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Abstract

Although methylation data continues to rise in popularity, much is still unknown about how to best analyze
methylation data in genome-wide analysis contexts. Given continuing interest in gene-based tests for next-
generation sequencing data, we evaluated the performance of novel gene-based test statistics on simulated
data from GAW20. Our analysis suggests that most of the gene-based tests are detecting real signals and
maintaining the Type I error rate. The minimum p value and threshold-based tests performed well compared
to single-marker tests in many cases, especially when the number of variants was relatively large with few
true causal variants in the set.

Background
Methylation data continues to grow in popularity owing
to both its increasing availability (decline in cost) and
biological relevance, a result of increasing hypotheses
about the contribution of epigenetic effects to the gen-
etic architecture of common human diseases. This rapid
rise in popularity has meant that there are few “best
practices” for the analysis of genome-wide epigenetic
data. However, many of the current analytic approaches
for methylation data are informed by the more mature
field of genome-wide association studies (GWAS).
For many years, the use of multimarker tests of genetic

association has been a popular alternative to single-marker
tests in GWAS. Multimarker tests have the potential ability
to aggregate weaker individual signals across a biologically
related set of markers, reduce the substantial multiple

testing penalties required for GWAS, and directly connect
statistical testing with functional biological units (eg, genes
or other meaningful sets). The rise in the popularity of
next-generation sequencing data and the subsequent ability
to easily and inexpensively measure rare genetic variants
has made multimarker tests a necessity by requiring the
aggregation of signals from rare variants in order to
improve statistical power to a reasonable level.
Prior work by our group [1, 2], and many others [3,

4], evaluated numerous strategies for summarizing
marker-level genetic association statistics across bio-
logically informed sets. For example, burden tests are
well known to lose power when testing sets of markers
containing both risk-increasing and risk-decreasing
variants, whereas variance components tests are robust
to these situations and mixtures of both methods can
sometimes yield “optimal” power [2, 3]. We have identi-
fied a test statistic that is particularly robust to situa-
tions where the majority of markers in the set are
noncausal, which can be near optimal when combined
with a variance components test [1].
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In this paper, we evaluate the application of novel
gene-based tests of association when analyzing simulated
genome-wide methylation data as compared to
single-marker tests. We choose test statistics and evaluate
their behavior in light of recent methodological results on
gene-based tests for rare genetic variants (see previous
paragraph). We evaluate the performance of novel
gene-based tests across different simulated data sets pro-
vided as part of GAW20, and as compared to direct appli-
cation of “standard” single-marker testing approaches.

Methods
Sample population and variables
We analyzed the simulated data set provided as part of
GAW20 and were aware of the “answers” (simulation
parameters) when conducting this analysis. The sample
consisted of 670 individuals for whom all analyzed vari-
ables were available. We considered 7 covariates (age;
observation center; smoking status; International
Diabetes Federation [IDF] mass spectrometry DX client
[MSDX]score; fasting time at baseline; high-density
lipoprotein [HDL] at baseline; and triglyceride level at
baseline). The primary response variable of interest was
change in triglyceride (TG) level from baseline (visit 1
or 2) to follow-up (visit 3 or 4). For variables with up to
2 measurements at baseline or follow-up (HDL [base-
line], TG [baseline, follow-up]) we used the average
value if both measurements were available, or the only
available measurement if only one was available.

Models
We used a 2-stage modeling process. The first stage re-
sulted in 200 models (one for each of the 200 simulations
provided). The second stage resulted in 654,755 models
(one for each single-nucleotide polymorphism [SNP] that
passed standard GWAS quality control [QC] criteria:
Hardy-Weinberg Equilibrium p value > 1 × 10− 6, minor
allele frequency > 1%, SNP missing data rate < 5%).
The lmekin function from the coxme package in R [5]

was used to predict the change in log-transformed TG
levels (y = ln(followup) − ln(baseline)). In cases where two
separate TG measurements were available for either
follow-up or baseline, we natural-log (ln)-transformed the
data before averaging. Change in ln-transformed TG levels
was predicted by the 7 covariates listed earlier, baseline
ln-transformed TG levels, and the familial relationships in
the model (which were accounted for through the use of
the kinship matrix). For each of the 200 simulations, we
then saved the resulting “residual” value ( ri ¼ ŷi−yi ) for
each of the i = 1,…,670 individuals in our analysis.
The second stage predicted the residuals ( r0is from

stage 1 based on the number of minor alleles (SNPj = 0,
1, 2) and methylation scores (CPGj ∈ [0, 1]) along with

an interaction term between SNPj and CPGj, with a sep-
arate model for each SNPj, CPGj pair. In particular, the
second stage model for the SNPj, CPGj pair was:

r ¼ βS j
SNP j þ βC j

CPG j þ βSC j
SNP jCPGj ð1Þ

SNPj, CPGj pairs were made by pairing each SNP pass-
ing QC to its nearest cytosine-phosphate-guanine (CpG)
site resulting in 654,755 pairs, with some CpG sites
assigned to multiple SNPs. The only exception to this
pairing strategy was for 3 SNPs with major effects (see
next paragraph for details) which were assigned to the
“causal” CpG site, which was not necessarily the nearest
CpG (in all cases these were within 12,500 bp). We note
that the model in eq. (1) is informed by the true simulated
data model for the data provided as part of GAW20, in
which SNP effects are moderated by methylation of
nearby CPG sites.

Gene selection
Our analyses focused on 3 distinct subsets of genes.
First, the GAW simulated data set includes 5 genes
(hereafter, major effect genes) containing (or within
50,000 bp of) a causal SNP with heritabilities of 0.025,
0.05, 0.075, 0.10, and 0.125. Second, the GAW simulated
data set contains 34 genes containing exactly 1 causal
SNP with heritability of 0.001 (hereafter, minor effect
genes). Third, we randomly selected 39 other genes from
the remaining list of 16,604 genes not containing causal
variants (hereafter, noncausal genes). Thus, a total of 78
genes were considered in our analyses.
Sets of SNPs were assembled for each gene, k = 1,…,78.

In particular, for most genes, all SNPs contained within
the start–stop positions of the gene (based on human
genome build 18 [hg18]) were considered “part of” the
gene. The exceptions to this were 3 major-effect SNPs
that were not located within a gene. In 2 cases, the
causal SNP was within 50 kb of the nearest gene and so
was added to the set of SNPs within the gene (SIPA1L2
and MSRB2). In the final case, where the nearest
major-effect SNP was not within 50 kb of the nearest
gene, we created a synthetic gene that included the SNPs
within 50 kb of the SNP (SYNTH1).

Gene sets
We also considered 5 sets of variants that were not solely
defined by gene boundaries. One of these sets (CAUSAL5)
consists of only the 5 causal variants with heritabilities of
0.025 or larger (major effect genes) (to act as a positive
control). Two sets, UNION5 and UNION2, are, respect-
ively, the union of all 5 causal genes and the union of
LYRM4 and HS3ST3A1, and thus contain 5 and 2 causal
variants, respectively. NOISE5 and NOISE2 also have 5
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and 2 causal variants, respectively, but the rest of the vari-
ants are either noncausal or minor causal.

Gene-based test statistics
We evaluated 6 structurally different gene-based test
statistics in addition to a “standard” single-marker test.
For each gene, k, a new statistic, G, was created by using
various methods of combining the p value from the
F-statistic test on the overall model significance of eq.
(1), over all m SNP-CpG sites assigned to the gene.
Thus, m distinct pj values were combined into a single
value (Gj). Table 1 shows the 6 methods we used to
compute G as a function of p.
Choices of G were informed by prior research (see

Background for details). In brief, the sum of ln p is in-
formed by Fisher’s method for combining tests and bur-
den tests (although robust to different effect direction),
sum of squared ln p is informed by variance components
tests, and min p is informed by recent research on test
statistics highly robust to large proportions of nonassoci-
ated statistics. We proposed 3 threshold-based tests that
attempt to put a threshold on the “noise” of noncausal
SNPs through a p value threshold of either 0.01, 0.05, or
0.10. We used negative ln-transformations of p in line
with prior research (eg, Fisher’s combined probability
test). The benefit of the threshold approach is that any
pj above the threshold value will have no effect on the
summation across the m SNP-CpG sites. Thus all
SNP-CpG sites that would be considered not statistically
significant on their own at the threshold level will
contribute nothing to G, while other SNP-CpG sites will
contribute according to the square of the natural log of
their scaled p value.

Permutations
Permutations were used to assess the statistical sig-
nificance of G. Briefly, the residual values from stage
1 were computed separately for each individual in

each simulation. These residual values were permuted
and then the permuted residual values were used to
generate permuted β values in stage 2. We did 1000
permutations for each simulation considered, making
sure to reuse the same shuffles for each SNP-CpG
pair to preserve correlation structure between and
across CpG sites and SNPs within each gene. Empir-
ical p values were computed as the proportion of per-
muted values of G, which were more extreme than
the observed value of G. We used a significance level
of 0.05 for all tests, except single-marker tests which
used a significance level of 0:05

mk
where mk represents

the number of SNPs, m in gene (or set) k, represent-
ing a candidate gene significance level.

Results
Performance across 200 simulations
In Table 2, performance for each gene-based test statis-
tic, GSC, is provided, stratified by whether a gene (or set)
contained 1 or more major causal variant, minor causal
variants, or no causal variants. Performance is assessed
by computing the proportion of genes with p values less
than 0.05 across all genes and simulations, except for
single-marker p values, which were evaluated using a
Bonferroni-corrected significance threshold of 0:05

mk
where

mk represents the number of SNPs, m in gene (or set) k.
For single-marker tests, genes containing 1 or more
SNPs with a p value below the threshold were deemed
significant. Table 2 illustrates reasonable control of the
false-positive error rate as all methods detected less than
5% of genes containing no causal variants as significant.
Genes containing minor causal variants were only de-
tected slightly more frequently than genes containing no
causal variants, and so we focus the remainder of our
analysis on genes containing major causal variants.
Tables 3 and 4 highlight the power of each

SNP-CpG statistic, GSC, across the 5 major effect

Table 1 Overview of gene-based test statistics considered

SNP*CPG, GSC

Sum of natural log-transformed p value (Sum (ln p))
Pm

j¼1 lnðp jÞ
Sum of negative squared natural log-transformed
p value (Sum (−(lnp)2))

Pm
j¼1−ð lnp jÞ2

Minimum p (Min p) min
j∈f1;…;mg

ðp jÞ

p value threshold 0.01 (pT 0.01) Pm
j¼1

−ð lnð p j

0:01ÞÞ
2

ifp j≤0:01
0 ifp j > 0:01

(

p value threshold 0.05 (pT 0.05) Pm
j¼1

−ð lnð p j

0:05ÞÞ
2

ifp j≤0:05
0 ifp j > 0:05

(

p value threshold 0.10 (pT 0.10) Pm
j¼1

−ð lnð p j

0:1ÞÞ
2

ifp j≤0:1
0 ifp j > 0:1

(
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genes (Table 3) and synthetically created sets of
SNP-CpG pairs (Table 4).
Table 3 demonstrates that for genes containing only a

single, highly heritable variant single-marker methods
perform reasonably well compared to gene-based
methods. In 3 of the 5 cases (SIPA1L2, LYRM4, and
HS3ST3A1), one or more of the threshold-based ap-
proaches (pT) and min p methods outperformed or per-
formed similarly to single-marker methods, but
averaging methods (sum of ln p and sum of squared ln p)
performed comparably (HS3ST3A1 and LYRM4) or
worse (SIPA1L2). In 2 cases (SYNTH1 and MSRB2),
averaging methods outperformed the other methods,
with threshold methods performing next best followed
by min p, and single-marker methods performing worst.
The pT 0.01 and min p methods outperformed
single-marker methods in all 5 cases.
As seen in Table 4, all methods performed well on a

set containing only causal variants with high heritability
(CAUSAL5), but once noncausal variants were added,
the aggregating methods outperformed single-marker
method (UNION5, NOISE5). A similar pattern was ob-
served with sets containing 2 causal variants (UNION2
and NOISE2).

Discussion and conclusions
To date, few papers have considered multimarker (gen-
e-based) approaches for methylation data. Our proposed

approach to the aggregation of statistical evidence of
phenotypic association across multiple SNP-CpG pairs
serves as a proof-of-concept of this approach in candi-
date gene analyses investigating the moderating effects
of methylation. In particular, in a candidate gene, versus
genome-wide, context significance levels are higher and
in line with those used here (0.05). Our analysis demon-
strates reasonable false-positive rates, and generally good
performance of multimarker methods on sets containing
SNP-CpG sites with reasonably large effects. As is often
the case in practice, the ability to detect markers with
low heritability remains challenging.
In general, the patterns seen for the performance of

multimarker tests of SNP-CpG pairs follow those for
SNP-variant-based analysis methods. In particular, sets
with lower numbers of variants and only a single causal
variant were challenging for multimarker methods to de-
tect, although averaging methods tended to outperform
threshold-based and the min p methods. As the number
of variants increased, threshold-based and the min p
methods tended to outperform averaging type multimar-
ker tests. As the number of causal variants in the set in-
creased, multimarker tests performed better than
single-marker tests. The threshold-based testing ap-
proaches are a reasonably novel approach to multimar-
ker testing, and performed reasonably well as a robust
intermediary to the min p method (optimized for large
numbers of variants when few are causal) and averaging
methods (sum of ln p and sum of squared ln p) (opti-
mized for lower numbers of variants with multiple
causal variants).
The GAW20 simulated data set only contained 200

simulations, and so our analysis was limited in the ability
to draw broad conclusions about power and Type I
error. Further work is needed to explore the widespread
control of Type I error and power of multimarker tests
for methylation data in more wide-ranging simulated
data sets and in a genome-wide testing situation (lower
significance levels). We also note that our choice to use
a linear model containing an interaction term between
methylation (CpG) and SNP was informed by the simu-
lation model used in GAW20. While serving as a
proof-of-concept for the multimarker analysis of

Table 2 Proportion of times test statistic, GSC, was rejected
(p < 0.05) across 200 simulations, by choice of test statistic and
by type of gene

Statistic Contains major
causal variants

Contains minor
causal variants

Contains no
causal variants

Sum ln p 0.367 0.07 0.04

Sum −(lnp)2 0.398 0.06 0.04

Min p 0.431 0.03 0.02

pT 0.10 0.460 0.04 0.03

pT 0.05 0.469 0.04 0.03

pT 0.01 0.467 0.03 0.02

Single markera 0.403 0.03 0.02
aSingle marker test used a Bonferroni-corrected significance threshold of 0:05

mk

Table 3 erformance across major-effect genes

Gene SNP heritability No. SNP-CpG pairs MAF of causal variant Sum lnp Sum −ln2p Minp pT 0.10 pT 0.05 pT 0.01 Single marker

SIPA1L2a .125 141 0.11 0.35 0.42 0.73 0.58 0.65 0.72 0.69

SYNTH1b .100 23 0.19 0.79 0.74 0.48 0.65 0.61 0.52 0.41

LYRM4 .075 63 0.10 0.17 0.18 0.22 0.23 0.22 0.25 0.21

HS3ST3A1 .050 29 0.41 0.24 0.22 0.21 0.24 0.24 0.21 0.19

MSRB2a .025 32 0.14 0.72 0.72 0.41 0.65 0.59 0.48 0.39
aNearest gene within 50,000 bp of major-effect SNP
bArtificial “gene” containing all SNPs within 50,000 bp of major effect SNP
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methylation data, in practice, the test statistic used
should be informed by the hypothesized biological
mechanism of the effect of methylation. The model used
here is a reasonable, although not necessary, hypothesis
of this effect. Further work is needed to investigate other
models and the performance of multimarker methods in
those settings. Our results suggest the use of gene-based
tests when investigating methylation-SNP impact on
phenotypes; however, further testing is needed in more
wide-ranging and comprehensive simulation settings.
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