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INTRODUCTION

Recent publicity surrounding a coin-size computer chip in a pig’s brain has placed the spotlight
on the field of neurointerfaces (Lewis, 2020). Implantable microelectrode arrays (MEAs), or
neural probes, enable the study of brain activity and present promising treatment and therapeutic
options for neurological conditions (Boehler et al., 2020). These range from motor and sensory
impairments such as spinal cord injuries and hearing loss, to neuropsychiatric disorders including
dementia, clinical depression and insomnia. Application-specific MEAs that, for example, record
field potentials and neuronal activity have been validated in non-human primates and could help
understand mechanisms underlying motor functions and epilepsy (Barz et al., 2017; Gerbella et al.,
2021). Key design considerations for biocompatibility, efficacy and longevity of microelectrodes
to maintain long-term neuronal recording and stimulation are highly dependent on brain tissue
response (Polikov et al., 2005). The functional capacities of a biosensor depend on the number of
surrounding neurons in a given radius (50–350µm) (He et al., 2020). Probe insertions generate
inflammatory responses to acute tissue injuries and the introduction of foreign bodies, known
as “foreign body response” (FBR). Chronic neuroprosthetic implants in rats at 16 weeks in
contrast to 8 weeks have been shown to increase neuronal and dendritic loss, correlate with tau
hyperphosphorylation seen in Alzheimer’s disease and other tauopathies, and impede regeneration
and recording of activity surrounding the device (McConnell et al., 2009). Assessments of acute
proinflammatory events and chronic progression have largely centered on histological analyses of
non-neuronal central nervous system (CNS) cells such asmicroglia, astrocytes and oligodendroglia,
including their contribution to neuroinflammation and glial scars (Kozai et al., 2015; Prodanov
and Delbeke, 2016). However, immunohistochemistry provides qualitative answers and rarely
discriminates between heterogeneous cellular states (Wellman et al., 2019). Here we highlight
developments that expand our knowledge of context-dependent heterogeneity of glia and blood-
brain barrier cells, proposing new approaches to examine the diverse contributions of non-
neuronal CNS cells after probe implantation. Having a holistic understanding of multiple glial
responses will advance neuroengineering that temper neuroinflammation and tissue scarring,
thereby improving functional neuroprosthetic integration.
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MICROGLIA AT THE BRAIN-MACHINE
INTERFACE

Microglia are myeloid cells of extra-embryonic origin that form
the brain-resident macrophages (Ginhoux et al., 2010). Tissue
damage triggers microglia-driven repair mechanisms including
phagocytosis of cellular debris, chemotaxis, and initiation of cell
death pathways through cytokine release (Prinz et al., 2019).
As first responders of the CNS that potentially contribute to
sustained neuroinflammation, microglial reactivity is widely
assessed after microelectrode implantation to examine changes
elicited by insertion injury and FBR (Kozai et al., 2012).
Intracortical implantation of non-functional microelectrodes in
rats has led to the elevation of oxidative stress markers (Ereifej
et al., 2018). Microglia have been shown to increase acidosis
and inflammation by the release of reactive oxygen species
(ROS) in a controlled cortical impact (CCI) mouse model
for neurotrauma (Ritzel et al., 2021). ROS can be detrimental
to long-term functionality of an implanted sensor (Takmakov
et al., 2015). Prolonged microglial reactivity or adherence to the
electrode surface could threaten device efficacy and longevity
in the recipient brain and diminish recording quality (Huang
et al., 2020). Moreover, microglia secretion of proinflammatory
cytokines such as tumor necrosis factor (TNF) and interleukin
1 (IL-1) may induce neurotoxic reactive astrocytes (Liddelow
et al., 2017) to envelope the implant. Together with cell
recruitment, glial scar formation and electrode encapsulation,
proinflammatory microglia have earned the reputation of being
noxious (Kozai et al., 2016). Yet depletion ofmicroglia was shown
to be unfavorable for scar formation, wound healing and survival
of neurons and oligodendrocytes (Bellver-Landete et al., 2019),
supporting the notion that they promote the stable integration
of implanted MEAs. Microglial heterogeneity in the healthy,
developing and diseased brain is very well-described (Stratoulias
et al., 2019; Masuda et al., 2020), even if mammalian microglia
mostly originate from a single erythromyeloid progenitor source
in the embryonic yolk sac (Alliot et al., 1999; Ginhoux et al.,
2013). However, prevailing studies of MEAs do not reveal the
spectrum of neuroprotective or neurotoxic microglial subtypes.

Common markers for microglia and microglial reactivity,
such as ionized calcium-binding adaptor molecule 1 (IBA-1),
integrin alpha M (ITGAM, or CD11b) and CD68 (also ED-
1), are frequently used in immunohistochemical analysis of the
brain-electrode interface as readout for tissue damage caused
by implantation trauma and FBR (McConnell et al., 2009; Luan
et al., 2017; Huang et al., 2020) (Figure 1). Transmembrane
protein 119 (TMEM119) (Bennett et al., 2016) and purinergic
receptor P2Y12 (P2RY12) (Butovsky et al., 2014) are excellent
markers for homeostatic microglia, but are thus far rarely used
for neurointerfaces. Neuroengineers considered the normalized
intensity of microglial cell markers to proportionately represent
the degree of inflammation (Lo et al., 2018). For instance,
signal intensities of microglial cell markers surrounding insertion
sites of explanted probes were examined at acute (1–3 days)
or sub-chronic (up to 28 days) phases to evaluate the brain-
machine interface (Lind et al., 2013; Wellman et al., 2019).

Studies on neurotrauma and FBR showed that microglia could
upregulate proinflammatory inducible nitric oxide synthase
(iNOS) (Madathil et al., 2018) or anti-inflammatory arginase
1 (Arg1) (Sawyer et al., 2014). Descriptions of microglial cell
morphologies in the assessment of FBR after implantation
of MEAs include “ramifying” and “amoeboid,” which are,
respectively, associated with steady and reactive states (Huang
et al., 2020). Additional classifications such as “primed,”
“hypertrophic” and “hypo- or hyper-ramified” are also relevant
for the phenotypic characterization of neuroprotective or
neurotoxic microglia in pathological conditions (Verdonk et al.,
2016). Current immunohistochemical analyses however mostly
disregards microglial diversity at the implantation site.

ASTROCYTES AND SCARRING AT
NEUROINTERFACES

Astrocytes are star-shaped, heterogeneous glial cells that provide
significant neurotrophic support through their interaction with
every component of the CNS parenchyma (Verkhratsky and
Nedergaard, 2018). They support synapse formation, maturation
and pruning, and modulate pre- and post-synaptic transmission
in homeostatic CNS (Sofroniew and Vinters, 2010). Tissue
damage unleashes reactive astrocytes that adopt neuroprotective
or neurodegenerative properties (Liddelow and Barres, 2017).
Glial fibrillary acidic protein (GFAP) is the most frequently
used immunohistochemical marker for reactive astrocytes in
analyses of brain-electrode interface and is positively correlated
to astrogliosis and glial scar formation (Polikov et al., 2005;
Seymour and Kipke, 2007; Kozai et al., 2015; Prodanov and
Delbeke, 2016) (Figure 1). GFAP+ astrocytes contribute to
scarring through secretion of extracellular matrix chondroitin
sulfate proteoglycans (CSPGs) such as neurocan, phosphacan
and brevican (Fawcett and Asher, 1999; Matsui et al., 2002).
CSPGs are inhibitors of axonal growth and remyelination that
are frequently found in multiple sclerosis lesions where they
reduce adherence of oligodendrocyte precursor cells (OPCs) for
myelin repair (Galtrey and Fawcett, 2007; Lau et al., 2012).
Inserting pieces of nitrocellulose filter into adult rat brain cortices
induced infiltration of GFAP+ astrocytes into the implants
and continued release of CSPGs even at 1 month after tissue
injury (McKeon et al., 1991, 1999). Reactive astrocytes formed
the principal cell type that increasingly compacted around and
encapsulated a silicon microprobe implanted for up to 12 weeks
in rats (Turner et al., 1999). This was similarly observed in a
marmoset brain carrying an array with 32 Teflon-coated 50-µm-
large microelectrodes for 7 months (Budoff et al., 2019). High
levels of CSPGs were concomitantly observed with neuronal
loss after an uncoated silicon neural probe was implanted in rat
brains (Zhong and Bellamkonda, 2007). Recording performance
of multichannel, 16-shank, silicon “Utah” MEAs embedded year-
long in feline sensorimotor cortex reportedly dropped when
neuronal action potentials were recorded (McCreery et al., 2016).
This implicates astrocytic glial scar and neuronal death in the
loss of biosensor performance. However, reactive astrocytes
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FIGURE 1 | Summary of acute glial responses to implantation of neural microprobes in the mammalian brain and proposed approaches to study glial heterogeneity.

Common markers (black) and additional markers (gray) for histological analyses of each glial type and blood-brain barrier integrity around the implants are listed. Black

arrows indicate secreted molecules. Created with BioRender.com.
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unlikely lead to only destructive outcomes. Conditional ablation
of astrocytes after CCI, stab or crush injuries augmented
lesion formation, demyelination and death of neurons and
oligodendrocytes (Faulkner et al., 2004; Myer et al., 2006).
The multifaceted roles of astrocytes suggest they are also vital
promoters of repair.

Elucidating long-term changes in astrocytic FBR and scarring
at neuroprosthetic implantation sites requires an understanding
of astrocyte heterogeneity. Astrocytic diversity is well-described
in healthy, developing and diseased CNS (Khakh and Sofroniew,
2015; Chai et al., 2017; Lanjakornsiripan et al., 2018; Clavreul
et al., 2019; Pestana et al., 2020) and cannot be represented by
the GFAP marker. Markers for homeostatic astrocytes include
aldehyde dehydrogenase 1 family member L1 (ALDH1L1)
(Cahoy et al., 2008), glutamate aspartate transporter 1 (GLAST-
1, also known as excitatory amino acid transporter 1, EAAT-1)
(Hurwitz et al., 1993) and aquaporin-4 (AQP4) found in
astrocytic end feet (Yoneda et al., 2001) (Figure 1). A newly
described population of human induced pluripotent stem
cells-derived, proinflammatory cytokine-stimulated reactive
astrocytes specifically upregulate CD49f (Barbar et al., 2020).
From gray matter protoplasmic astrocytes to white matter
fibrous astrocytes, diverse astrocytic morphologies in the healthy
and diseased brain are well-documented (Zhang and Barres,
2010; Molofsky et al., 2012; Bardehle et al., 2013; Bayraktar et al.,
2014). Immunohistochemical analyses to date however exclude
the heterogeneity of astrocytes surrounding an implant.

IMPACT OF NEUROPROSTHETICS ON
OLIGODENDROCYTES AND THEIR
PROGENITORS

Differentiation of OPCs, also known as NG2-glia, gives rise to
oligodendrocytes that produce and maintain myelin sheaths,
which provide neurotrophic support and optimize brain
electrical signaling (Bradl and Lassmann, 2010; Nave and
Werner, 2014). OPCs and newly derived oligodendrocytes
are essential for remyelination and CNS repair following
demyelinating diseases or brain injury (Young et al., 2013;
Bechler et al., 2015). Immunohistochemical analyses of
oligodendrocytes at neurointerfaces have involved markers
including 2′,3′-Cyclic-nucleotide3′-phosphodiesterase (CNP)
(Chen et al., 2021) and CC1 (a monoclonal antibody against
adenomatous polyposis coli) for mature oligodendrocytes,
oligodendrocyte transcription factor 2 (Olig2) for immature
oligodendrocytes, and myelin basic protein (MBP) for
myelinating oligodendrocytes (Wellman et al., 2018, 2019)
(Figure 1). TMEM10, a type 1 transmembrane glycoprotein,
was recently verified to be specific for mammalian CNS myelin
(Golan et al., 2008; de Faria et al., 2019).

With limited antioxidant capacity and high iron content,
oligodendrocytes are sensitive to elevated ROS and reactive
nitrogen species (RNS) levels arising from glial response
to acute implantation injury and FBR (Smith et al., 1999).
Similar to GFAP+ astrocytes, OPCs and oligodendrocytes release

axonal growth-inhibiting CSPGs including NG2 and myelin-
associated glycoprotein (Fawcett and Asher, 1999). Studies
on passive multi-channel, four-shank “Michigan” MEAs in
murine visual cortex revealed acute oligodendrocyte injury and
degeneration, myelin degradation, and reactive swarming of
OPCs toward the implant within 12 h (Wellman and Kozai,
2018; Chen et al., 2021). Severe reduction of electrophysiological
recording quality from neurons at various tissue depths and
observations of decreased neuronal firing in a mouse model of
demyelination highlighted the importance of myelin integrity
for microelectrode function (Wellman et al., 2020). A clearer
picture of the renewal, maturation and function of various
oligodendroglia at implantation sites will allow to determine
the degree of cohesiveness at the brain-machine interface.

IMPACT OF NEUROPROSTHETICS ON
BLOOD-BRAIN BARRIER INTEGRITY

A breach of the blood-brain barrier (BBB) is inevitable during
implantation for microelectrodes to reach the neurons. The
BBB is composed of endothelial cells, pericytes, and astrocytes,
forming the neurovascular unit together with surrounding
microglia and neurons (Sweeney et al., 2016; Bennett et al.,
2019). Cerebrovascular endothelial cells are seamlessly joined
by active protein complexes known as tight and adherens
junctions (Tietz and Engelhardt, 2015). Pericytes also regulate
BBB permeability and are involved in neuroinflammatory
response, clearance of toxic metabolites and promotion of
angiogenesis (Hill et al., 2014). Pericytes are typically identified
by the colocalization of NG2 and platelet-derived growth
factor receptor beta (PDGFR-β) markers (to differentiate
them from NG2+ OPCs) (Wellman et al., 2019) (Figure 1).
Vasculature integrity is commonly assessed by histological
detection of immunoglobulin G leakage or Evans blue staining
for plasma membrane damage (Nolta et al., 2015; Falcone
et al., 2019) (Figure 1). Decreased expression of junctional
proteins in the compromised BBB promotes neuroinflammation
through higher expression of proinflammatory cytokines and
chemokines and increased infiltration of peripheral immune cells
(Marchetti and Engelhardt, 2020). BBB leakiness, astrogliosis
and neuronal death in brain tissue surrounding the implanted
device were shown to reduce the number of measurable
electrophysiological responses of single neurons and degrade
the overall recording performance of the biosensor (Nolta
et al., 2015). High-speed pneumatic intracortical insertion
of Utah MEA in rat cortex has led to down-regulation
of endothelial tight and adherens junction protein markers,
and correlated with increased oxidative stress and elevated
inflammation levels indicated by upregulation of caspases,
chemokines, interleukins and TNF (Bennett et al., 2018,
2019) (Figure 1). Notably, BBB release of ROS, RNS, and
proinflammatory cytokines and chemokines likely promote
microglial and astrocyte reactivity, and loss of neurons
and oligodendrocytes.
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CURRENT APPROACHES TO STUDY
GLIAL HETEROGENEITY

Single-cell transcriptomic technologies that simultaneously
quantify hundreds or thousands of expressed genes of individual
cells in a given population have unmasked heterogeneous
cellular identities and developmental trajectories, and revealed
biomarker information (Aldridge and Teichmann, 2020). These
powerful methods provide unique insights into health and
disease in contrast to bulk transcriptomic and classical
histological analyses. Single-cell RNA-sequencing and spatial
transcriptomic approaches have shown that glia isolated from
healthy and disease-associated brain regions respond across
broad cellular states for microglia (Tay et al., 2018; Hammond
et al., 2019; Jordão et al., 2019; Li et al., 2019; Masuda et al.,
2019), astrocytes (Cahoy et al., 2008; Zamanian et al., 2012;
Boisvert et al., 2018; Bradley et al., 2019; Batiuk et al., 2020;
Bayraktar et al., 2020; Das et al., 2020), and oligodendrocytes
(Jäkel et al., 2019; Spitzer et al., 2019; Floriddia et al., 2020).
Advances in single-cell proteomics have also enabled the high-
throughput investigation of key biological questions involving
protein binding, modifications, and degradation, that cannot be
assessed at the transcriptomic level (Slavov, 2020). Multiplexed
mass cytometry and multiplexed immunohistochemistry have
unveiled regional and pathology-dependent heterogeneity of
human peripheral myeloid cells, microglia and astrocytes
(Böttcher et al., 2019; Park et al., 2019). Furthermore,
multiplexed immunohistochemistry, electron microscopy and in
vivo two-photon imaging techniques are increasingly applied to
study acute and chronic oligodendrocyte and OPC reactivity
after microprobe implantation (Bogoslovsky et al., 2018;
Michelson et al., 2018; Wellman and Kozai, 2018; Chen
et al., 2021) (Figure 1). Clearly, advancing MEA technology
requires a comprehensive examination of glial responses at
neurointerfaces by integrating quantitative single-cell multi-omic
analyses with assessments of cell morphology and dynamics,
and electrophysiological recordings, as has been recently
demonstrated in neurons (Cadwell et al., 2016).

DISCUSSION

Implantation of single-shank or multi-shank MEAs will
inevitably trigger changes in glia and the BBB due to acute
tissue trauma and FBR. Microglia surrounding the lesion
will immediately undergo significant state changes to limit
physical damage through microgliosis, phagocytosis of dying
cells and debris, and release of proinflammatory cytokines and
stress-induced molecules. Microglial reactivity likely elevates

the population of reactive astrocytes, which could lead to
extensive unwanted glial scarring. In concert with astrocytes,
degenerative oligodendrocytes also secrete growth-inhibiting
extracellular matrix components, and result in electrode
encapsulation and dysfunction. Loss of BBB homeostasis
also exacerbates proinflammatory responses of microglia and
astrocytes to favor neuronal and myelin loss. CNS repair
however necessitates acute inflammatory events contributed by
neuroprotective subpopulations of non-neuronal brain cells.
To harness the endogenous, neuro-regenerative properties
of glia and promote electrode biocompatibility and longevity
(Gulino et al., 2019), we propose to investigate context-
dependent glial responses at brain-machine interfaces using
combinatorial approaches in addition to immunohistochemical
assays of protein markers. Probe fabrication breakthroughs
in material, size and geometry have limited implantation
trauma and reduced probe encapsulation (Patel et al., 2016;
Luan et al., 2017; Rivnay et al., 2017). Devices coated with
dexamethasone to alleviate neuroinflammation (Kozai et al.,
2016; Boehler et al., 2017), or laminin to restrict glial reactivity at
implantation sites (He et al., 2006), have shown great promise.
A deeper molecular understanding of diverse glial responses at
neurointerfaces will identify further candidates for promoting
neuroprosthetics development.
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