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A B S T R A C T

Properties of city-level commuting networks are expected to influence epidemic potential of cities and modify
the speed and spatial trajectory of epidemics when they occur. In this study, we use aggregated mobile phone
user data to reconstruct commuter mobility networks for Bangkok (Thailand) and Dhaka (Bangladesh), two
megacities in Asia with populations of 16 and 21 million people, respectively. We model the dynamics of
directly-transmitted infections (such as SARS-CoV-2) propagating on these commuting networks, and find that
differences in network structure between the two cities drive divergent predicted epidemic trajectories: the
commuting network in Bangkok is composed of geographically-contiguous modular communities and epidemic
dispersal is correlated with geographic distance between locations, whereas the network in Dhaka has less
distinct geographic structure and epidemic dispersal is less constrained by geographic distance. We also find
that the predicted dynamics of epidemics vary depending on the local topology of the network around the
origin of the outbreak. Measuring commuter mobility, and understanding how commuting networks shape
epidemic dynamics at the city level, can support surveillance and preparedness efforts in large cities at risk
for emerging or imported epidemics.
1. Introduction

Densely populated cities are uniquely vulnerable to infectious dis-
ease epidemics (Jowell et al., 2017). The distribution and connectivity
of human populations within cities plays a key role in spreading
outbreaks when they occur, but the factors determining how these
vulnerabilities translate into epidemic dynamics are still unclear, and
this has important implications for surveillance and preparedness. Local
SARS-CoV-2 epidemics have thus far exhibited substantial diversity
in their scale and trajectory between cities (Bialek et al., 2020), for
example, and the factors behind differential city-level risk of epidemic
propagation (for both SARS-CoV-2 and other emerging or endemic
pathogens) are still incompletely understood (Heroy, 2020; Stier et al.,
2020). Likewise, our ability to predict the spatial distribution of disease
activity within cities during epidemics (for example, by neighborhood
or hospital catchment area) is constrained by lack of informative data,
including geolocated or spatially-resolved epidemiological data and
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reliable data on human movement in cities. Improved strategies are
needed for a priori stratification of epidemic risk in large cities, includ-
ing strategies that can estimate epidemic potential at the city level and
identify local determinants of epidemic risk within cities.

Commuter mobility is an important factor in the local dispersal of
directly transmissible pathogens (for example, influenza (Charaudeau
et al., 2014) and for SARS-CoV-2 (Kissler et al., 2020) and differences
in commuter mobility patterns predict divergent epidemic dynamics
between cities (Dalziel et al., 2013). Mobile phone call detail records
(CDRs) have become an important tool for estimating human mobility,
and the utility of CDR data for modeling infectious disease dynam-
ics has been demonstrated in multiple contexts (Wesolowski et al.,
2015b,a) We propose that CDR-derived approximations of commuter
mobility networks in cities can inform city-level predictions of epidemic
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risk, and we hypothesize that both node-level and higher-order proper-
ties of these networks influence the temporal and spatial trajectory of
city-wide epidemics.

In this study, we employed aggregated CDR data to estimate com-
muter mobility networks in Bangkok, Thailand and Dhaka, Bangladesh
and applied a stochastic model for propagation of a directly transmitted
infection (similar to SARS-CoV-2 or influenza) on these networks.
These two cities capture some of the substantial diversity in population
density, spatial organization, transportation networks, and socioeco-
nomic conditions observed across ‘‘megacities’’ (typically defined as
cities and associated urban agglomerations with > 10 million total
residents), and are thus well-suited for studying differences in epidemic
dynamics between large cities. We find important differences between
commuter mobility networks and predicted spatiotemporal trajectories
of epidemics in each city. We report metrics on spatial distribution
of population density in megacities, including Dhaka and Bangkok,
to contextualize these findings. Our results support the use of mobile
phone user data for evaluating city-level susceptibility to emerging or
imported epidemics and for identifying locations within cities where lo-
cal topology of the commuter network is expected to facilitate epidemic
propagation.

2. Methods

2.1. Spatial heterogeneity in population density across megacities

To contextualize our analysis of city-level mobility and epidemic
dynamics in Dhaka and Bangkok, we calculate multiple metrics summa-
rizing the spatial distribution of population density across Dhaka and
Bangkok (Volpati and Barthelemy, 2018), using data from the World-
Pop project (Lloyd et al., 2019). These include both spatially-naïve
metrics (Gini coefficient, entropy, and relative standard deviation) and
the ‘‘spatial dispersion index’’, a spatially-explicit metric characterizing
heterogeneity in population density across a given area (the ‘‘spreading
index’’ in Volpati and Barthelemy (2018)). Additional information on
these metrics is provided in the Supplementary Information. To control
for the different sizes and shapes of the study areas in each city, we
calculate each metric over concentric circles centered on the most
densely populated grid square in each city, and report the metrics by
the radius 𝑟 of each circle. For context, we report these metrics for
19 additional megacities located in low- and middle-income countries
(Bogota, Columbia; Cairo, Egypt; Guadalajara and Mexico City, Mexico;
Ho Chi Minh City, Vietnam; Hyderabad, Jaipur, Kolkata, Mumbai, and
Pune, India; Istanbul, Turkey; Johannesburg, South Africa; Karachi and
Lahore, Pakistan; Brazzaville-Kinshasa, Congo-Democratic Republic of
Congo; Lagos, Nigeria; Manila, Philippines; Sao Paulo, Brazil; and
Tehran, Iran).

2.2. Commuting networks estimated from mobile phone user data

Daily commuter flux between locations in Bangkok and Dhaka was
estimated using aggregated, anonymized CDR data for 4.3 and 18.9 mil-
lion average daily mobile phone subscribers in the Bangkok Metropoli-
tan Region (BMR) and Dhaka Statistical Metropolitan Area (DSMA), re-
spectively (Supplementary Figure S1). The BMR is an administratively-
defined region that includes Bangkok and five surrounding provinces,
covering 7762 km2 with an estimated population of approximately 15.9
million (2048 persons∕km2). The DSMA is composed of Dhaka and
several surrounding administrative units covering 1353 km2 with an es-
timated population of approximately 21 million (15,521 persons∕km2).
We collected CDR data over 81 consecutive days (1 August to 19
October, 2017 in Bangkok, and 1 April to 21 June 2017 in Dhaka),
restricted to the mobile network towers within each administrative
region (BMR or DSMA), and excluded major national and religious
holidays. We aggregated data over 500 m x 500 m grid squares and
used squares with at least one mobile phone tower in service during
2

the data collection period to define the set of nodes  = {𝐿1, 𝐿2,… , 𝐿𝑖}
in the commuting network. We used Voronoi polygons to define the
catchment area around each node and used estimated population maps
from WorldPop (Lloyd et al., 2019) to assign the population in each
catchment area 𝑁𝑖 for each node 𝐿𝑖 ∈ .

To estimate daily trip counts between nodes, we identify the mobile
network tower used for the majority of each user’s calls (the ‘‘most-
visited’’ node) for each of two consecutive 24-hour periods. We assume
that the most-visited node during the first 24-hour period and the most
visited node during the following 24-hour period represent the origin
and destination, respectively, of a single daily trip between the areas
serviced by the tower at each node. In brief, the mean number of raw,
unweighted trips originating from 𝐿𝑗 and terminating at 𝐿𝑘, averaged
over each daily observation in the data collection period, is denoted
𝑇 raw
𝑗,𝑘 . We estimate the population-weighted number of trips originating

from node 𝐿𝑗 and terminating at node 𝐿𝑘 by apportioning the total
population in 𝑁𝑗 by the relative proportion of all raw trips counts that
originate at 𝐿𝑗 and terminate at node 𝐿𝑘.

𝑇weighted
𝑗,𝑘 = 𝑁𝑗 ×

𝑇 raw
𝑗,𝑘

∑𝑖=𝑛
𝑖=1 𝑇

raw
𝑗,𝑖

(1)

where 𝑛 is the total number of nodes in . 𝑇weighted
𝑗,𝑘 thus represents the

proportion of the population at node 𝐿𝑗 that regularly travels between
𝐿𝑗 and 𝐿𝑘. We used the resulting trip counts to construct an 𝑛 × 𝑛
origin–destination matrix OD where each entry 𝑇weighted

𝑗,𝑘 equals the
weighted mean number of daily trips between nodes 𝐿𝑗 and 𝐿𝑘 during
the data collection period (and rows and columns are indexed by 𝑗 and
𝑘, respectively).

OD =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇weighted
1,1 . . . 𝑇weighted

1,𝑛
.

𝑇weighted
𝑗,𝑘

.
𝑇weighted
𝑛,1 . . 𝑇weighted

𝑛,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2)

We consider two separate versions of OD: wke
OD , which includes

only trips originating on the last day of the weekend and terminating
on the first day of the conventionally observed work week (Monday
in Bangkok and Sunday in Dhaka); and all

OD, which includes trips
originating on all days in the data collection period. Analysis using
wke

OD is motivated by the assumption that the most visited location
on weekend days is likely to represent a user’s home location, and the
most visited location during the first day of the work week is likely
to be a user’s work location, such that wke

OD is expected to capture
commuter mobility between home and work locations. all

OD captures
movement between frequently-visited locations and, although there is
no expectation that these are either home or work locations, provides
a proxy measurement for aggregate daily human movements between
locations within each city. Entries 𝑇weighted

𝑗,𝑘 in all
OD are calculated

using all 81 available origin days in the data collection period and 8
observed weekend–weekday transitions in the data collection period for
all

OD. all
OD and wke

OD are highly similar to one another (Mantel test
𝑝 < 0.005) and the mobility networks estimated from the two matrices
share are very similar with respect to network community structure and
centrality measures (Supplementary Figures S2-S5), i.e. we observe the
same overall mobility patterns between the two methods of estimating
mobility flux. We use all

OD for the primary analyses that follow, given
the large number of days in this data collection period, which is
expected to provide more informative data compared to wke

OD , which
is derived from a much smaller number of observations. Additional
data processing procedures and analyses using wke

OD are reported in

the Supplementary Information.
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Fig. 1. Spatial distribution of population density in Bangkok and Dhaka. Total population, three spatially-naïve metrics of population density (Gini coefficient, entropy, and relative
standard deviation), and one spatially-explicit metric of population density (spatial dispersion index) are shown for Bangkok (red lines), Dhaka (blue lines), and 19 additional
megacities (gray lines). Each metric is estimated over concentric circles centered on the WorldPop cell with highest population density in each city (see Fig. 2). The dispersal index
is estimated using two different threshold values, the mean of all population density values and the ‘‘Loubar’’ threshold value derived from the Lorenz curve of population density
values, as described in Volpati and Barthelemy (2018). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.3. Characterization of commuter mobility networks

Using the edge-weighted, directed network specified by the final
origin–destination matrices (all

OD and wke
OD ), we calculate multiple

ode-level metrics describing local network topology, including degree
total number of incoming and outgoing edges for each node) and
trength (the sum of all incoming or outgoing edge weights given
y ∑𝑗=𝑛

𝑗=1 𝑇
weighted
𝑗,𝑖 +

∑𝑘=𝑛
𝑘=1 𝑇

weighted
𝑖,𝑘 for node 𝐿𝑖). We also calculate

igenvector centrality, defined as the largest positive eigenvector for
he network adjacency matrix, which prior work has identified as an
mportant indicator for spreading power in networked epidemics (Can-
ight and Engø-Monsen, 2006). Following Brockmann and Helbing
2013), we calculate the effective distances between nodes, based on
stimated connectivity rather than geographic distances, as 𝑑𝑗,𝑘 = 1 −
𝑜𝑔(𝑇weighted

𝑗,𝑘 ) over the shortest estimated path between nodes 𝐿𝑗 and
𝑘. We inferred the community structure of the commuting network,

.e., the size and membership of distinct modular subnetworks within
he larger network, using InfoMap (Rosvall et al., 2009; Rosvall and
ergstrom, 2011; Csardi and Nepusz, 2006). Briefly, InfoMap esti-
ates community structure by minimizing the length of the Huffman

ode (Huffman, 1952) descriptor for the path of a random walk across
given network (Rosvall et al., 2009).

.4. Stochastic modeling of epidemic propagation on commuter mobility
etworks

We use a stochastic metapopulation model to estimate the propaga-
ion of a directly-transmissible immunizing infection with susceptible–
xposed–infected–recovered (𝑆𝐸𝐼𝑅) dynamics over the city-level com-
uting networks in Dhaka and Bangkok. Although the duration of
rotective immunity acquired during SARS-CoV2 infection is still un-
ertain (Long et al., 2020), we assume that recovered individuals
re not susceptible to infection, at least for the relatively short pe-
iods of time considered in our simulations. The framework of the
odel follows Tizzoni et al. (2014) and Li et al. (2020), with the
3

p

nitial population of susceptible individuals distributed into origin–
estination compartments specified by all

OD and wke
OD . We assume

that all individuals are susceptible to infection at time 𝑡 = 0.

𝑡=0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆(0)1,1 . . . 𝑆(0)1,𝑛
.

𝑆(0)𝑗,𝑘
.

𝑆(0)𝑛,1 . . 𝑆(0)𝑛,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= OD (3)

The number of exposed, infected, and recovered individuals in each
corresponding compartment at time 𝑡 are given by the 𝑛×𝑛 matrices  ,
, and , with entries 𝐸𝑗,𝑘, 𝐼𝑗,𝑘, and 𝑅𝑗,𝑘, respectively. Time-steps are
days, and new exposures (𝑆 → 𝐸 transitions) result from interaction
with infected individuals at either the origin or destination, with force
of infection 𝜆origin and 𝜆destination, respectively.

𝜆origin
𝑗,𝑘 (𝑡) = 𝛽

∑𝑘=𝑛
𝑘=1 𝐼𝑗,𝑘(𝑡)

∑𝑘=𝑛
𝑘=1(𝑆𝑗,𝑘(𝑡) + 𝐸𝑗,𝑘(𝑡) + 𝐼𝑗,𝑘(𝑡) + 𝑅𝑗,𝑘(𝑡))

(4)

destination
𝑗,𝑘 (𝑡) = 𝛽

∑𝑗=𝑛
𝑗=1 𝐼𝑗,𝑘(𝑡)

∑𝑗=𝑛
𝑗=1(𝑆𝑗,𝑘(𝑡) + 𝐸𝑗,𝑘(𝑡) + 𝐼𝑗,𝑘(𝑡) + 𝑅𝑗,𝑘(𝑡))

(5)

here 𝛽 is a constant specifying the risk of infection (converted from
he daily rate of infection estimated in Li et al. (2020)). ∑𝑘=𝑛

𝑘=1 𝐼𝑗,𝑘(𝑡)
nd ∑𝑗=𝑛

𝑗=1 𝐼𝑗,𝑘(𝑡) are the number of infected individuals to which the
𝑗,𝑘(𝑡) susceptible individuals are exposed to in the origin and desti-
ation nodes 𝑗 and 𝑘, respectively. For each time-step, the number of
usceptible individuals 𝑆𝑗,𝑘(𝑡) who are exposed is the sum of two draws
rom two different binomial distributions with probabilities 𝜆origin and
destination. Infected individuals are parsed into reported and unreported
ases, with 𝑢 denoting the relative infectiousness of reported versus
nreported infections. The model does not consider births or deaths,
uch that the total populations across compartments are invariant over
ime and, for all times 𝑡, the denominators in Eqs. (4) and (5) equal
𝑘=𝑛
𝑘=1 𝑆𝑗,𝑘(0) and ∑𝑗=𝑛

𝑗=1 𝑆𝑗,𝑘(0), respectively. Progression to infectiousness
𝐸 → 𝐼 transitions) and recoveries (𝐼 → 𝑅 transitions) occur with fixed

robabilities 𝜂 and 𝛾.
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Fig. 2. Population density, mobile data catchment areas, and eigenvector centrality in Dhaka (left) and Bangkok (right). (A) Population density in persons per pixel (PPP) from
WorldPop database, overlaid with concentric circles used for spatially-restricted measurements of population density in Fig. 1 (gray circles) and the outline of the mobile service
tower-associated catchment areas used to estimate commuter mobility in each city. (B) Eigenvector centrality by node for Dhaka and Bangkok for the mobility network specified
by all

OD.
Fig. 3. Commuter mobility network structure in Dhaka and Bangladesh. The ten communities with largest membership (by number of nodes) are mapped for (A) Dhaka and (B)
Bangkok. Panel (C) plots community membership size (by number of nodes) versus the spatial dispersion index calculated for the nodes in each community (blue: Dhaka, red:
Bangkok). Colors for polygons in (A) and (B) are arbitrary. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
2.5. Modeling parameter selection and sampling

Base parameters for the stochastic SEIR model were chosen from
parameters inferred for a similar model using COVID-19 disease report
data from China (Li et al., 2020). We sample parameters from across
4

the 95% credible interval for each parameter 𝛽, 𝜂, 𝛾, and 𝑢 as estimated
by Li et al. (2020) (specifically, estimates derived from data collected
during early, pre-intervention stages of the epidemic) using Latin hy-
percube sampling. For some analyses 𝛽, 𝜂, 𝛾, and 𝑢 are set to fixed
values of interest.
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3. Results

3.1. City structure differences between Bangkok and Dhaka

Calculated values for the Gini coefficient and relative standard
deviation, which both increase with increasing statistical dispersion,
are higher across Dhaka versus Bangkok (Fig. 1), consistent with greater
heterogeneity in population density in Dhaka. Likewise, calculated
entropy values, which decrease with increasing statistical dispersion,
are lower across all spatial scales (i.e. concentric circles of radius 𝑟) in
Dhaka. The spatial dispersion index is lower in Dhaka for all values of
𝑟, indicating that cells with higher population density are distributed
over smaller areas in Dhaka versus Bangkok. The spatial distributions
of population density in Dhaka and Bangkok span the range of observa-
tions for other large cities in low- and middle-income countries (Fig. 1,
gray lines). The spatial distribution of population density in Dhaka is
generally more heterogeneous and concentrated over smaller spacial
scales versus other cities, whereas the spatial distribution of population
density in Bangkok is ‘‘flatter’’ and distributed over larger areas versus
other cities (Fig. 2A).

3.2. Network properties and community structure in Dhaka and Bangkok

Node-level properties demonstrate important differences in overall
connectivity and network density between Dhaka and Bangkok. The
node degree distribution in Dhaka is concentrated around higher val-
ues, with most nodes sharing edges with all or almost all other nodes,
with a corresponding network edge density (the ratio of the number
of edges and the number of possible edges in a network) of 0.82; the
degree distribution in Bangkok is less concentrated at higher values,
with a corresponding network edge density of 0.11 (Supplementary
Figure S6). The distribution of node strengths is more widely dispersed
and has higher maximum values in Dhaka compared to Bangkok.

Network centrality in both cities is concentrated within more highly
populated areas. Eigenvector centrality values are highest in centrally-
located areas with high population density in both Bangkok and Dhaka;
in Bangkok, we observe a second focus of nodes with high eigenvector
centrality values near a known transportation hub in the northeast area
of the BMR (Fig. 2B).

Network community structures are distinctly different in Dhaka and
Bangkok. Fig. 3 maps the ten largest network communities in either
Dhaka or Bangkok, inferred from the commuter network specified in
all

OD. In this context, network communities represent subnetworks of
nodes in the commuting network that are more strongly connected to
each other compared to other nodes. Network communities in Bangkok
(Fig. 3B) are geographically contiguous and constrained by geographic
barriers (for example, the Chao Praya River); with some exceptions,
communities in Dhaka are mostly discontiguous and relatively uncon-
strained by geographic barriers (Fig. 3A) or distance (Fig. 3C). The
geographic contiguity of network communities in Bangkok is observed
even after downsampling to a smaller set of nodes within a restricted
geographic area (Figure S7), indicating that differences in community
structure observed between Dhaka and Bangkok are likely not related
to differences in connectivity to unobserved nodes not included in the
data catchment area.

3.3. Propagation of simulated epidemics: synchrony and predictability

In simulated epidemics of a directly-transmitted pathogen with
SEIR dynamics, initialized using parameters inferred for SARS-CV2
transmission, we observe highly synchronized epidemic dynamics in
Dhaka (Figs. 4A & 4B), with all nodes across the city reaching their
highest number of predicted infections within a short, synchronized
period of time. Epidemic propagation is less synchronized in Bangkok
and nodes located in the peripheral areas of the BMR, specifically in
the west and northeast, exhibit delayed epidemic peaks compared to
5

nodes in central Bangkok or the western BMR (Figs. 4C & 4D). These
results are consistent across a wide range of modeling parameters and
are observed regardless of how the origin node for each simulation
is chosen (either from a uniform distribution or population-weighted
multinomial distribution, Figure S9).

Simulated epidemics initialized on the Bangkok commuting net-
work exhibit distinct wave-like dispersal away from an epidemic origin
(Fig. 5B). Early in the simulated epidemics, the number of infected
individuals in a given node is negatively correlated with geographic dis-
tance from the origin node. This correlation becomes less distinct and
later reverses and becomes positive as the wave of epidemic dispersal
moves outward from the epidemic origin. Simulated epidemics on the
Dhaka commuter network do not exhibit any wave-like features and,
unlike Bangkok, propagation of the epidemic is largely unconstrained
by distance (Fig. 5A) at all time points. These features are observed
regardless of how origin nodes are selected (either from a population-
weighted multinomial distribution or a uniform distribution, Figure S9
), and are also observed if the mobility network is specified by wke

OD
rather than all

OD (Figure S10). Similar findings are observed when the
mobility network is restricted to nodes within a specified distance from
the epidemic origin (60 km in Figure S11 and 30 km in Figure S12).

3.4. Local network topology influences epidemic trajectory

We next examined dynamics of simulated epidemics originating
from nodes with high and low local connectivity, as measured by their
eigenvector centrality values. In simulated epidemics propagating on
the Bangkok commuter network, epidemic speed (measured as the time
to peak number of infections in the entire network) differs depending
on the eigenvector centrality of the origin node (Fig. 6): specifically,
simulated epidemics originating at nodes with lower eigenvector cen-
trality values are slower, with later epidemic peak times, compared
to those originating at nodes with high eigenvector centrality (mean
time to epidemic peak, 𝑡peak = 198 and 222 days for nodes with
eigenvector centrality values in the tenth and first deciles, respectively).
For simulated epidemics initialized on the Dhaka commuter network,
we observe a smaller difference in time to epidemic peak between
simulations seeded at nodes with low versus high eigenvector centrality
values (𝑡𝑝𝑒𝑎𝑘 = 197 and 203 days). Maximum epidemic size, i.e. the
estimated number of infected individuals at the epidemic peak, also
varies by eigenvector centrality of the origin node with smaller dif-
ferences observed in Dhaka compared to Bangkok (Figure S13). The
degree, strength, and eigenvector centrality of the origin node are
more strongly correlated with mean epidemic arrival time (time to first
infection in a given node, averaged over all nodes in the network) in
Bangkok compared to Dhaka (Supplementary Figure S6). Geographic
distance and effective network distance (a measure of mobility-based
connectivity between nodes) from the origin node are positively cor-
related with epidemic arrival time in Bangkok (Supplementary Figure
S14); in Dhaka, epidemic arrival time is positively correlated with
effective network distance, but is less consistently correlated with geo-
graphic distance. In both Dhaka and Bangkok, for epidemics simulated
with a wide range of model parameters and seeded at random nodes
across each network, epidemic arrival time is negatively correlated with
eigenvector centrality of non-origin nodes (Supplementary Figure S14).

4. Discussion

Epidemic dynamics in cities will depend on a range of factors includ-
ing the connectedness and distribution of its populations. The timing,
appropriateness, and efficacy of disease control interventions under-
taken in response to ongoing or potential epidemics are clearly central
determinants in how epidemics unfold in different cities, and may
supersede the impact of many other city-level properties that might
modify epidemic risk. Nevertheless, understanding how observable
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Fig. 4. Mean time to epidemic peak for each node in the commuting network. Map polygons are colored according to the time lag in days between the time to epidemic peak
in a given node and the earliest peaking node on the map, 𝛥𝑡peak (A:Dhaka, C: Bangkok). Results from 1000 independent SEIR simulations, using parameters drawn via Latin
hypercube sampling (as described in Methods), are shown. The seed node for each simulation is drawn from a multinomial distribution, where the probability that a given node
is chosen as the seed is proportional to the total population in the catchment area (Voronoi polygon) around that node. Histograms show the distribution of epidemic peak times
over different geographic areas in Dhaka (B) and Bangkok (D), including nodes within concentric circles centered on most densely populated node in each city (radii: 10,20, and
30 km) and the entirety of both study areas (‘‘all’’ in panels B and D).

Fig. 5. Correlation between number of infections and distance from epidemic origin node over time. Distributions of Pearson’s coefficients for correlation between number of
infections in each node and nodes’ respective distances in km from the origin node, obtained from 1000 independent SEIR simulations, are shown at different time points during
simulated epidemics. The origin node for each simulation is chosen from a multinomial distribution weighted by the total population in the catchment area (Voronoi polygon)
around each node. A: Dhaka, B: Bangkok.
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Fig. 6. Epidemic dynamics and eigenvector centrality at the origin node. Distributions for time (in days) to epidemic peak for are shown for simulated epidemics seeded at nodes
with high and low eigenvector centrality values (in the first and tenth deciles, respectively). A: Dhaka; B: Bangkok. Distributions are for 1000 simulated epidemics with 𝛽 = 1.12
days−1.
properties of cities shape their intrinsic vulnerability to epidemic propa-
gation remains an important scientific and public health priority. Here,
we focus on mobility, acknowledging that mobility itself is closely in-
tertwined with other important factors such as population density, eco-
nomic conditions, and public infrastructure for transportation, public
health, and social support.

Megacities as a group exhibit wide variation across these potential
determinants of epidemic dynamics. Building on prior, foundational
work on city-level mobility and epidemic risk (Dalziel et al., 2013),
we have focused our analysis on Bangkok and Dhaka, two cities with
distinctly different economic and social conditions that also capture the
wide variation in spatial population structure across megacities (Fig. 1).
The resulting analysis provides informative comparative findings, delin-
eating key differences in underlying mobility networks and predicted
epidemic dynamics in these two example cases. We also find important
associations between characteristics of city-level mobility networks and
multiple important epidemic features, including the synchrony, spatial
dispersal, and size of simulated epidemics.

CDR-estimated mobility networks in Dhaka and Bangkok exhibit
distinctly different network community structures. Network communi-
ties (i.e. modular subnetworks of nodes with relatively higher shared
connectivity) in Bangkok are largely contiguous and geographically
constrained, suggesting that mobility in the BMR is highly local and
that daily movements of many individuals are limited to or orga-
nized around specific geographic areas (for example, neighborhoods or
neighboring cities such as Nonthaburi). Communities in Dhaka are dis-
tinctly non-contiguous, suggesting movement within the DMSA is less
local and not constrained by geography. Strong geographic contiguity
within communities is observed in the BMR data even after restricting
our analysis to a small area in central Bangkok, indicating that the
geographically disorganized network communities observed in Dhaka
are likely not an artifact of unmeasured connectivity with unobserved
7

nodes outside the DMSA study area (Supplementary Information).
Simulated epidemics in Dhaka are tightly synchronized over time
and space, unlike Bangkok, where simulated epidemics propagate as
distinct spatial waves that arrive and peak later in outlying parts of
the BMR, similar to prior observations on influenza epidemics in the
United States (Viboud et al., 2006). These differences are robust over
different spatial scales in each city (Fig. 4B & 4D), indicating that
the synchronized epidemics in Dhaka are not simply an artifact of the
relatively smaller geographic size of the DMSA. This is an important al-
ternative explanation to consider. Given a sufficiently large catchment
area around the DMSA, we would expect to see delayed epidemic peaks
at outlying or weakly connected locations; indeed, using our modeling
approach, this would be an expected result for simulated epidemics
propagated on any mobility network in which certain nodes have
weaker connectivity to the network as whole (due to distance or other
factors). Still, the observations in this study have potentially important
implications for public health decision-making in the BMR and DMSA.
Specifically, for Dhaka, these results may suggest that resources for
testing and case detection (for example, PCR-based testing for SARS-
CoV2) should be deployed as early and widely as possible during an
epidemic, and that geographically-restricted testing (for example, at
assumed transmission ‘‘hot spots’’) could result in large numbers of
infections going undetected.

Several other considerations are important for contextualizing our
findings. Estimating mobility from mobile phone user data requires
the use of multiple simplifying assumptions, some that are inherent to
all estimates made from this kind of data, some that are essential to
protect the privacy of mobile data users, and some that are specific
to our study. Most important, we assume that two locations, (1) the
node where a user places the majority of calls during one 24-hour
period and (2) the node where the same user places the majority of
calls during the subsequent 24-hour period, represent the origin and
terminus of a single trip by one user. This assumption has potential

shortcomings and the resulting origin–destination matrix may not fully
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capture daily movement. Numerous alternative approaches for estimat-
ing daily commuter movement from CDR data have been proposed and
examined (for example, Alexander et al. (2015), Kung et al. (2014),
Tongsinoot and Muangsin (2017)) but as yet there is no consensus on
which of these approaches provides the most appropriate informative
data for modeling epidemic dynamics. How origin–destination matrices
derived from CDR data compare with census-derived estimates (Mamei
et al., 2019), and how the use of these data sources influences models
of epidemic dynamics (Tizzoni et al., 2014; Panigutti et al., 2017),
are important research questions. We also note that the entries in
wke

OD and all
OD are scaled using estimated population data from the

orldPop project, and that these estimates have important sources of
ias and variance as well (Lloyd et al., 2019). We also acknowledge that
obility patterns in cities are dynamic and that analyses based on data

ggregated over discrete time periods may not fully capture variability
n mobility patterns over time. Likewise, population distributions and
ity structure may change rapidly in megacities and mobility data col-
ected in these environments may become outdated relatively quickly.
astly, by considering only trips between locations within the BMR
nd DSMA, we do not account for connectivity between these areas
nd more distant or outlying locations; connectivity with areas outside
he BMR and DSMA is expected to not only drive epidemic dispersal
nto surrounding locations but also influence spatiotemporal epidemic
ynamics within the central urban areas.

However, for multiple reasons, this method for estimating move-
ent patterns is expected to capture important features of the mobility
etworks in each city, including features that are informative for mod-
ling infectious disease dynamics. By using this approximation, and
ssuming the frequency of mobile phone use correlates to time spent
n a given location, we capture the two most likely locations for
ach user, each day. Aggregated over millions of individual users, and
veraged over an extended data collection period, we are able to obtain
stimates for average connectivity between locations in a city based
n large numbers of total observations. In addition, several intuitive
indings from our analysis of the mobility networks specified by wke

OD
and all

OD, including higher eigenvector centrality values at geographic
points with higher expected connectivity (for example, city centers
and transportation hubs), support our approach to estimating city-level
mobility patterns from aggregated CDR data.

Multiple limitations of our modeling approach are important to
consider. The stochastic model used in this study assumes that mixing
is homogeneous in each compartment and assumes that co-location
in the same node is an adequate proxy for person-person interaction.
Also, this model does not account for potential differences in the
average time spent in each location (‘‘dwell time’’), which is likely
to vary across locations resulting in differences in average daily force
of infection by location, nor does it account for geographic hetero-
geneity in age or household structure. Additional studies, comparing
directly observed person-person interactions (for example, via Blue-
tooth handshake (Stopczynski et al., 2013) or RFID sensors (Cattuto
et al., 2010)) to mobility trajectories estimated from CDR and other
passively-collected mobile data sources, are needed to better under-
stand the limits of CDR-based mobility estimates in this context. Lastly,
we initialize our model with a homogeneously (and entirely) sus-
ceptible population, and as such this approach is poorly suited for
understanding endemic infections where there is pre-existing immunity
that may be heterogeneous between demographic groups and across
geographic space.

In conclusion, this study describes previously unreported character-
istics of mobility networks in Dhaka and Bangkok, and reports impor-
tant differences in the trajectories of simulated epidemics propagated
over these networks. Our findings support the continued development
of passively-collected mobile user data as an important tool for un-
derstanding and predicting the a priori risk of epidemic propagation
in different cities, and for planning disease control interventions that
are predicated on understanding the spatial and temporal dynamics of
epidemics at the city (including, for example, the distribution of public
8

health resources for case detection and testing).
CRediT authorship contribution statement

Tyler S. Brown: Conceptualization, Data curation, Formal analysis,
Investigation, Writing - original draft, Writing - review & editing. Kenth
Engø-Monsen: Conceptualization, Methodology, Data curation, Formal
analysis, Writing - original draft, Writing - review & editing, Supervi-
sion. Mathew V. Kiang: Conceptualization, Data curation, Writing -
review & editing. Ayesha S. Mahmud: Conceptualization, Data cura-
tion, Writing - review & editing. Richard J. Maude: Conceptualization,
Data curation, Writing - review & editing. Caroline O. Buckee: Con-
ceptualization, Methodology, Writing - original draft, Writing - review
& editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was supported by the United States National Institutes
of Health (T32AI007061 to TSB and R35GM124715 to COB). This
research was funded in whole or in part by the Wellcome Trust (Grant
number 220211 to RJM).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.epidem.2021.100441.

References

Alexander, Lauren, Jiang, Shan, Murga, Mikel, González, Marta C., 2015. Origin–
destination trips by purpose and time of day inferred from mobile phone data.
Transp. Res. C 58, 240–250. http://dx.doi.org/10.1016/j.trc.2015.02.018, Big Data
in Transportation and Traffic Engineering.

Bialek, S., Bowen, V., Chow, N., Curns, A., Gierke, R., Hall, A., Hughes, M., Pilishvili, T.,
Ritchey, M., et al., 2020. Geographic differences in COVID-19 cases, deaths, and
incidence — United States, February 12– April 7, 2020. MMWR Morb. Mortal.
Wkly. Rep. 69 (15), 465–471. http://dx.doi.org/10.15585/mmwr.mm6915e4.

Brockmann, D., Helbing, D., 2013. The hidden geometry of complex, network-driven
contagion phenomena. Science 342 (6164), 1337–1342.

Canright, G.S., Engø-Monsen, K., 2006. Spreading on networks: A topographic view.
Complexus 3 (1–3), 131–146.

Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J., Vespignani, A., 2010.
Dynamics of person-to-person interactions from distributed RFID sensor networks.
In: Neylon, CameronEditor (Ed.), PLoS ONE 5 (7), e11596.

Charaudeau, S., Pakdaman, K., Boëlle, P., 2014. Commuter mobility and the spread
of infectious diseases: application to influenza in France. PLoS One 9 (1), e83002.
http://dx.doi.org/10.1371/journal.pone.0083002.

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network
research. InterJournal, Complex Syst. 1695 (5), 1–9, http://igraph.sf.net.

Dalziel, B.D., Pourbohloul, B., Ellner, S.P., 2013. Human mobility patterns predict
divergent epidemic dynamics among cities. Proc. Biol. Sci. 280 (1766), 20130763.
http://dx.doi.org/10.1098/rspb.2013.0763.

Heroy, S., 2020. Metropolitan-scale COVID-19 outbreaks: how similar are they? https:
//arxiv.org/pdf/2004.01248.pdf.

Huffman, D.A., 1952. A method for the construction of minimum-redundancy codes.
Proc. IRE 40 (9), 1098–1101. http://dx.doi.org/10.1109/JRPROC.1952.273898.

Jowell, A., Zhou, B., Barry, M., 2017. The impact of megacities on health: preparing
for a resilient future. Lancet Planet. Health 1 (5), e176–e178. http://dx.doi.org/
10.1016/s2542-5196(17)30080-3.

Kissler, S., Kishore, N., Prabhu, M., Goffman, D., Beilin, Y., Landau, R., Gyamfi-
Bannerman, C., Bateman, B.T., Katz, D., Gal, J., Bianco, A., Stone, J., Larremore, D.,
Buckee, C.O., Grad, Y.H., 2020. Reductions in commuting mobility predict ge-
ographic differences in SARS-CoV-2 prevalence in New York city. https://dash.
harvard.edu/handle/1/42665370.

Kung, K.S., Greco, K., Sobolevsky, S., Ratti, C., 2014. Exploring universal patterns in
human home-work commuting from mobile phone data. PLoS One 9 (6), e96180.

Li, R., Pei, Ss, Chen, B., Song, Y., Zhang, T., Yang, W., Shaman, J., 2020. Substantial
undocumented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2). Science 368 (6490), 489–493.

https://doi.org/10.1016/j.epidem.2021.100441
http://dx.doi.org/10.1016/j.trc.2015.02.018
http://dx.doi.org/10.15585/mmwr.mm6915e4
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb3
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb3
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb3
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb4
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb4
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb4
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb5
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb5
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb5
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb5
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb5
http://dx.doi.org/10.1371/journal.pone.0083002
http://igraph.sf.net
http://dx.doi.org/10.1098/rspb.2013.0763
https://arxiv.org/pdf/2004.01248.pdf
https://arxiv.org/pdf/2004.01248.pdf
https://arxiv.org/pdf/2004.01248.pdf
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1016/s2542-5196(17)30080-3
http://dx.doi.org/10.1016/s2542-5196(17)30080-3
http://dx.doi.org/10.1016/s2542-5196(17)30080-3
https://dash.harvard.edu/handle/1/42665370
https://dash.harvard.edu/handle/1/42665370
https://dash.harvard.edu/handle/1/42665370
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb13
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb13
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb13
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb14
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb14
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb14
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb14
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb14


Epidemics 35 (2021) 100441T.S. Brown et al.
Lloyd, C.T., Chamberlain, H., Kerr, D., Yetman, G., Pistolesi, L., Stevens, F.R.,
Gaughan, A.E., Nieves, J.J., Hornby, G., MacManus, K., et al., 2019. Global spatio-
temporally harmonised datasets for producing high-resolution gridded population
distribution datasets. Big Earth Data 3 (2), 108–139.

Long, Q., Tang, X., Shi, Q., Li, Q., Deng, H., Yuan, J., Hu, J., Xu, W., Zhang, Y., Lu, F.,
et al., 2020. Clinical and immunological assessment of asymptomatic SARS-CoV-2
infections. Nature Med..

Mamei, Marco, Bicocchi, Nicola, Lippi, Marco, Mariani, Stefano, Zambonelli, Franco,
2019. Evaluating origin–destination matrices obtained from CDR data. Sensors 19
(20), 4470. http://dx.doi.org/10.3390/s19204470.

Panigutti, Cecilia, Tizzoni, Michele, Bajardi, Paolo, Smoreda, Zbigniew, Colizza, Vitto-
ria, 2017. Assessing the use of mobile phone data to describe recurrent mobility
patterns in spatial epidemic models. R. Soc. Open Sci. 4 (5), 160950. http://dx.
doi.org/10.1098/rsos.160950.

Rosvall, M., Axelsson, D., Bergstrom, C.T., 2009. The map equation. Eur. Phys. J. Spec.
Top. 178 (1), 13–23. http://dx.doi.org/10.1140/epjst/e2010-01179-1.

Rosvall, M., Bergstrom, C.T., 2011. Multilevel compression of random walks on
networks reveals hierarchical organization in large integrated systems. In: Ra-
pallo, FabioEditor (Ed.), PLoS ONE 6 (4), e18209. http://dx.doi.org/10.1371/
journal.pone.0018209.

Stier, A.J., Berman, M.G., Bettencourt, L.M.A., 2020. COVID-19 attack rate increases
with city size. https://arxiv.org/pdf/2003.10376.pdf.

Stopczynski, A., Larsen, J.E., Lehmann, S., Dynowski, L., Fuentes, M., 2013. Partic-
ipatory bluetooth sensing: A method for acquiring spatio-temporal data about
participant mobility and interactions at large scale events. IEEE,
9

Tizzoni, M., Bajardi, P., Decuyper, A., Kon Kam King, G., Schneider, C.M., Blondel, V.,
Smoreda, Z., González, M.C., Colizza, V., 2014. On the use of human mobility
proxies for modeling epidemics. PLoS Comput. Biol. 10 (7), e1003716. http:
//dx.doi.org/10.1371/journal.pcbi.1003716.

Tongsinoot, L., Muangsin, V., 2017. Exploring home and work locations in a city
from mobile phone data. In: 2017 IEEE 19th International Conference on High
Performance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). pp. 123–129. http://dx.doi.org/10.1109/HPCC-SmartCity-
DSS.2017.16.

Viboud, C., Bjornstad, O.N., Smith, D.L., Simonsen, L., Miller, M.A., Grenfell, B.T., 2006.
Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312
(5772), 447–451.

Volpati, V., Barthelemy, M., 2018. The spatial organization of the population density
in cities. https://arxiv.org/pdf/1804.00855.pdf.

Wesolowski, A., Metcalf, C.J.E., Eagle, N., Kombich, Janeth, Grenfell, Bryan T.,
Bjørnstad, Ottar N., Lessler, Justin, Tatem, Andrew J., Buckee, Caroline O., 2015a.
Quantifying seasonal population fluxes driving rubella transmission dynamics using
mobile phone data. PNAS; Proc. Natl. Acad. Sci. 112 (35), 11114–11119.

Wesolowski, Amy, Qureshi, Taimur, Boni, Maciej F., Sundsøy, Pål Roe, Johans-
son, Michael A., Rasheed, Syed Basit, Engø-Monsen, Kenth, Buckee, Caroline O.,
2015b. Impact of human mobility on the emergence of dengue epidemics in
Pakistan. PNAS; Proc. Natl. Acad. Sci. 112 (38), 11887–11892.

http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb15
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb16
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb16
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb16
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb16
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb16
http://dx.doi.org/10.3390/s19204470
http://dx.doi.org/10.1098/rsos.160950
http://dx.doi.org/10.1098/rsos.160950
http://dx.doi.org/10.1098/rsos.160950
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
https://arxiv.org/pdf/2003.10376.pdf
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb22
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb22
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb22
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb22
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb22
http://dx.doi.org/10.1371/journal.pcbi.1003716
http://dx.doi.org/10.1371/journal.pcbi.1003716
http://dx.doi.org/10.1371/journal.pcbi.1003716
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2017.16
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2017.16
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2017.16
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb25
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb25
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb25
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb25
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb25
https://arxiv.org/pdf/1804.00855.pdf
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb27
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28
http://refhub.elsevier.com/S1755-4365(21)00004-9/sb28

