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Purpose: Machine learning classification algorithms (classifiers) for prediction of treatment 

response are becoming more popular in radiotherapy literature. General Machine learning 

literature provides evidence in favor of some classifier families (random forest, support vector 

machine, gradient boosting) in terms of classification performance. The purpose of this study is to 

compare such classifiers specifically for (chemo)radiotherapy datasets and to estimate their 

average discriminative performance for radiation treatment outcome prediction.

Methods: We collected 12 datasets (3496 patients) from prior studies on post-

(chemo)radiotherapy toxicity, survival, or tumor control with clinical, dosimetric, or blood 

biomarker features from multiple institutions and for different tumor sites, that is, (non-)small-cell 

lung cancer, head and neck cancer, and meningioma. Six common classification algorithms with 

built-in feature selection (decision tree, random forest, neural network, support vector machine, 

elastic net logistic regression, Logit-Boost) were applied on each dataset using the popular open-

source R package caret. The R code and documentation for the analysis are available online 

(https://github.com/timodeist/classifier_selection_code). All classifiers were run on each dataset in 

a 100-repeated nested fivefold cross-validation with hyperparameter tuning. Performance metrics 

(AUC, calibration slope and intercept, accuracy, Cohen’s kappa, and Brier score) were computed. 

We ranked classifiers by AUC to determine which classifier is likely to also perform well in future 

studies. We simulated the benefit for potential investigators to select a certain classifier for a new 

dataset based on our study (pre-selection based on other datasets) or estimating the best classifier 

for a dataset (set-specific selection based on information from the new dataset) compared with 

uninformed classifier selection (random selection).

Results: Random forest (best in 6/12 datasets) and elastic net logistic regression (best in 4/12 

datasets) showed the overall best discrimination, but there was no single best classifier across 

datasets. Both classifiers had a median AUC rank of 2. Preselection and set-specific selection 

yielded a significant average AUC improvement of 0.02 and 0.02 over random selection with an 

average AUC rank improvement of 0.42 and 0.66, respectively.

Conclusion: Random forest and elastic net logistic regression yield higher discriminative 

performance in (chemo)radiotherapy outcome and toxicity prediction than other studied 

classifiers. Thus, one of these two classifiers should be the first choice for investigators when 

building classification models or to benchmark one’s own modeling results against. Our results 

also show that an informed preselection of classifiers based on existing datasets can improve 

discrimination over random selection.

Keywords

classification; machine learning; outcome prediction; predictive modeling; radiotherapy

1. INTRODUCTION

Machine learning algorithms for predicting (chemo)radiotherapy outcomes (e.g., survival, 

treatment failure, toxicity) are receiving much attention in literature, for example, in decision 

support systems for precision medicine.1,2 Currently, there is no consensus on an optimal 

classification algorithm. Investigators select algorithms for various reasons: the 

investigator’s experience, usage in literature, data characteristics and quality, hypothesized 
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feature dependencies, availability of simple implementations, and model interpretability. 

One objective criterion for selecting a classifier is to maximize a chosen performance metric, 

for example, discrimination (expressed by the area under the receiver operating 

characteristic curve, AUC). Here, we discuss the performance of binary classifiers in 

(chemo)radiotherapy outcome prediction, that is, algorithms that predict whether or not a 

patient has a certain outcome. We empirically study the behavior of existing simple 

implementations of classifiers on a range of (chemo)radiotherapy outcome datasets to 

possibly identify a classifier with overall maximal discriminative performance. This is a 

relevant question for investigators who search for a rational basis to support their choice of a 

classifier or who would like to compare their own modeling results to established 

algorithms.

We employ various open-source R packages interfaced with the R package caret3 (version 

6.0–73) that is readily available for investigators and has shown to produce competitive 

results.4 With our results, we also wish to provide guidance in the current trend to delegate 

modeling decisions to Machine learning algorithms.

Large-scale studies in the general Machine learning literature4–6 provide evidence in favor of 

some classifier families [random forest (rf), support vector machine (svm), gradient boosting 

machine (gbm)] in terms of classification performance. In our study, we investigate how 

these results translate to (chemo)radiotherapy datasets for treatment outcome prediction/

prognosis. To the best of our knowledge, this is the first study to investigate classifier 

performance on a wide range of such datasets. The studied features are clinical, dosimetric, 

and blood biomarkers.

Within the framework of existing classifier implementations, we attempt to answer three 

research questions:

(1) Is there a superior classifier for predictive modeling in (chemo)radiotherapy?

(2) How dataset dependent is the choice of a classifier?

(3) Is there a benefit of choosing a classifier based on empirical evidence from 

similar datasets (preselection)?

Parmar et al.7 compared multiple classifiers and feature selection methods (i.e., filter-based 

feature selection) on radiomics data using the caret package. We build upon this work and 

extend the analysis to 12 datasets outside the radiomics domain. We omit filter methods 

because all classifiers in our study comprise built-in feature selection methods (i.e., 

embedded feature selection) and the main advantage of filter methods, i.e. low 

computational cost per feature, is not relevant for our datasets with only modest numbers of 

features.

2. MATERIALS AND METHODS

2.A. Data collection

Twelve datasets (3496 patients) with treatment outcomes described in previous studies were 

collected from public repositories (www.cancerdata.org) or provided by collaborators. Table 
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I characterizes these datasets. Given availability, some datasets consist of subsamples of or 

contain fewer/more patients and/or features than the cohorts described in the original 

studies. Two datasets were excluded after a preliminary analysis (these datasets are also not 

mentioned in Table I) where none of the studied classifiers resulted in an average AUC 

above 0.51, which is evidence that they contain no discriminative power. Datasets without 

discriminative power are not suitable for this analysis as we would be unable to determine 

differences in discriminative performance across classifiers. The patient cohorts of 2 

datasets, Wijsman et al.20,21, partially overlap but each dataset lists a different outcome 

(esophagitis and pneumonitis). Datasets were anonymized in the analysis because their 

identity is not relevant for interpreting the results and to encourage investigators to share 

their datasets.

Nonbinary outcomes were dichotomized, for example, overall survival was translated into 2-

yr overall survival in the dataset of Carvalho et al.10. Missing data were imputed for training 

and test sets (the splitting of datasets into training and test sets is described in Section 2.C) 

by medians for continuous features and modes for categorical features based on the training 

set. Basing the imputation on the training set avoids information leakage from test to 

training sets. Categorical features in training and test sets were dummy coded, that is, 

representing categorical features as a combination of binary features, based on the combined 

set for classifiers that cannot handle categorical features (Table II). Dummy coding on the 

combined set ensures that the coding represents all values observed in a dataset. Features 

with zero variance in training sets were deleted in the training set and in the corresponding 

test set. In addition, we removed near-zero variance features for glmnet to avoid the 

classifier implementation from crashing during the fitting process. Features in training sets 

were rescaled to the interval [0,1] and the same transformation was applied to the 

corresponding test sets. Rescaling is needed for certain classifiers, e.g., svmRadial. All these 

operations (imputation, dummy coding, deleting (near-)zero variance features, rescaling) 

were performed independently for each pair of training and test sets (step 2 in Fig. 1).

2.B. Classifiers

Six common classifiers were selected and their implementations were used via their 

interfacing with the open-source R package caret. The selection includes classifiers 

frequently used in medical data analysis and advanced classifiers such as random forests or 

neural networks.

□ Elastic net logistic regression is a regularized form of logistic regression, which 

models additive linear effects. The added shrinkage regularization (i.e., feature 

selection) makes it is suitable for datasets with many features while maintaining 

the interpretability of a standard logistic regression.

□ Random forests generate a large number of decision trees based on random 

subsamples of the training set while also randomly varying the features used in 

the trees. Random forests allow modeling nonlinear effects. A random forest 

model is an ensemble of many decision tree models and is, therefore, difficult to 

interpret.

Deist et al. Page 5

Med Phys. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



□ Single-hidden-layer neural networks are simple versions of multilayer 

perceptron neural network models, which are currently popularized by deep 

neural network applications in machine learning. In the hidden layer, auxiliary 

features are generated from the input features which are then used for 

classification. The weights used to generate auxiliary features are derived from 

the training set. The high number of weights requires more training data than 

other simpler algorithms and reduces interpretability. However, if sufficient data 

are available, complex relationships between features can be modeled.

□ Support vector machines with a radial basis function (RBF) kernel transform the 

original feature space to attain a better separation between classes. This 

transformation, however, is less intuitive than linear SVMs where a separating 

hyperplane is in the original feature space.

□ LogitBoost (if used with decision stumps as in this paper) learns a linear 

combination of multiple single feature classifiers. Training samples that are 

misclassified in early iterations of the algorithm are given a higher weight when 

determining further classifiers. The final model is a weighted sum of single 

feature classifiers. Similar to random forests, it builds an ensemble of models 

which is difficult to interpret.

□ A decision tree iteratively subdivides the training set by selecting feature cutoffs. 

Decision trees can model nonlinear effects and are easily interpretable as long as 

the tree depth is low.

Classifier details can be found in general Machine learning textbooks.22,23 Table II further 

characterizes these classifiers. We use the option in caret to return class probabilities for all 

classifiers, including nonprobabilistic classifiers like svmRadial. Classifier hyperparameters, 

that is, model-intrinsic parameters that need to be adjusted to the studied data prior to 

modeling, were tuned for each classifier using a random search: 25 randomly chosen points 

in the hyperparameter space are evaluated and the point with the best performance metric 

(we chose the AUC in this study) is selected. The boundaries of the hyperparameter space 

are given in caret.

2.C. Experimental design

For each classifier, test set (or out-of-sample) performance metrics (AUC, Brier score, 

accuracy, and Cohen’s kappa) were estimated for each of the 12 datasets. The performance 

metric estimator was the average performance metric computed from the outer test folds in a 

nested and stratified fivefold cross-validation (CV). The experiment was repeated 100 times. 

The 100 times repeated nested cross-validation yields a better estimate of the true test set 

performance by randomly simulating many scenarios with varying training and test set 

compositions.

The experimental design is depicted in Fig. 1: Each dataset was split into five random 

subsamples stratified for outcome classes (step 1 in Fig. 1), each of them acting once as a 

test set and four times as a part of a training set. The number of inner and outer folds was set 

to 5 following standard practice23(p 242). Data preprocessing is done per pair of training and 
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test sets (step 2; see details in section Datasets). The models were trained on the training set 

(step 6) and applied on the test set (step 7) to compute the performance metrics for the test 

set (step 8) resulting in five estimates per performance metric (i.e., 1 per outer fold). During 

the training in each outer fold, the best tuning parameters were selected from the random 

search (see section Classifiers) according to the maximum AUC of an inner fivefold CV. In 

the inner CV, the training set was again split into five subsamples and models with different 

tuning parameters were compared (steps 3–5). The nested fivefold CV was repeated 100 

times with different randomization seeds which are used, for example, for generating the 

outer folds in step 1. Note that the performance metrics computed on the outer test folds of 

any two classifiers can be analyzed by pairwise comparison because the classifiers were 

trained (step 6) and tested (step 7) on the same training and test sets for a specific dataset 

within each of the 100 repetitions.

The mean AUC, Brier score, accuracy, and Cohen’s kappa were computed from the five 

estimates of the fivefolds in the outer CV. Calibration intercept and slope were computed 

from a linear regression of outcomes and predicted outcome probabilities for each of the five 

outer folds. To attain aggregated calibration metrics over the five outer folds of the CV, the 

mean absolute differences from 0 and 1 were computed for the calibration intercept and 

slope, respectively. Classifier rankings were computed per dataset and repetition by ordering 

the classifiers’ CV-mean AUC (i.e., the average AUC for five test sets) in descending order 

and then assigning the ranks from 1 to 6. Using CV-mean AUCs and CV-mean AUC ranks, 

we answer research questions 1 and 2. We chose AUC for the analysis following Steyerberg 

et al.30 They emphasize the importance of discrimination and calibration metrics when 

assessing prediction models. For the simplicity, we restricted the extended analysis to 

discrimination (AUC) but also report results for calibration and other metrics in appendix A.

To address the question of preselection (research question 3), we assess the advantage of 

choosing a classifier based on performance metrics from similar datasets, which we call 

preselection below. To estimate the benefit of our classifier preselection for a new dataset 

and to compare it to alternative strategies, the results of the experiment above were used as 

input for a simulation. For each outer fold of the 1200 fivefold CVs (12 datasets 9 100 

repetitions 9 5-folds = 6000-folds), three classifier selections were made and tested on the 

test set that belongs to the specific outer fold:

□ preselecting the classifier according to the average AUC rank in all other 

datasets (excluding all folds from the current dataset),

□ selecting the classifier that performed best in the inner CV on the training set,

□ randomly selecting a classifier.

Preselecting the classifier for one dataset that had the best average AUC rank in the other 

datasets simulates the scenario in which an investigator bases their classifier choice on 

empirical evidence as is reported in this manuscript. Randomly selecting a classifier 

represents the case where an investigator chooses a classifier without any prior knowledge 

about the dataset that (s)he is about to analyze. Selecting the tuned classifier with best inner 

CV performance corresponds to evaluating multiple classifiers on the training dataset and 

thus including dataset-specific information in the classifier selection. The performance 

Deist et al. Page 7

Med Phys. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metrics are averaged over all 500 outer folds (5-folds 9 100 repetitions) for each of the 12 

datasets.

The documented R code used for the analysis is available online.31

3. RESULTS

Running 1 nested fivefold cross-validation and computing the metrics on one dataset for all 

six classifiers allows one comparison of classifiers. This was applied on 12 different 

datasets, with each run repeated 100 times for a total of 1200 comparisons. The total 

computation time was approximately 6 days on an Intel Core i5–6200U CPU (or 15 s per 

classifier per dataset per outer fold, on average).

The results are presented and discussed threefold:

(1) results aggregated over all datasets and repetitions to determine the presence of a 

superior classifier,

(2) separate results for each dataset but aggregated over repetitions to determine 

dataset dependency,

(3) a simulation of classifier selection methods in new datasets to estimate the 

relative effect of classifier preselection.

The detailed analysis is restricted to the classifiers’ discriminative performance according to 

the AUC. Results for the remaining metrics (Brier score, calibration intercept/slope, 

accuracy, and Cohen’s kappa) are reported in Appendix A.

3.A. Results aggregated over all datasets

Figure 2 shows the distribution of classifier rankings based on the average AUC (12 datasets 

9 100 repetitions = 1200 data points per classifier). Figure 3 depicts pairwise comparisons 

for each classifier pair (1200 comparisons per pair). The numbers in the plot indicate how 

often classifier A (y-axis) achieved an AUC greater than classifier B (x-axis). Coloring 

indicates whether the increased AUCs of classifier A are statistically significant (violet) or 

not (light violet). Untested pairs are colored gray. The significance cutoff was set to the 0.05 

level (one- sided Wilcoxon signed-rank test, Holm–Bonferroni correction for 15 tests).

rf and glmnet showed the best median AUC rank, followed by nnet, svmRadial, LogitBoost, 
and rpart (Fig. 2). At the low end of the ranking, rpart showed poor discriminative 

performance. Manual inspection of the rpart models showed that rpart frequently returns 

empty decision trees for particular sets (for 34%, 19%, 68%, 35%, 58% of all outer folds for 

sets D, E, G, K, L, respectively). In pairwise comparisons, rf and glmnet significantly 

outperformed all other classifiers (Fig. 3). rf exhibited a small but statistically insignificant 

better AUC rank than glmnet.

The results in Figs. 2 and 3 indicate the existence of a significant classifier ranking for these 

datasets. However, the considerable spread per classifier in Fig. 2 and the low pairwise 

comparison percentages (between 57% and 91% in Fig. 3) also suggest a yet unobserved 
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dependency for classifier performance. To this end, the relationship between datasets and 

varying classifier performance is investigated.

3.B. Results separate for each dataset

Figure 4 shows the average AUC for each pair of classifier and dataset (100 repetitions = 

100 data points per pair). Figure 5 depicts the average rank derived from the AUC (100 data 

points per pair).

rf and glmnet generally yielded higher AUC values and AUC ranks per dataset (Figs. 4 and 

5). However, this observation is not consistent over all datasets: e.g., nnet outperforms rf in 

sets H, J, and K, and svmRadial outperformed glmnet in sets A and C.

The results in the Figs. 4 and 5 indicate that dataset-specific properties impact the 

discriminative performance of classifiers. These results challenge our proposition that one 

can preselect classifiers for predictive modeling in (chemo) radiotherapy based on 

representative datasets from the same field.

3.C. Effects of empirical classifier preselection on discriminative performance

Table III lists, for each dataset, the name and average AUCs, that is, averaged over all 100 

repetitions, for random classifier selection, classifier preselection, and set-specific classifier 

selection.

The preselection procedure always results in rf or glmnet. The mean benefit of empirically 

preselecting a classifier is small: the AUC improvement ranges between −0.02 and 0.06 with 

a mean of 0.02. In a pairwise comparison over all datasets (P < 0.05, one-sided Wilcoxon 

signed-rank test), the AUC values by preselection were significantly larger than the AUC 

values by random selection. The AUC rank improves by 0.42 on average. Including dataset-

specific information by inner CV yields a mean AUC improvement of 0.02 and improves the 

rank, on average, by 0.66. In a pairwise comparison of set-specific and random classifier 

selection over all datasets (P < 0.05, one-sided Wilcoxon signed-rank test), the AUC 

increase was also statistically significant.

Given this simulation, the expected benefit of preselecting a classifier for a new dataset 

based on results from (chemo)radiotherapy-specific numerical studies is limited with an 

average increase in AUC of 0.02.

4. DISCUSSION

Our results suggest that there is indeed an overall ranking of classifiers in 

(chemo)radiotherapy datasets, with rf and glmnet leading the ranking. However, we also 

observe that the performance of a classifier depends on the specific dataset. Preselecting 

classifiers based on evidence from related datasets would, on average, provides a benefit for 

investigators because it increases discriminative performance. An increase in average 

discriminative performance is desirable in that an investigator would be less likely to discard 

their data because of a perceived absence of predictive or prognostic value. The estimated 

0.02 mean AUC improvement might appear small, but it comes “for free” with classifier 
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selection based on empirical evidence from multiple radiotherapy datasets. Furthermore, the 

0.02 AUC improvement is relative to random classifier selection. If an investigator had 

initially chosen rpart, which is the overall worst performing classifier in our study, switching 

to the preselected classifier would result in an average AUC increase of 0.07. Switching 

from LogitBoost, which is the second worst performing classifier in our study, to the 

preselected classifier would result in an average AUC increase of 0.04.

The results in Table III show that classifier preselection and set-specific classifier selection, 

on average, yield the same AUC increase. We think that the usefulness of setspecific 

classifier selection is dependent on the size of the training set: classifier preselection is 

preferable for small datasets, set-specific classifier selection is better for larger datasets. 

Classifier preselection represents choosing classifiers using evidence from a large collection 

of similar datasets from the general radiotherapy outcome domain. Set-specific classifier 

selection represents choosing classifiers based on the training set, which is a considerably 

smaller evidence base but comes from the patient group under investigation. If the training 

dataset is too small, selecting classifiers based on results from other datasets might be less-

error prone. On the contrary, if an investigator has collected a large dataset, they have the 

option to conduct set-specific classifier selection (with all six classifiers) for their training 

data using our documented R code.31

In Table III, one can observe that the preselected classifier is mostly rf and sometimes 

glmnet. To understand this behavior, consider dataset A: glmnet was preselected for set A by 

selecting the classifier with the best average AUC rank in all other sets (excluding set A). 

Note that, for all 12 datasets together, the average AUC rank for rf is only slightly better than 

for glmnet (2.28 for rf and 2.43 for glmnet; the average of the rows in Fig. 5). Since glmnet 
performs badly while rf performs best in set A, excluding this information leads to a better 

average AUC rank for glmnet and a worse average AUC rank for rf in the remaining 11 

datasets. As a consequence, glmnet becomes the preselected classifier for this dataset. A 

similar behavior is observed for sets C and E but not in sets D, F, I, where glmnet also 

performs worse than rf but the difference between both classifiers is smaller and does not 

induce a switch in the preselected classifier.

The result that classifier preselection is as good as setspecific selection in the studied 

datasets does not imply that one cannot determine a better classifier for a new dataset. Our 

implementation of set-specific classifier selection only evaluates the performance of various 

classifiers but does not directly take into account properties of the dataset itself. For 

example, if an investigator collected a dataset in which the outcome has a quadratic 

dependency on a feature, glmnet would not be able to capture this relation (since it models 

only linear effects) but rf would. However, preselecting a classifier based on results from 

other (chemo)radiotherapy datasets works well on average. Furthermore, including set-

specific classifier selection complicates the modeling process and, therefore, might not be 

desirable.

In this study, we collected 12 datasets for different treatment sites, that is, (non-)small-cell 

lung cancer, head and neck cancer, meningioma with different outcomes, that is, survival, 

pneumonitis, esophagitis, odynophagia, and regional control. However, this collection is 
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certainly not a complete representation of treatment outcome datasets analyzed in the field 

of radiotherapy. Furthermore, we only studied one implementation of classifiers, while 

classifier performance may vary between implementations. Past studies, however, indicate 

that classifier implementations in R interfaced with caret are competitive.4 Given the 

apparent lack of comparative classifier studies in radiotherapy, our intention has been to 

provide numerical evidence for classifier selection to investigators even though our analysis 

is not exhaustive.

We intentionally limited the analysis to classifier selection while ignoring factors such as the 

investigator’s experience, usage in literature, hypothetical feature dependencies, and model 

interpretability. This restriction imitates the current trend to delegate modeling decisions to 

Machine learning algorithms and/or nondomain experts. Nonetheless, we feel the need to 

emphasize that including these factors has merit. Furthermore, expertise on a specific 

classifier could warrant its selection: Lavesson and Davidsson32 observed in a study on eight 

datasets from different research domains that the impact of hyperparameter tuning exceeds 

that of classifier selection. Therefore, the investigator could tune a classifier for better 

performance by also tuning the hyperparameters outside the subset of hyperparameters 

tuneable inside caret. Even in those cases, however, we suggest comparing these results to 

simpler implementations of rf and glmnet as these classifiers on average have the best 

discriminative performance according to this study.

Finally, for the clinical implementation of classifiers, model interpretability is arguably a 

major requirement33: this view is also convincingly motivated by Caruana et al.34 

Fortunately, our study shows that glmnet, which is an intuitive classifier, is also one of the 

best performing classifiers.

5. CONCLUSION

We have modeled treatment outcomes in 12 datasets using six different classifier 

implementations in the popular opensource software R interfaced with the package caret. 
Our results provide evidence that the easily interpretable elastic net logistic regression and 

the complex random forest classifiers generally yield higher discriminative performance in 

(chemo)radiotherapy outcome and toxicity prediction than the other classifiers. Thus, one of 

these two classifiers should be the first choice for investigators to build classification models 

or to compare one’s own modeling results. Our results also show that an informed 

preselection of classifiers based on existing datasets improves discrimination over random 

selection.
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APPENDIX A

Table AI lists performance metrics per classifier. These values are averaged over all 

repetitions and datasets (100 repetitions 9 12 datasets = 1200 data points each). Accuracy 

and Cohen’s kappa were computed at the 0.5 cutoff. Calibration fails in some outer folds for 

every classifier resulting in either large or undefined values for intercept and/or slope. This 

failure occurs frequently with nnet and rpart. Undefined (NaN) values are excluded when 

calculating the median.

TABLE AI.

Median performance metrics per classifier aggregated over repetitions and datasets (1200 

data points each). Undefined (NaN) values are excluded when calculating the median.

Classifier AUC Brier score Accuracy Cohen’s kappa Calibration intercept error Calibration slope error

rf 0.72 0.17 0.72 0.10 0.12 0.37

glmnet 0.72 0.18 0.72 0.14 0.26 0.68

nnet 0.71 0.21 0.69 0.11 0.36 0.96

svmRadial 0.69 0.18 0.72 0.06 0.26 0.86

LogitBoost 0.66 0.23 0.68 0.18 0.22 0.60

rpart 0.63 0.20 0.71 0.16 0.21 0.56
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FIG. 1. 
Experimental design: each dataset is split into five stratified outer folds (step 1). For each of 

the folds, the data are preprocessed (imputation, dummy coding, deleting zero variance 

features, rescaling) (step 2). The hyperparameters are tuned in the training set via a fivefold 

inner CV (steps 3–5). Based on the selected hyperparameters, a model is learned on the 

training set (step 6) and applied on the test set (step 7). Performance metrics are calculated 

on the test set (step 8) and stored for all outer folds. This process is repeated 100 times for 

each classifier. Randomization seeds are stable across classifiers within a repetition to allow 

pairwise comparison. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 2. 
Box and scatterplot of the AUC rank (lower being better) per outer fivefold CV aggregated 

over all datasets and repetitions (12 datasets 9 100 repetitions = 1200 data points per 

classifier). [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 3. 
Pairwise comparisons of each classifier pair (12 datasets 9 100 repetitions = 1200 

comparisons per pair). The numbers in the plot indicate how often classifier A (y-axis) 

achieved an AUC greater than classifier B (x-axis). The color indicates whether the 

increased AUCs by classifier A are statistically significant (violet), insignificant (light 

violet), or have not been tested (gray). The significance cutoff was set to the 0.05-level (one-

sided Wilcoxon signed-rank test, Holm–Bonferroni correction for 15 tests). [Color figure 

can be viewed at wileyonlinelibrary.com]
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FIG. 4. 
The mean AUC for each pair of classifier and dataset (100 repetitions = 100 data points per 

pair). [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5. 
The mean rank derived from the AUC (100 repetitions = 100 data points per pair). [Color 

figure can be viewed at wileyonlinelibrary.com]
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TABLE II.

Classifier characteristics.

Classifier Caret3 label R package Requires dummy coding Tuned hyperparameters

Elastic net logistic regression glmnet Glmnet24 Yes α, λ

Random forest rf RandomForest25 No mtry

Single-hidden-layer neural network nnet Nnet26 No size, decay

Support vector machine with radial basis function 
(RBF) kernel svmRadial Kernlab27 Yes σ

LogitBoost LogitBoost CaTools28 Yes nlter

Decision tree rpart Rpart29 No cp
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TABLE III.

For each dataset, the AUC rank averaged over all repetitions when (a) randomly selecting a classifier (Random 

classifier), (b) preselecting the classifier with the average best AUC rank in all other datasets, that is, without 

any information about the current dataset (Preselected classifier), (c) selecting the classifier that yielded the 

highest AUC in the inner CV (Set-specific classifier). Improvements in average AUC and average AUC rank 

compared to (a) are reported. The average AUC improvements by preselection and set-specific selection were 

tested for statistical significance (P < 0.05, one-sided Wilcoxon signed-rank test) and found to be statistically 

significant (*). No other statistical tests besides the two aforementioned tests were conducted.

Random classifier Preselected classifier Set-specific classifier

Dataset

Rank

Name

Rank AUC Rank AUC

Mean Mean Increase Increase Mean Increase Increase

Set A 3.59 glmnet 3.64 −0.05 0.00 3.10 0.49 0.02

Set B 3.48 rf 2.92 0.56 0.02 3.31 0.17 0.01

Set C 3.50 glmnet 3.12 0.37 0.03 2.78 0.72 0.03

Set D 3.57 rf 2.60 0.97 0.04 3.31 0.26 0.02

Set E 3.53 glmnet 3.35 0.18 0.01 1.75 1.78 0.05

Set F 3.39 rf 1.89 1.50 0.04 2.58 0.81 0.03

Set G 3.47 rf 2.99 0.47 0.04 3.52 −0.06 0.01

Set H 3.44 rf 3.81 −0.37 0.00 1.70 1.74 0.05

Set I 3.45 rf 1.59 1.86 0.06 1.72 1.73 0.05

Set J 3.52 rf 4.18 −0.66 −0.02 3.41 0.11 0.00

Set K 3.50 rf 3.33 0.16 0.01 3.20 0.30 0.01

Set L 3.58 rf 3.50 0.08 0.01 3.66 −0.08 0.00

Mean 3.50 3.08 0.42 0.02* 2.84 0.66 0.02*
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