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Abstract

Background: Depending on their specific structures, noncoding RNAs (ncRNAs) play important
roles in many biological processes. Interest in developing new topological indices based on RNA
graphs has been revived in recent years, as such indices can be used to compare, identify and classify
RNAs. Although the topological indices presented before characterize the main topological
features of RNA secondary structures, information on RNA structural details is ignored to some
degree. Therefore, it is necessity to identify topological features with low degeneracy based on
complete and fine-grained RNA graphical representations.

Results: In this study, we present a complete and fine scheme for RNA graph representation as a
new basis for constructing RNA topological indices. We propose a combination of three vertex-
weighted element-contact graphs (ECGs) to describe the RNA element details and their adjacent
patterns in RNA secondary structure. Both the stem and loop topologies are encoded completely
in the ECGs. The relationship among the three typical topological index families defined by their
ECGs and RNA secondary structures was investigated from a dataset of 6,305 ncRNAs. The
applicability of topological indices is illustrated by three application case studies. Based on the
applied small dataset, we find that the topological indices can distinguish true pre-miRNAs from
pseudo pre-miRNAs with about 96% accuracy, and can cluster known types of ncRNAs with about
98% accuracy, respectively.

Conclusion: The results indicate that the topological indices can characterize the details of RNA
structures and may have a potential role in identifying and classifying ncRNAs. Moreover, these
indices may lead to a new approach for discovering novel ncRNAs. However, further research is
needed to fully resolve the challenging problem of predicting and classifying noncoding RNA:s.

Background tures and cellular functions [3]. It is increasingly evident
Recent years have witnessed an explosive growth in RNA  that RNAs play important roles, far beyond transferring
research, as numerous new noncoding RNAs (ncRNAs)  genetic information from DNA to protein. Exploring the
have been discovered [1,2], and rich information hasbeen  structural diversity of the RNA population constitutes a
revealed in the various relationships between their struc-  central goal in RNomics [4], which requires new compu-
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tational methods for the comparison, identification and
classification of RNA.

As there remain many difficulties in predicting three-
dimensional RNA structure, secondary structures are typi-
cally used as a basis for researching RNA conformation.
RNA secondary structure can be viewed as a combination
of basic structural elements, also known as stems, hairpin
loops, bulge loops, interior loops, multiple loops and
external loops (the latter five categories are referred to col-
lectively as 'loops'). Mathematical representations of RNA
secondary structure are of great importance. Some
approaches for deducing these structures have been pro-
posed as planar graphs [5-9]. Among these RNA represen-
tations [5-7,9-11] is the homeomorphically irreducible
tree (HIT) [10], which contains most of the RNA mole-
cule's original structural information. Each HIT node cor-
responds to a structural element weighted by its 'size'. The
stem elements are weighted by the number of contained
base pairs, while the loop elements are weighted by their
lengths. The topological nature of a HIT is a vertex-
weighted and vertex-colored tree graph, in which the stem
and loop vertices are color-coded. Most of the other RNA
graphs give unequal prominence to stems and loops in
the secondary RNA structures, that is, the stem regions are
always represented as adjacent relationships between
loop vertices and cannot be reflected directly in the matrix
representations and numerical descriptors. The rationality
of this abstraction may depend on the opinion that single-
stranded regions play important roles in RNA-RNA, RNA-
DNA and RNA-protein interactions. However, some stud-
ies have revealed that stem regions are of the same impor-
tance as loop regions. For example, recent studies show
that stem regions in precursors of miRNAs are indispensa-
ble for miRNA biogenesis [12-15]. Considering that stems
and loops are biochemically different, an ideal RNA
graphical representation should distinguish these two ele-
ment types.

Graphical representation of RNA secondary structure pro-
vides the basis for the construction of topological indices.
Topological indices are numeric parameters associated
with patterns of connectivity among vertices, reflecting
the intrinsic nature of a graph. In computational com-
pound design, topological indices have been successfully
employed in many applications such as QSAR (quantita-
tive structure-activity relationships) and QSPR (or quanti-
tative structure-property relationships) [16]. For RNA-
related research, topological indices based on RNA graph-
ics provide simple solutions for structure comparison,
classification and enumeration [5-7,17-20], and are gain-
ing increasing acceptance in the scientific community. In
recent innovative works, Schlick et al successfully used
topological indices from tree and dual graphs to explore
the repertoire of RNA secondary motifs [8,9,21,22], and
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further uncovered structural diversity in random sequence
pools [23].

However, it is difficult to construct topological indices to
characterize the colors of the HIT-like fine-grained RNA
graphs, because the node colors encoded in the polarity of
items in the topological index definition renders the range
of topological indices uncontrollable, even unmanagea-
ble in extreme cases. On the other hand, ignoring the
length of the loop and stem regions can lead to index
degeneracy. The RNA topological indices presented herein
focused mainly on molecular connectivity descriptions.
Although these indices reflect some significant aspect of
RNA structure and show good performance in distin-
guishing between different structural patterns, they may
not be appropriate for characterizing structural details. As
a consequence, RNAs with different structures may share
the same index value. The latent risk of high degeneracy
derives mainly from the coarse-grained abstraction in
RNA graph construction. Additionally, even for connectiv-
ity, no single index is sufficient. A numerical descriptor
derived from the spectrum of the Laplacian matrix of the
RNA graph, which has been widely used recently [8,9,17-
21,24], cannot uniquely determine graph topology when
the vertex number is greater than five [25].

In this study, we present a complete and fine scheme to
represent RNA molecules graphically. These representa-
tions will facilitate the exploration of the numerous
detailed facets of each RNA element and their combined
patterns in creating RNA secondary structures. Herein we
introduce three typical examples of information-rich top-
ological indices that are based on our novel graph repre-
sentations to characterize the RNA secondary structure.
The involvement of the numerical range, distribution and
intercorrelations of these indices for their possible render-
ing of useful RNA topologies are presented, and the appli-
cability of these indices is illustrated by three case studies.

Results

Statistical properties of topological indices

Numerical range and distribution of topological indices

The utility of topological indices depends mostly on the
mathematical properties of the indices, such as where and
how an index maps RNA molecules from structural space
to numerical space. Herein, we provide a detailed analysis
on the relationship between the topological indices and
the RNA secondary structure on a dataset of 6,305 ncRNA
sequences (listed in Table 1). We calculated the values of
the topological indices for these 6,305 ncRNAs, and try to
find their connections with RNA secondary structures. In
addition, we attempted to reveal the connections among
the topological indices and the RNA molecule lengths,
free energies and GC contents.
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Table I: Dataset of ncRNA sequences. A dataset of 6,305 ncRNAs taken from different Database are selected as representatives of the
RNA world. These 6,305 ncRNA sequences are classified into two classes: one class covers five kinds of ncRNAs with known structures,
and the other class is made up of six kinds of ncRNAs with predicted structures by Vienna RNA package.

Category Number Length (nt) dG (Kcal/mol) GC%
Mean * SD Min Max
The sequences with known structures
55 147 121 £3 113 135 -49.97 + 10.08 0.58 + 0.05
16S () 647 1532 + 284 612 2741 -556.15 + 156.85 0.49 + 0.08
Intron () 144 615+418 210 2630 -191.53 + 99.46 0.46 £ 0.11
RNase P 466 332+49 189 486 -139.83 + 354 0.57 + 0.09
tRNA ) 1272 76 £ 5 56 94 -29.28 + 5.31 0.58 + 0.06
The sequences with predicted structures

tmRNA ) 140 359 + 30 251 423 -117.44 + 25.45 0.47 + 0.09
585 @) 1168 146 + 27 29 180 -41.33 £ 11.99 0.49 + 0.06
SRP ™) 262 225+ 96 78 339 -95.71 + 45.65 0.57 +0.08
miRNA ¢4) 1082 89+ 16 55 153 -37.55 + 8.89 0.46 + 0.08
Guide 4 977 141 £ 47 66 459 -47.69 + 23.52 051 +0.11
Total 6305 296 + 445 29 2741 -106.93 + 165.81 0.52 + 0.09

(1) Comparative RNA Web Site; () RNase P Database; @) Genomic tRNA Database; () Rfam Database.

The distributions of our RNA topological indices based on
the dataset are illustrated in Figure 1 [see Additional file
1]. Clearly, the statistical distributions of these indices
cannot be well-described by Normal distribution model,
since all of the distributions are skewed to some extent.
There are four typical candidate distribution models that
we considered for modeling the statistical distributions of
our indices. These included the Normal and Log-normal
distributions, the Gamma distribution, and the Weibull
distribution. The parameters of these distribution models
were estimated through the maximum likelihood
method, and the goodness of model fit was evaluated by
Pearson's correlation. The results of the distribution mod-
eling listed in Table 2 revealed that the Weibull distribu-
tion (average goodness of fit was 0.94, 0.92 and 0.85 for
Wiener indices, Balaban indices and Randié indices,
respectively) and Gamma distribution (average goodness
of fit were 0.93, 0.93 and 0.84 for Wiener indices, Balaban
indices and Randié indices, respectively) fit the statistical
distributions of these indices well, while the Log-normal
distribution (average goodness of fit were 0.88, 0.89 and
0.77 for Wiener indices, Balaban indices and Randi¢ indi-
ces, respectively) and the Normal distribution (average
goodness of fitting are 0.84, 0.81 and 0.80 for Wiener indi-
ces, Balaban indices and Randié indices, respectively)
failed to describe the distributions with sufficient accu-
racy. These results were verified with the distribution fit-
ting results of the representatives of the three topological
index families [see Additional file 2].

Since all of the definitions of topological indices (equa-
tions (1) ~ (6) in Methods section) contained a summa-
tion operation, the topological indices examined herein
may include information describing the shape and size of
the secondary RNA molecule structure. The Pearson's cor-
relations [see Additional file 3] showed that the Wiener-
type and Balaban-type indices did not correlate strongly
with the free energies and the lengths of the RNAs, as their
values did not increase substantially with RNA size [see
Additional file 4, 5, 7, 8]. However, most of the Randi¢-
type indices did correlate strongly with the free energies
and the lengths of the RNAs [see Additional file 6 and 9].
Furthermore, the topological indices appeared to be inde-
pendent of GC contents [see Additional file 10, 11, 12].
Theses results are consistent with the conclusions drawn
in computational chemistry [16].

Intercorrelations of topological indices

Clearly, no single topological index is sufficient to charac-
terize the broad range of structure-function relationship
studies on RNA molecule formation. Considering that
various structural features of RNAs are usually correlated,
the intercorrelations among topological indices should be
examined when multiple topological indices are used.
Moreover, it is useful to reduce the redundancy and create
an orthogonal structural space.

We conducted correlation analysis and principal compo-
nent analysis (PCA) on the RNA dataset listed in Table 1.
These analyses reduce the complexity of the datasets and
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Table 2: Correlations between topological indices and their fitting
models. Four typical distribution models (normal distribution,
Gamma distribution, Weibull distribution and log-normal

distribution) are employed here to model the statistical distributions

of the three topological index families. The parameters of these
distribution models are estimated through maximum likelihood

method, and the goodness of model fitting is evaluated by Pearson's

correlation coefficient. For each topological index, the highest
Pearson'’s correlation coefficient is in bold.

Index family  Indices Normal Gamma Weilbull Log-normal
Wiener Wl 0.96 0.95 0.97 0.88
Wq 0.83 0.93 0.93 0.83
w 0.83 1.00 0.99 0.96
W 0.77 0.93 0.93 0.92
W 0.93 0.94 0.95 0.85
w, 0.74 0.85 0.85 0.8I
Balaban ju 091 0.99 0.99 0.95
Ja 0.76 0.91 0.91 0.89
JY 0.82 0.98 0.96 0.93
Js 0.8I 0.91 0.89 0.89
It 0.92 0.93 0.94 0.86
N 0.64 0.84 0.84 0.82
Randié O _w 093 0.80 0.86 0.69
XsL
L W o84 0.93 0.93 0.88
AsL

Oy, 0.72 0.74 0.75 0.69
e 0.82 0.79 0.8l 071
0 , 095 0.96 0.96 0.89

xs
1 , o082 0.99 0.98 0.94

xs
0y, 0.57 0.57 0.58 0.51
12 0.87 0.91 0.91 0.86
0 , 09 0.96 0.97 0.87

XL
L w 08 099 0.99 0.95

XL
0y 0.52 0.53 0.54 0.51
" 0.8I 0.85 0.86 0.80
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create new orthogonal variables from combinations of the
original variables that describe spatial information. Figure
2 illustrates the Pareto charts of the three topological
index families, whereby the primary principal compo-
nents (PCs) are arranged in descending order, with the
first PC, PC1, describing the greatest proportion of the var-
iability being followed by PCs 2, 3, 4 and so on. In addi-
tion, the Pearson's correlations among the indices within
the index families are presented [see Additional file 3, and
13, 14, 15]. These results indicate that Wiener-type and
Randié-type indices are highly correlated within their fam-
ilies, and that the first three PCs of each index family con-
tain more than 99% of the dataset variability, which
comprises the information required to construct the indi-
ces. The correlation between the Balaban-type indices,
however, appears to be weaker, as they require the first
five PCs to explain 99% of the information.

Application case studies

After defining the topological indices based on ECGs and
analyzing their statistical properties, the questions natu-
rally arose to regarding the potential utility of the knowl-
edge of these indices. The answers came from the
following three application case studies of our topological
indices, in which they have been employed to quantify the
structural aspects of RNA molecules.

Identification of miRNAs

Novel ncRNAs are difficult to detect experimentally, due
to their short lengths, low expression levels, tissue specif-
icity and lack of polyadenylation. Therefore, the most
effective method for discovering ncRNAs may be compu-
tational identification of ncRNA candidates followed by
biochemical verification [26]. Because of the strong inter-
dependence between structure and function, incorporat-
ing structural features into ncRNA scanning programs
could improve the accuracy of candidate identification.
Based on secondary structure conservation, RNA struc-
tural information has been used in several ways in
recently published works to identify microRNA (miRNA)
candidates in select genomes [27-35]. The miRNAs mole-
cules are abundant endogenous ~22-nucleotide (nt) non-
coding RNAs that can play important roles in gene
regulation at the post-transcriptional level. Roles include
cleavage or translational repression through the binding
of a minimal-recognition 'seed' sequence [36-39]. The
miRNAs are transcribed as long primary molecules, which
are processed into ~70 nt miRNA precursors (pre-miR-
NAs) that fold into a stem-loop hairpin structures via
nuclear RNase III Drosha [12]. Mature miRNAs (~22 nt)
are cleaved from pre-miRNAs through the action of Dicer
endonuclease [40-42]. Throughout the miRNA biogenesis
procedure, the hairpin structure of the pre-miRNA plays a
crucial role, acting as the structure motif for expotin-5 in
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Distributions of Wiener indices
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Distributions of Balaban indices
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Distributions of topological indices. The distributions of the topological indices for the dataset of 6,305 ncRNAs are illus-
trated. (A) Distributions of Wiener indices. (B) Distributions of Balaban indices. (C) Distributions of Randié indices.

nuclear-cytoplasm transportation, and as a substrate for
Dicer enzyme [13,41,43-46].

Although almost all pre-miRNAs are characterized by
their stem-loop hairpin structures [28,29,35,47], a large
number of pre-miRNA-like hairpins in many genomes can
be folded. Distinguishing the real pre-miRNAs from other
hairpin sequences with similar stem-loops (pseudo pre-
miRNAs) is important both for understanding of the
nature of miRNAs and for developing prediction methods
for identifying miRNAs for which homology is unknown.
However, this remains a challenging task. Xue et al. pre-
sented an SVM-based method for classifying real and
pseudo pre-miRNAs [48]. A recent study distinguished

real from pseudo pre-miRNAs using a random forest pre-
diction model with a hybrid feature [49].

As numeric features of RNA structure, topological indices
may be used to score candidates based on structure simi-
larity measurements among the folds and structures of the
reference miRNAs. We randomly chose 200 real pre-miR-
NAs from the 1,082 miRNAs in our dataset (Table 1) and
generated 1,000 pseudo pre-miRNAs as a reference set
using the dinucleotide shuffling method presented in our
previous study [50]. To evaluate the potentials of topolog-
ical indices as features in the miRNA identification proce-
dure, we explored the distribution of the 200 real pre-
miRNAs and the corresponding 1,000 pseudo pre-miR-
NAs in the topological feature space. Figures 3(A), (B) and
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Pareto charts of Wiener indices
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Pareto charts of Balaban indices
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Pareto charts of topological indices. Pareto charts of three topological index families for the dataset of 6,305 ncRNAs are
shown. The primary components in the Pareto chart are arranged in descending order. (A) Pareto charts of Wiener index fam-
ily. (B) Pareto charts of Balaban index family. (C) Pareto charts of Randié index family.

3(C) illustrate the 2D mapping results of these real and
pseudo pre-miRNAs from the structural space to the topo-
logical feature space of the three types of topological indi-
ces using the K-means algorithm, respectively. The
corresponding ROC curves are plotted in Figure 4.

We ran the K-means algorithm independently for 50
times, and each time randomly chose 200 real pre-miR-
NAs and generated corresponding 1,000 pseudo pre-miR-
NAs. The average accuracy of the miRNA identification
was 0.968, 0.953 and 0.985 for Wiener indices, Balaban
indices and Randi¢ indices, respectively. The sensitivity
and specificity exceeded 0.95 for all three types of topo-
logical indices. Table 3 shows the details of the evaluation
results of the identifications performances, indicating that
the performance of Randi¢ indices was much higher than
that of the Wiener indices and Balaban indices. This find-

ing may be attributable to the high number of RNA struc-
tural details that are encoded into the 12 Randié indices.

Classification of ncRNAs

With the rapidly increasing knowledge of the cellular roles
of RNA molecules [51,52], the expanding repertoire of
known functional RNAs has spurred renewed efforts to
catalogue and classify RNA structures. An understanding
of structural diversity in RNA populations is crucial for
identifying novel RNA structures and pursuing RNA
genomics initiatives. Since RNA secondary topologies are
remarkably well conserved across functional classes, their
topological characteristics provide a basis for organizing
RNA secondary structures on a broad scale [53]. In this
report, we used topological indices to catalogue and to
classify RNA structures based on the correlations between
conserved RNA secondary structures and topological indi-
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Mapping results in the Wiener indices space
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Mapping results in the Balaban indices space
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©) Mapping results in the Randi¢ indices space
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Figure 3

Mapping results of miRNA identification. The mapping results of miRNA identification using K-means clustering algo-
rithm for the three topological index families are shown. In this application case study, 200 real pre-miRNAs are randomly cho-
sen from the 1,082 miRNAs in dataset of Table |, and the corresponding 1,000 pseudo pre-miRNAs are generated as
reference set. Principal component analysis mapping method is employed here to visualize the clustering results for three types
of topological indices. The green circle and blue upward-pointing triangle respectively represent real and pseudo pre-miRNAs,
and the centroid is marked with red '+'. (A) Mapping result of the real and pseudo pre-miRNAs in the Wiener indices space. (B)
Mapping result of real and pseudo pre-miRNAs in the Balaban indices space. (C) Mapping result of real and pseudo pre-miR-
NA:s in the Randicindices space.
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A) ROC curve of miRNA identification using Wiener indices
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Figure 4

ROC curves for miRNA identification. ROC curves are employed here to evaluate and compare the performance of
miRNA identification for three types of topological indices. (A) ROC curve for miRNA identification using Wiener indices. (B)
ROC curve for miRNA identification using Balaban indices. (C) ROC curve for miRNA identification using Randi¢ indices.
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Table 3: Evaluation results of miRNA identification. The evaluation results of miRNA identification using K-means clustering algorithm
for the three topological index families are shown. In this application case study, the K-means algorithm is run independently for 50
times. For each test, 200 real pre-miRNAs are randomly chosen from the 1,082 miRNAs in dataset of Table | and the corresponding
1,000 pseudo pre-miRNAs are generated as reference set. The clustering accuracy, sensitivity and specificity are employed here to
evaluate the performance of the identification results for Wiener indices, Balaban indices and Randiéindices, respectively.

Index Clustering accuracy Sensitivity Specificity
Mean + SD Min Max Mean + SD Min Max Mean + SD Min Max
Balaban 0.9534 + 0.005 0.9475 0.9658 0.9597 + 0.0072 0.955 0.980 0.9621 + 0.0068 0.953 0.968
Wiener 0.968 + 0.0014 0.9658 0.9708 0.9623 + 0.0026 0.957 0.985 0.9891 + 0.002 0.986 0.993
Randié 0.9849 + 0.0026 0.9808 0.9908 0.9842 + 0.0047 0.975 0.990 0.9851 + 0.0033 0.979 0.992

ces. This method is similar to that of RNA-As-Graphs
(RAG) [8,21], which classifies RNA structures based on
the topological properties of their secondary motifs using
graph theory results.

We randomly chose 25 sequences from each of the six
RNA classes (5S rRNA, riboswitch, miRNA, RNase P,
Intron, and tRNA; Table 1). The 2D mapping results of the
K-means classification is shown in Figure 5, with the
ncRNA centroids demarcated. We ran the K-means algo-
rithm independently 50 times, and randomly chose 25
sequences from each class each time. The average cluster-
ing accuracy was about 98.0% for the three types of topo-
logical indices.

Deleterious mutation analysis of RNA

Mutations in RNA genes may lead to striking alterations in
the 2D RNA structures that impair cellular functions,
resulting in certain diseases [54]. For example, mutations
of tRNAs in mitochondria were reported to harbor more
than half of the known mitochondrial pathogenic muta-
tions [55]. Recent research has further shown that muta-
tions in miRNA genes and their flanking sequences may
contribute to cancer [56-58]. On the other hand, deleteri-
ous RNA mutations in pathogenic species can be
exploited. Yassin et al demonstrated that deleterious
mutations in bacterial rRNAs can serve as hallmarks of
antibiotic sites [59]. Additionally, in their study on influ-
enza viruses, Herlocher et al. found a nonsense mutation
on a PB2 segment that caused monumental differences in
the RNA secondary structure; a finding that can be used to
make a live vaccine [60].

In principle, an RNA mutation can be deleterious when it
disrupts a functional site involved in catalysis, ligand-
binding or protein interactions. Since ncRNA function
depends critically on its secondary structure, nucleotide
alterations that result in structural changes have great
potential to be deleterious. Accordingly, structure analysis
should help to identify deleterious mutations. Some struc-
ture-based methods and software for RNA deleterious
mutation analysis have been reported [17,18,24,61,62].

To test how our topological indices can help with delete-
rious RNA mutation analysis, we analyzed the precursor
of human miRNA miR-30a (pre-miR-30a), a stem-loop of
71 nt (Figure 6A). Figure 6B shows its mountain represen-
tation [63]. The dissimilarity of the secondary structures
between the wild-type RNAs and those with possible sin-
gle point mutations are measured by computing the dif-
ferences between the weighted first order Randié indices.
The mean structural differences among the wild-type and
the possible mutants at each position were extracted into
a structural deleteriousness profile [62] and plotted as
waveforms (Figure 6C); the sites that were crucial for
structure determination are represented by peaks with
high structural deleteriousness within the profile.

It appeared that the mutations opening the base stem of
the precursor led to marked differences in RNA structure,
while the mutations in the terminal loop and bulges
seemed to be less deleterious. This finding indicates that
the base-pairing at the base of the precursor stem is of crit-
ical importance to RNA structure determination com-
pared to the internal loops, terminal loops and bulges.
These results are in good accord with the same conclu-
sions drawn in previous experimental studies [12,13,15].

Methods

Element-contact graph representations for RNA
secondary structure

To establish a comprehensive basis for new RNA structure
descriptors, and to avoid the use of colored graphics, we
used three distinct non-colored ECGs compensated by
one another to characterize the secondary structure of an
RNA molecule. Similar to the classical HIT, the topology
of all structural elements in RNA secondary structure are
represented in a stem-loop-contact graph (SLCG), in
which the stems and loops are all assigned as vertices ([1)
without differences, and the edges (-) represent connec-
tion relationships. Two other ECGs derived from SLCG
are stem-contact graph (SCG) and loop-contact graph
(LCG), describing stem and loop topology, respectively.
The relationship between the usual form of typical RNA
secondary structures and their element-contact graph rep-
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Figure 5

Mapping results of ncRNA classification. The mapping results of ncRNA classification using K-means clustering algorithm
for the three topological index families are shown. In this application case study, 25 sequences of each kind are randomly cho-
sen from six kinds of ncRNAs (5S rRNA, riboswitch, miRNA, RNase P, Intron, and tRNA) listed in Table |. Principal compo-
nent analysis mapping method is employed here to visualize the clustering results for the three topological index families. The
centroid of each kind of ncRNAs is marked with red '+'. (A) Mapping results of six kinds of ncRNAs in the Wiener indices
space. (B) Mapping results of six kinds of ncRNAs in the Balaban indices space. (C) Mapping results of six kinds of ncRNAs in
the Randic indices space.
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Deleterious mutation analysis of miRNA. The results of deleterious mutation analysis for miRNA miR-30a precursor are
shown. (A) The secondary structure of wild-type miR-30a. (B) The mountain representation plot of the structure of wild-type
miR-30a. (C) Structural deleteriousness profile of miR-30a estimated by weighted first order Randié index.

resentations are illustrated in Figure 7. In a LCG, as with
some classical RNA graphs [5,6,9], stem elements are
abstracted into the edges (-) between loop elements, while
loop elements are represented as vertices ( ). In a SCG,
however, the stem topology cannot be obtained by simply
abstracting the loops into vertices (), and stems into
edges (-) conversely, since the branches of the RNA graph
always end with loop elements. Only the loops between

two or more stems can be described as edges; hairpins and
external loops cannot be described in the SCG. Stems con-
nected with multiple loops are considered to be adjacent
to each other and therefore joined with edges. The stem
elements in the SLCG and SCG, distinct from the HIT, are
all weighted by the number of nucleotides included.
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Element-contact graph representations for three typical RNA secondary structures. Three typical RNA secondary
structures and their element-contact graph representations are illustrated. (A) Secondary structures of three typical RNAs
(miRNA lin-4, SAM riboswitch, tRNA). (B) Stem-loop-contact graphs of the three typical RNAs. (C) Stem-contact graphs of the
three typical RNAs. (D) Loop-contact graphs of the three typical RNAs.
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Formally, these three types of ECGs can be represented as
ordered triples of disjoint sets Gg; = (Vg;, Eg;, W), GS =
(Vg, Eg, Wg) and G, = (V,, E;, W,), respectively, where V,
V, V, are a set of vertices, Eg;, E, E; are a set of edges, and
Wy, W, W, are a set of weights. The group of these three
ECGs Gg = {Gg;, Gs, G, } forms a complete and superlative
description of RNA secondary structure, which facilitates
the definition of topological indices. Although there are
some redundancies, all of these ECGs contribute impor-
tantly to the final analysis.

Classical topological indices based on ECGs

Most topological indices used in computational chemistry
can be extended easily into ECGs to characterize RNA sec-
ondary structure. In our study, three of the most widely
used topological indices were redefined in ECGs for appli-
cation testing, comprised of the Wiener, Randié and Bala-
ban indices. These indices are essentially the mathematical
properties of a graph characterizing its 'compactness'.

As the first non-trivial topological index, the Wiener index
has become one of the most widely utilized and investi-
gated topological indices, as it is simple to compute and
offers good structure-property correlations in QSAR and
QSPR studies. The Wiener index of a graph G is the half-
sum of all entries in the distance matrix D = [d;], i.e.

W(G)= Y (dy)° )

i<j

Wiener-type indices can be defined for all molecular graph
matrices with the Wiener operator. Suggested by Merris
[64,65] and tested by Barash's group [17,18], the Wiener
index has been introduced into a fine-grained RNA graph,
in which each nucleotide becomes a node of the graph
[66,67]. Thus, the classic Wiener indices increase rapidly
with the magnitude of a graph, especially for the weighted
Wiener indices. This may be the main reason why Avihoo
and Barash limit their Wiener index to fine-grained RNA
graphs that characterize only small RNAs (< 50 nt) [67].
In this study, similar to the work on the connectivity index
[68], we generalized the Wiener indices by assigning « = -
0.5 to the exponent of each item in the equation (1) to
reduce their range.

The Balaban index of a graph G also is a distance-based
graph connectivity index, defined as

(G)= A&;(D,’Daﬂ )

where D;and D; denote the distance sums of the vertices v;
and v;, and can be easily computed by summarizing corre-
sponding rows or columns in the distance matrix, ¢ is the

number of edges in the molecular graph, x is the cyclo-

http://www.biomedcentral.com/1471-2105/9/188

matic number and the summation goes over all edges in
the graph.

The Randi¢ indices of ECGs encode aspects of element
connectivity for RNA secondary structure. The m th order
Randiéindex of a graph G is given as

"G = Y (65,8, ) 3)

Uilva “‘uimﬂ

where §,is the degree of vertex v and the summation is
over the total number of sub-graphs of order m. The first
two order Randié indices, %y and 1y, are employed in this
study.

As vertex-weighted RNA graphs, ECGs offer convenience
for constructing weighted numerical descriptors aimed at
detailed structure characterization. The method presented
by Zmazek and Zrovnik [69] is employed for extending
the indices mentioned above, and the properties of verti-
ces in equation (1) ~ (3) are multiplied by their weights.
The weighted Wiener index, and the Balaban index and
Randié indices of a graph are given as:

W(G) = Z(wiw Ai)” (4)
i<j
_ 4
I@= 1 D wDiwp)? (5)
mZ(G) = 2 (wilgil ' wi25i2 T wim-v»l im+1 )y

(6)
where w; and w; are the weights of vertex v; and v;, respec-
tively.

Both the weighted and the unweighted topological indi-
ces are examined in this study to evaluate their utility and
potential in structure determination applications. The
exponents of each item in equations (1) ~ (6) are assigned
to « =-0.5, f#=-0.5, and y = -0.5 to reduce their ranges,
respectively. The symbols representing these indices are
listed in Table 4.

Dataset of ncRNAs

To explore the relationship among the topological indices
and RNA secondary structures, we have selected a dataset
of 6,305 ncRNAs as representatives of the human RNA
population and have evaluated their topological indices.
We divided these 6,305 ncRNAs into two classes. One
class covers five ncRNA types with known structures,
obtained from the Comparative RNA Web Site [70],
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Table 4: The symbols of the three topological index families. The symbols of the three topological index families based on element-

contact graphs are shown.

Index family Indices based on SLCG Indices based on SCG Indices based on LCG
weighted unweighted weighted unweighted weighted unweighted
Wiener wy Wy, & Wi W/ w,
Balaban ] Jst s Js Jr o
4 0 1 0 1 0 1
Randi¢ Z;“UL s Z;“UL 0% ' st Zg", }(g) 0% 115 )(i” s Z{U o '

RNase P database [71] and the Genomic tRNA Database
[72]. The second class is composed of six ncRNA types
with secondary structures predicted by the Vienna RNA
package [73]. All of these ncRNAs were obtained from
Rfam [53]. Table 1 provides a detailed description of the
dataset.

Clustering algorithm, and its performance evaluation and
visualization

The K-means algorithm [74] is one of the most important
and most widespread approaches to prototype-based clus-
tering. The K-means methodology is based on the idea
that a center point can represent a cluster. Thus, K-means
defines a prototype in terms of a centroid, which is usually
the mean or median point of a group of points. Herein, we
used the PCA mapping method to visualize the 'RNA
spaces' of the clustering results, which is very useful in the
analysis and visualization of the correlated high-dimen-
sional data.

We used the clustering accuracy as a measure of a cluster-

ing result. Given the final number of clusters, K, clustering
accuracy 1 is defined as

i (7)

Nk

1

r=
n

where n is the number of instances in the data set and r;is
the number of instances partitioned into the correct clus-
ter i. For miRNA identification, we use receiver operating
characteristic (ROC) curves to evaluate and compare the
classification performance. The ROC curve provides a
convenient graphical display of the trade-off between
true- and false-positive rates. Additional terms associated
with ROC curves are sensitivity and specificity [75].

Discussion and Conclusion

This paper presents a complete and fine-grained topolog-
ical description for representing RNA graphs, and estab-
lishes a new basis for constructing RNA topological
indices. Distinct from other methods, RNA secondary
structure is represented by a combination of three vertex-
weighted element-contact graphs. Based on the opinion
that the stem and loop regions in RNA molecules have
similar importance in biochemical processes, the stem
and loop topologies are described in stem-contact and
loop-contact graphs, respectively, while the overall pat-
tern of the structure is abstracted into a stem-loop-contact
graph. In addition, these graphs can be selected according
to the needs of a particular application. Three typical top-
ological index families defined with ECGs are described.

To investigate the relationship between the topological
indices and RNA secondary structures, we constructed a
detailed analysis on a dataset of 6,305 ncRNA sequences
downloaded from different databases, and explored the
numerical features of these indices. We then employed the
topological indices to quantify the structural aspects of the
selected RNAs, and utilized them to identify miRNAs,
classify ncRNAs and conduct deleterious mutation analy-
ses. Based on the applied small dataset, we find that the
topological indices can distinguish true from pseudo pre-
miRNAs with about 96% accuracy, and cluster known
types of ncRNAs with about 98% accuracy. The results
indicate that the topological indices can characterize RNA
structure details, and show high potential for identifying
and classifying ncRNAs. Importantly, while difficult, the
successful identification and classification of ncRNAs may
provide a new approach for discovering new ncRNAs. The
difficulty of correctly identifying and classifying these
molecules is underscored by the fact that the predictions
of both Evofold [76] and RNAz [77] differ to some extent
from that of the ENCODE [78] experimental data. Further
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research is needed to fully resolve the challenging prob-
lem of predicting and classifying ncRNAs.

The utility test and the application examples of typical
topological indices defined on the ECGs illustrate their
latent utility for RNA structure analysis. With the aid of
topological indices, it is now possible for biologists to
explore 'RNA spaces' visually, as exemplified by the three
case studies presented herein. Characterizing RNA mole-
cules using topological indices may open a door to study-
ing the structure-function relationships of RNA molecules
by combining many application algorithms for pattern
recognition and classification, most of which are based on
feature space. Further applications of these topological
indices are represented by our studies on robustness anal-
ysis of RNA secondary structure [50,79], whereby the top-
ological indices are employed as distance measures for
secondary structures to evaluate the robustness of RNAs.
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