332 (99.2%) of which were inferred to be nonsense-mediated decay
(NMD) sensitive by the 50nt rules21 (premature termination codons are
located before the 50bp upstream of the last exon-exon junction, see
Method section for details). In the following, we focused on these NMD-
sensitive IRAVs (21,584 SNVs and 1748 indels in 7813 RefSeq coding
genes) because they are plausible to be associated with loss-of-
function11. In all, 16,976 IRAVs were located at splice donor sites,
whereas 6356 IRAVs disrupted splice acceptor sites. 10,414 (44.6%)
IRAVs were those that did not involve GT-AG essential splice sites
(Fig. 3b). The distribution of substitution patterns of identified IRAVs at
the splice donor and acceptor sites show similar patterns for splicing
associated variants with the previous study5, wheremanywere found at
GT-AG essential splices sites followed by the last exonic and the 5th
intronic bases of splice donor sites (Fig. 3c). Furthermore, splicing
donormotifs grouped by the relative positions of IRAVswere separated
into left-handed and right-handedmotifs, where higher entropymasses
were placed in the exon and in the intron, respectively22 (Fig. 3d).

Pathogenicity of intron retention associated variants obtained
from Sequence Read Archive
Next, to search for IRAVs that are considered to be linked to disease,
we took an approach of extending existing knowledge related to dis-
ease and we divided variants into 5 tiers based on the positional rela-
tionships with the known pathogenic variants registered in ClinVar23

(Fig. 4a and Supplementary Data 3). 354 IRAVs sharing the same
positions and substitution patterns with already registered patho-
genic/likely pathogenic (P/LP) splicing variants were defined as Tier 1.
In total, 694 IRAVs sharing the same splice sites with registered P/LP
splice-site variants were classified as Tier 2. 866 IRAVs for which P/LP
truncating variants are seen within 30 bp from the exon-intron
boundary of the IRAVs were categorized as Tier 3. In all, 1086 NMD-
sensitive IRAVs that affect genes with at least one registered P/LP
truncating variant were designated as Tier4, and other variants were
set to Tier 5. Here, Tier 1 to Tier 4 IRAVswere considered to be putative
pathogenic IRAVs (ppIRAVs) andwill be discussed in the following. The
number of ppIRAVs identified showed an almost linear increase with
the number of transcriptome sequence data analyzed and has not yet
reached saturation. As the data accumulate at an accelerated rate,
much more ppIRAVs are expected to be found via further analy-
sis (Fig. 4b).

Putative pathogenic intron retention associated variants
affecting disease-related genes
The transcriptome sequencing data from Sequencing Read Archive
includes a number of cancer cells. In total with TCGA RNA sequencing
data, 636 ppIRAVs (Tier1: 123, Tier2: 207, Tier3: 145, Tier4: 161) were
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those affecting cancer-related genes24 (Fig. 4c). The fact that most of
them (490, 77.0%)were only identified fromSRA (Fig. 4d) indicates the
usefulness of SRA, which is overwhelmingly superior in number,
compared to TCGA data. Most of the cancer-related IRAVs identified
from SRA were considered to come from cancer transcriptome data
and to be somatic variants from the fact that their population allele
frequencies (via gnomAD) were generally very low. Genes with ≥ 15
ppIRAVs were TP53 (53 ppIRAVs),MYH9 (26), NF1 (24), SMARCA4 (23),
STK11 (20), RB1 (19), FLNA (17), TSC2 (17), BCOR (15) (Fig. 5a, c, d and
Supplementary Fig. 14). Generally, cancer-related ppIRAVs tended to
concentrate on specific splice-sites, and 36 splice-sites had three or
more ppIRAVs. In extreme cases, 19 ppIRAVs were concentrated at the
4th exon splice donor site of TP53, of which nine ppIRAVs have not
been reported inClinVar (Fig. 5b). Intron retention causedby the IRAVs
at this site was shown to be associatedwith overexpression ofΔ133p53
transcript25, which may promote cancer cell invasion26. Six ppIRAVs
were identified in the splice donor site of the 6th exon in YY1AP1 gene,
whose relationships with Grange syndrome27 and hepatocellular
carcinoma28 have been reported. Other hotspot splice-sites included
the splice donor site of TP53 exon 9 (6 ppIRAVs), the splice donor site
of SMARCA4 exon 34 (5), and the splice acceptor site of STK11 exon
7 (5).

Other recurrent ppIRAVs were detected in a number of genes
known to be associatedwith disease such asMYH9 (26 ppIRAVs), PHKB
(16), COL7A1 (14), and so on (Fig. 4c and Supplementary Fig. 15).MYH9
has been known to cause an autosomal-dominant disease called
MYH9-related disorder (MYH9-RD), characterized by large platelets
and thrombocytopenia as well as increased risk of progressive
nephropathy, sensorineural deafness, pre-senile cataract, and aberra-
tion of liver enzymes29,30. Moreover, several studies using animal
models suggested that MYH9 may act as a tumor suppressor and

inactivation ofMYH9was related to the development of squamous cell
carcinomas31 and invasive lobular breast carcinomas32. PHKB is asso-
ciated with the autosomal recessive type of glycogen storage disease
type IX. Many truncating and splicing variants have been reported in
ClinVar and we have identified IRAVs near them as well as other loca-
tions. Mutations in the COL7A1 gene cause dystrophic epidermolysis
bullosa, leading to subepidermal blistering and mucocutaneous
fragility33. The severity of the disease varies depending on the type of
mutation, and the degree to which the ppIRAVs cause intron retention
may have a different impact on this disorder. In addition, 678 ppIRAVs
(Tier1: 108, Tier2: 243, Tier3: 178, Tier4: 149) were those affecting
haploinsufficient genes34, and 250ppIRAVs (Tier1: 79, Tier2: 108, Tier3:
34, Tier4: 29) were identified in ACMG genes list version 3.035 (Sup-
plementary Fig. 13).

Collectively, our approach of screening ppIRAVs with massive
transcriptome data can still greatly improve the current knowledge of
variants causing splicing changes even for well-known disease-
related genes.

Putative intron retention associated variants related to drug
response
Loss of function mutations exemplified by variants causing splicing
changes occasionally provides important information on the potential
safety and effect of drugs36. We also identified IRAVs related to drug
response in the same manner as identifying ppIRAVs: we compared
positional relationships between variants reported to affect a drug
response registered inClinVar.We identified 13 IRAVs (Tier1: 2, Tier2: 2,
Tier4: 9) predicted to be related to drug response (Supplementary
Data 4). Eleven distinct IRAVs were identified in DPYD, mutations of
which are implicated to increased risk of toxicity in cancer patients
receiving 5-fluorouracil chemotherapy37. One variant, c.1905+1G>A, is
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relatively frequent (allele frequency: 0.0047), well characterized38, and
“reviewed by expert panel” status in ClinVar. Although the other nine
IRAVswere very rare (≤0.0001 allele frequency), they are, in aggregate,
potentially very important when administering medication. Other
genes included CYP2C19, which is known to influence the enzyme
activity in the metabolic pathway of drugs39.

Relatively common pathogenic intron retention associated
variants implicated in genetic disorders
Even though we focused on rare variants (≤0.01 allele frequency),
178 ppIRAVs (Tier1: 52, Tier2: 35, Tier3: 35, Tier4: 55) were relatively
common (≥0.0001 allele frequency). Among them, 18 ppIRAVs

(Tier1: 8, Tier2: 5, Tier3: 5, Tier4: 0) affected cancer predisposition
genes40 and 12 ppIRAVs (Tier1: 2, Tier2: 8, Tier3: 0, Tier4: 2) were
located at ACMG genes list version 3.035. They are considered to be
germline variants that work as factors for genetic diseases andmight
be a good candidate for a drug target. Many of them have been
registered in ClinVar as “Benign,” “Likely benign,” “Conflicting
interpretations of pathogenicity,” or “Uncertain significance” partly
because the effects of splicing are unclear. Using transcriptome
sequence data collected from multiple tissues (Genotype-Tissue
Expression project41), we have confirmed that individuals with
ppIRAVs tend to show specifically high intron retention ratios at
corresponding exon-intron boundaries in multiple tissues (Fig. 6a
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and Supplementary Figs. 16 and 17). Examples of relatively frequent
ppIRAVs included the c.1473+5G>T variant at the 9th exon splice
donor site of P3H1, linked with osteogenesis imperfecta. This variant
was observed in 405/152,156 (0.2662%) alleles (392/41,440 (0.9459%)
for the African ancestry) in gnomADdatabase v3.1.1 and has not been
reported as pathogenic. We confirmed by mini-gene assays that this
variant induces strong intron 9 retention (Fig. 6b). Given that this
variant may cause intron 9 retention in multiple tissues and that
a pathogenic variant was reported at the same splice site
(c.1473+1G>T)42, this variant may have some pathogenicity proper-
ties. The next example is the c.424+5G>A variant at the 8th exon
splice donor site of SMAD4. Although this variant has an even smaller
allele frequency (19/151,834, (0.0125%)), it has been reported in
several cancer-cohort studies43–45. Previous studies have described
this variant as a variant of uncertainty significance even though they
pointed out the possibility that it causes some kind of abnormal
splicing. However, intron retention verified by our mini-gene assay
implied some kind of pathogenicity of this variant (Fig. 6b). Overall,
our approach provides an effective screeningmethod for cataloging
major genomic variants that are responsible for genetic disease
through abnormal splicing.

Discussion
We have proposed a framework for screening pathogenic variants
through abnormal splicing, making the most of the vast amount of
transcriptome data available in public repositories. Our methodology
identifies not only many previously detected pathogenic variants but
also a vast amount of not described ones. In addition, our saturation
analysis demonstrated that more and more mutations would be
identifiable by keeping applying this methodology as the sequence
data accumulate in the repository. Furthermore, the correspondence
table between the variants and sample IDs will enable researchers to
download the set of sequencing data with the variants of interest for
further detailed analyses.

There are several caveats in the IRAVNet approach. We iden-
tified mismatch bases around the splice-site in the transcriptome
sequence alignment and confirmed whether this is specific to
intron-retention supporting reads. Therefore, this methodology
detects events in which mutations cause intron retention in a
splice site where intron retention does not commonly occur.
However, it may not be sufficient to detect mutations that cause a
quantitative change, such as a mutation that results in stronger
intron retention at the innately intron retention-intolerant splice

Fig. 5 | Distribution of IRAVs in geneswith frequent IRAVs. a, c,d Frequencies of
putative pathogenic IRAVs for each pathogenic tier at each splice-site are shown in
a TP53, cNF1, and d SMARCA4. b The catalog of IRAVs at the TP53 exon 4 donor site

identified in this study. All substitution patterns at the essential splice site, the last
exonic base, and the 5th intronic base were covered, as well as several deletions.

Article https://doi.org/10.1038/s41467-022-32887-9

Nature Communications |         (2022) 13:5357 7



site, where there are already some intron retentions. Other
approaches relying on statistical associations would be necessary
to identify these variants. Also, the prediction of NMD sensitivity
could be improved. We utilized the 50nt rule for the prediction of
NMD sensitivity as other genomic studies typically did. However,
recent advances in this field have indicated the complex physio-
logical regulation mechanism of NMD and the 50 nt rule may not
be sufficient21,46.

By utilizing the massive publicly available transcriptome sequen-
cing data, attractive future works would be to collect other types of
splicing associated variants than those causing intron retention by
using transcriptome sequencing data alone (such as splice-site creat-
ing variants and mobile element insertions). However, several chal-
lenges remain to overcome, not only the detection of splicing
associated variants itself. The SequenceReadArchive, whichwemainly
used in this paper, is notwell organized in termsofmetadata,making it
difficult to perform association studies with some phenotypes. It may
be helpful to devise and apply computational prediction methods for
basic information such as race, tissue, and cancer status. Furthermore,
the assessment of the pathogenicity of the splicing associated variants,
while predicting the forms of consequent transcripts, will not be
straightforward.

Previous approaches such as splicing QTL14,47 evaluate the asso-
ciation between genomic variant status and the amount of splicing
changes across samples. However, IRAVNet can be interpreted as
evaluating the association differently: It examines the co-occurrenceof
mutations and splicing events (intron retention) across short reads.
This can be achieved by drawing out the multi-layered information
provided by the sequencing data (in this case, the presence or absence
of both splicing changes and genetic mutations can be extracted). We
believe that these ideas could be extended in another way. For
example, the relationship between splicing and RNA modifications
may be evaluated in a similar manner based on recent long-read
sequencing technology.

With the accumulation of genome data via the implementation of
genomicmedicine, it will be increasingly important to acquire relevant
knowledge for medical treatment and prevention. In principle, it is
possible to build a system that automatically stores IRAVs by running
IRAVNet in conjunction with data registration and upload. Still, there
are many challenges such as reanalysis after updating the software,
data harmonization, and storage issues. However, while providing an
integrative solution to them, we believe that platforms that can effi-
ciently and autonomously perform knowledge discovery will revolu-
tionize the research and healthcare system.
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Fig. 6 | Validation of relatively common IRAVs implicated in genetic disorders.
a Relative ratios of corresponding intron retention for samples with (orange) and
without (gray) the IRAVs across tissues measured using GTEx transcriptome data.
The p-values measuring the differences of the intron retention ratios between
samples with and without IRAVs via the one-sidedWilcoxon rank-sum test for each
tissue and integration by Fisher’s method were 1.82 × 10−42, 2.91 × 10−7, and

1.22 × 10−69, respectively from the left panel to the right. b In vitro splicing analyses
using wildtype (WT) or mutant (Mut) minigene constructs (left) showing intron
retention introduced by IRAVs at P3H1 intron 9 and SMAD4 intron 3. The experi-
mental results were confirmed by three independent biological replicates, and
representative results were shown.
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Methods
A workflow for the discovery of intron retention associated
variants
Selection of Sequence Read Archive and TCGA samples. Public
Sequence Read Archive (SRA) samples were selected in a manner
similar to the previous study9. We queried the SRA website (https://
www.ncbi.nlm.nih.gov/sra) with the following search term: "platform
illumina"[Properties] AND "strategy rna seq"[Properties] AND "huma-
n"[Organism] AND "cluster public"[Properties] AND "biomol rna"[-
Properties]. Then, we extracted samples whose base number is ≥1
billion bases, to secure sufficient sequence coverage for reliably detect
mutations. There were a number of run data that could not be down-
loaded even after repeated trials probably due to some technical issue.
Some of the downloaded sequence data had severe problems such as
inconsistencies between two paired-end files, different lengths
between sequence letters and base qualities, and so on). In addition,
we removed run data whose number of IRAVs was extremely high due
to potential DNA contamination and so on. For The Cancer Genome
Atlas (TCGA) transcriptome data, we used all the available sequencing
data at the Genomic Data Commons.

Downloading Sequence Read Archive samples. We used SRA
Toolkit version 2.10.0. First, weperformedprefetch commandwith the
“----max-size 100000000” option to download SRA format file. Then,
we executed fasterq-dump command with the option “-v --split-files.”

Alignment of RNA-seq data. We used the GRCh38 based reference
genome provided from Genomic Data Commons (https://gdc.cancer.
gov/about-data/gdc-data-processing/gdc-reference-files). First, genome
indexes were generated using STAR version 2.7.2b48 with that reference
genome and the release 31 GTF file (ftp://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_31/gencode.v31.annotation.gtf.gz)
and –sjdbOverhang 100 option. For each sample, alignment to the
referencegenomeswasperformedby the sameversionof STARwith the
following options: --runThreadN 6 --outSAMtype BAM Unsorted --out-
SAMstrandField intronMotif --outSAMunmapped Within --out-
SJfilterCountUniqueMin 1 1 1 1 --outSJfilterCountTotalMin 1 1 1 1
--outSJfilterOverhangMin 12 12 12 12 --outSJfilterDistToOtherSJmin 0 0 0
0 --alignIntronMax 500000 --alignMatesGapMax 500000 --alignSJ-
stitchMismatchNmax −1 −1 −1 −1 --chimSegmentMin 12 --chimJunctio-
nOverhangMin 12. After the alignment, BAM files were sorted, and
converted into CRAM format, and indexed using SAMtools version 1.9
(https://www.htslib.org/).

Detection of intron retention associated variants from CRAM for-
mat files. We focused on the known splice-site regions (from the 3rd
exonicbase to the 6th intronic base for splicedonor sites, and from the
6th intronic base to the 1st exonic base) registered in RefSeq genes
(https://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/
refGene.txt.gz) as previously described5, and created the BED format
file for the above splice-site regions. From these splice-site regions, we
removed those completely included in the exonic regions of other
genes or isoforms by RefSeq genes or GENCODE basic gene annota-
tions. Also, using a panel of 742 control samples (collected from the
TCGA transcriptome data), we filtered out splice-site regions where
intron retention fraction is ≥ 0.05 in ≥ 8 control samples as previously
described5.

First, we piled up the CRAM file with the “samtools mpileup”
command confining to the remaining 221,840 splice-site regions and
identified putative variants with at least three variant supporting reads
and ≥0.05 variant allele frequencies. Then, we checked the position of
the variant in each supporting read and kept variants that are sup-
ported by at least three different positions (and at least one of which
must be inside the 5 bases from the edges).

Next, for each variant remaining at this stage, we classified short
reads around the variant by pair-wise alignment into:
– Splicing junctionpositive (negative): short reads that are normally

spliced at the corresponding splice-site and do (not) support the
target variant.

– Intron retention positive (negative): short reads that are not
spliced and retained around the splice-site and do (not) support
the target variant.

Let us denote the number of splicing junction positive, splicing
junction negative, intron retention positive, and intron retention
negative short reads as #SJ_Pos, #SJ_Neg, #IR_Pos, and #IR_Neg,
respectively. We requested the following conditions:
– #IR_Pos ≥ 3.
– #IR_Pos / (#IR_Pos + #IR_Neg) ≥0.9 (to confirm that most intron

retention reads include the target variant).
– #IR_Pos / (#SJ_Neg +#IR_Pos)≥0.1 (to remove the variantswith too

low variant allele frequencies or too weak penetrance on the
intron retention effect).

Also, at least one intron retention read needs to cover 25
intronic bases from the exon-intron boundary. Furthermore, to
restrict reliable IRAVs, we requested that the MaxEntScore49 be
reduced by at least 2.5 due to the variants. Finally, using gnomAD
version 3.0, we removed the variants with high allele frequencies
(>0.01). The entire workflow is available at https://github.com/
friend1ws/iravnet.

Quantification of intron retention. Intron retention was quantified by
our in-house program (intron_retention_utils, https://github.com/
friend1ws/intron_retention_utils) as in the previous study5. For each
exon-intron boundary registered in RefSeq database, the number of
presumed intron retention reads (those spanning ≥10 bp of both sides
of the boundary), as well as that of normally spliced reads covering the
last exonic base of the boundary, was counted.

TCGA exome and transcriptome analysis
Classification of intron retention associated variants using tumor
and matched-control exome sequencing data. For each tran-
scriptome sequencing data having detected IRAVs, we first checked
whether the corresponding tumor and matched control exome
sequencing data is available in the Genomic Data Commons. Here, we
focused on the sample type of “Primary Tumor,” and “Primary Blood
Derived Cancer - Peripheral Blood” (as well as “Metastatic" in cases
when the cancer type is TCGA-SKCM) for tumor and “Solid Tissue
Normal” and “Blood Derived Normal” for matched control. When both
tumor andmatched controlwere obtained, wedownloaded part of the
BAM file around the detected IRAVs using the BAM Slicing API. Then,
we measured sequencing depths, the numbers of IRAV supporting
reads, and the ratios of IRAV supporting reads for the IRAVs and
classified them into “germline,” “somatic,” “somatic or germline,”
“ambiguous,” and “false positive” according to theflowchart presented
in Fig. 2a.

Investigation of the specificity of the amount of intron retention.
The amount of intron retention was quantified by our in-house pro-
gram (intron_retention_utils simple_count command) as described
previously5. Briefly, for each exon–intron boundary, the number of
intron retention reads (those covering ≥10 bp of both sides of the
exon–intron boundary) and that of normally spliced reads covering
the last exonic base of the exon–intron boundary were counted. For
each detected IRAV, wemeasured the ratios of intron retention for the
IRAV having sample and other samples with the same cancer type and
quantified the Z-value comparing them.
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Comparison with SAVNet. First, we confined the transcriptome data
to those used in the previous study5 for comparison. We collected the
splicing associated variant identified as causing intron retention in that
study and transformed the coordinates of these variants from those
based on GRCh37 to GRCh38 using liftOver (https://genome-store.
ucsc.edu/). Finally, we evaluated the overlap between the IRAVs iden-
tified in this study and them.

GEUVADIS transcriptome analysis
Processing Genotype data for GEUVADIS. We downloaded pro-
cessed VCF files15 fromhttp.www.s3://1000genomes/1000G_2504_high_
coverage/working/20201028_3202_raw_GT_with_annot/. We extracted
variants located within the splice-site regions specified by the BED files
used in the IRAVNet approach and samples which have matched tran-
scriptome using “bcftools view” and normalized these variants by
“bcftools norm.” As performed in IRAVNet workflow, we removed var-
iants whose allele frequencies weremore than 0.01 by gnomAD version
3.0 or that were not marked as PASS in the FILTER column, except for
the variants identified by IRAVNet. Also, we filtered out those whose
differential MaxEntScore by the variants are below 2.5 as performed in
the IRAVNet procedure.

Quantification of intron retention using IRFinder and MAJIQ and
comparison of the amount of intron retention with and without
IRAVs. For all the genomic variants extracted in the previous sub-
section as well as IRAVs identified by IRAVNet, we quantified the
amount of relevant intron retention using IRFinder version 1.3.1 and
MAJIQ version 2.3. For using IRFinder, we first built a reference using
“IRFinder BuildRef” command based on the Release 100 of Ensembl
human genome GRCh38 gene annotations, including RNA.SpikeI-
n.ERCC.fasta.gz and Human_hg38_nonPolyA_ROI.bed files obtained
from IRFinder repository (https://github.com/williamritchie/
IRFinder). After downloading the transcriptome FASTQ files as
described in the previous subsection, we quantified the intron reten-
tion via “IRFinder FastQ” command.We set the new indicator from the
IRFinder result as LocalIRratioLeft = ExonToIntronReadsLeft/(Splice-
Left + ExonToIntronReadsLeft + 1), and LocalIRratioRight =
ExonToIntronReadsRight/(SpliceRight + ExonToIntronReadsRight +
1). According to the positional relationship of the IRAVwith the intron,
one of the values of LocalIRratioLeft and LocalIRratioRight was set as
the LocalIRratio. We also used the values of IRratio column as a mea-
sure for whole introns.

For using MAJIQ, we first downloaded a reference GFF3 file from
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/
release_39/gencode.v39.annotation.gff3.gz. To quantify the amount of
intron retention corresponding to the detected IRAVs, we inserted
records corresponding to the new transcripts in intron retention
assumed from the IRAVs were triggered. We performed “majiq build”
command with “--irnbins 0.00001 --min-intronic-cov 0.00001 --anno-
tated_ir_always” options, and quantified the relative abundance of
splicing by “majiq psi” command with “--minreads 1 --minpos 1”
options. We used the value of mean_psi_lsv_junction column as the
quantification of intron retention.

For each IRAV, we divided the transcriptome samples into two
groups according to the mutation status of IRAVs. We measured the
difference between the two groups by Z-value via IRFinder (Loca-
lIRratio and IRratio) andMAJIQ. Also, we performed a permutation test
and obtained a p-value setting the statistics as themean of the amount
of intron retention for the positive groups. Furthermore, we calculated
the difference in themedian of each indicator of intron retention ratio
between the two groups. We also performed MAJIQ HET to measure
the difference between the two groups. For each IRAV, we performed
the “majiq heterogen” command on the two groups based on the IRAV
mutation status, and executed the “voila tsv” command with “--show-
all” option for each VOILA format file. Then, we calculated the

difference between the values of columns whose suffixes are “true_-
median_psi” and “false_median_psi,” and adopted the p-value from the
“TNOM” column.

Checking the reproducibility by sub-sampling. To examine the
reproducibility of IRAVNet approach, we subsample BAM files by
“samtools view --subsample” command setting the subsample fraction
to 0.1, 0.2, …, 0.9, and the seed integer to 1, 2, …, 10. Then, we per-
formed IRAVNet on subsampled BAM files and checkedwhether IRAVs
identified from the original BAM files were detected or not.

Comparison to machine learning splicing prediction algorithms.
We compared the IRAVNet with existing splicing prediction approa-
ches (MMSplice and SpliceAI) based on machine learning. For each
variant at the splice-site regions extracted in the above subsection, we
obtained the predictions of splice effects. For MMSplice, we down-
loaded GTF file from https://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_39/gencode.v39.annotation.gtf.gz and per-
formed MMSplice version 2.2.0 using predict_all_table function with
the settings of “pathogenicity = True, splicing_efficiency = True”. We
summarized the effect as the maximum across all exons using the
max_varEff function when one variant has multiple exons, and the
variants whose delta-logit_psi were below −2 were considered to be
positive ones. For SpliceAI, we downloaded the pre-calculated anno-
tation (which includes substitutions, 1 base insertions, and 1–4 base
deletions within genes) from the Illumina BaseSpace Sequence Hub
website, and extracted the score of DS_AL (Delta score (acceptor loss))
or DS_DL (Delta score (donor loss)), and variants whose score were
above 0.5 were set to be positive ones. For each approach (IRAVNet,
MMSplice, SpliceAI) and for each genomic variant, we divided into
positive and negative groups and calculated the Z-value quantified by
IRFinder (IRratio and LocalIRratio) as described in the previous
subsection.

Cloud-based platform for detecting intron retention associated
variants from Sequence Read Archive
Weused our in-house batch job engine onAmazonWeb Service, ecsub
(https://github.com/aokad/ecsub). This software first launches a vir-
tual machine of an instance type suited to a target task (e.g., tran-
scriptome alignment, gene expressionmeasurement, and so on). Then
it performs a series of Extraction Transformation Load (ETL) proce-
dures, in which it extracts input files (e.g. FASTQ files) stored in
Amazon S3 to the virtualmachines, transforms the input files to output
files (e.g. BAM files converted from the FASTQ file by alignment soft-
ware), and then load the output file to Amazon S3. Finally, ecsub
removes the virtual machines used for the ETL procedure. This soft-
ware basically wraps Amazon Elastic Container Service to implement
the above approaches, with additional functions such as selecting the
instance type and availability zone of SpotInstance, automatically
deleting the master instance using the serverless framework (Amazon
Lambda), and so on. This software is inspired by dsub (https://github.
com/DataBiosphere/dsub), which is a tool to submit batch jobs on
Google Cloud Platform. In this study, the pipeline is composed of four
steps; downloading SRA samples, Alignment of transcriptome data,
detection of IRAVs using iravnet, and intron retention quantification.

Investigating generation of premature termination codon and
sensitivity to nonsense-mediated-decay
To explore the generation of premature termination codon (PTC) for
each IRAV, we chose the longest transcript (defined by RefSeq tran-
script annotation) harboring the corresponding exon-intron boundary
affected by the IRAV. Then, we constructed the transcript with the
nucleotide sequence of the retained intron and investigated whether a
stop codon occurs before the original termination codon or not. For
IRAVs with PTCs, if the PTCs were located before 50 bp upstream of
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the last exon–exon junction, then those IRAVs were classified into
NMD-sensitive, whereas the remaining PTC harboring IRAVs were
deemed as NMD-insensitive.

Definition and classification of putative pathogenic and drug
response intron retention associated variants
We investigated the positional relationships of the IRAVs with patho-
genic variants registered in ClinVar VCF file downloaded from ClinVar
FTP site (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/) as of
4th, 2021. The “pathogenic” variant in ClinVar is defined as those
whose CLNSIG INFO key is either of “Pathogenic,” “Likely_pathogenic,”
or “Pathogenic/Likely_pathogenic” in this study. For each IRAV, we
inspected the positional relationships with pathogenic variants in the
ClinVar VCF file. First, when a pathogenic variant with the same
genomic position and substitution patterns with the IRAV exist in the
ClinVar VCF file, then the IRAVs were classified into Tier1. When a
pathogenic splicing variant (MC INFO key is “SO:0001575|splice_do-
nor_variant,” or “SO:0001574|splice_acceptor_variant”) sharing the
same splicing site (3 exonic and 6 intronic bases for splice donor sites,
and 6 intronic and 1 exonic base for splice acceptor sites) with the IRAV
were observed, the IRAV was designated as Tier2. Next, we searched
for a pathogenic truncating variant (MC INFO key is “SO:0001587|
nonsense,” or “SO:0001589|frameshift_variant”) within 30 bp from the
corresponding exon–intron boundary at the transcript level, and the
pathogenicity rank of the IRAV was set to Tier3 if a variant satisfying
the condition was found. Finally, we explored for a pathogenic variant
in the same gene with the IRAV, and the IRAV was categorized into
Tier4 if one could be found. In the case of Tier4 investigation, we
imposed additional constraints, CLNSTAT INFO key is either of “cri-
teria_provided,_multiple_submitters,_no_conflicts,” “reviewed_by_
expert_panel,” “practice_guideline,” to focus on variants with solid
evidence.

The identification and classification of IRAVs putatively affecting
drug response were performed in exactly the same way as above,
except that variants whose CLNSIG INFO key is “Drug_response”
(instead of “Pathogenic,” “Likely_pathogenic,” or “Pathogenic/Like-
ly_pathogenic”) were used as a reference set for positional relationship
comparison with IRAVs.

Measurement of the amount of intron retention across multiple
tissues
Wehavedownloaded theGTEx transcriptome sequencedata fromSRA
and aligned them using STAR, and quantified the amount of intron
retention using our in-house program (intron_retention_utils simple_-
count command) as described in the previous sections. For genotype
data, we used exome genotype calls from the GTEx Analysis V7. For
each IRAV, we also calculated a p-valuemeasuring the differenceof the
amount of intron retentionbetween sampleswith andwithout IRAVs in
each tissue via one-sided Wilcoxon rank-sum test using wilcox.test
function of R language, and integrated it using Fisher’s method across
tissues.

Validation using In vitro assay
The P3H1 and SMAD4 mini-gene constructs were generated by insert-
ing the DNA fragments containing the P3H1 genomic sequence span-
ning exons 9 and 10 and intervening intron 9, and SMAD4 genomic
sequence from exon 3 to exon 4 in between the BamHI and EcoRI
restriction sites of the pcDNA3.0(-) plasmid. Mutagenesis was per-
formed with the primeSTAR Mutagenesis Basal Kit (Takara) with spe-
cific primers according to the manufacturer’s instructions. For
transient transfection experiments, 293T cells were seeded into a
6-well plate one day before transfection of P3H1 or SMAD4 minigene
constructs in the presence of PEI MAX (polysciences). 36 hours after
transfection, cells were collected and RNA was extracted with Favor-
Prep Mini Kit (FAVORGEN). Mini-gene-derived and endogenous

transcripts of P3H1 andSMAD4were analyzedbyRT-PCRusing specific
primers. Primers and oligonucleotides used in RT-PCR reactions were:
P3H1 fwd (mini-gene) CGCAAATGGGCGGTAGGCGTG, P3H1 fwd
(endogenous) AGTCACTGGATGTGAGCAGACTGAC and rev (com-
mon) TGAGGGCTTTGAAGACAGTGACAC; SMAD4 fwd (mini-gene)
CGCAAATGGGCGGTAGGCGTG, SMAD4 fwd (endogenous) ATACA-
GAGAACATTGGATGGGAGGCTTC and rev (common) ATTACTCTG-
CAGTGTTAATC CTGAGAG.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The list of IRAVs is available through IRAVDB (https://iravdb.io) and
Zenodo (https://doi.org/10.5281/zenodo.7045663). Source data are
provided with this paper.

Code availability
The workflow of iravnet is available at GitHub (https://github.com/
friend1ws/iravnet).
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