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Unconventional singularities and energy balance in
frictional rupture

Efim A. Brener2 & Eran Bouchbinder® 3%

A widespread framework for understanding frictional rupture, such as earthquakes along
geological faults, invokes an analogy to ordinary cracks. A distinct feature of ordinary cracks
is that their near edge fields are characterized by a square root singularity, which is intimately
related to the existence of strict dissipation-related lengthscale separation and edge-localized
energy balance. Yet, the interrelations between the singularity order, lengthscale separation
and edge-localized energy balance in frictional rupture are not fully understood, even in
physical situations in which the conventional square root singularity remains approximately
valid. Here we develop a macroscopic theory that shows that the generic rate-dependent
nature of friction leads to deviations from the conventional singularity, and that even if this
deviation is small, significant non-edge-localized rupture-related dissipation emerges. The
physical origin of the latter, which is predicted to vanish identically in the crack analogy, is the
breakdown of scale separation that leads an accumulated spatially-extended dissipation,
involving macroscopic scales. The non-edge-localized rupture-related dissipation is also
predicted to be position dependent. The theoretical predictions are quantitatively supported
by available numerical results, and their possible implications for earthquake physics are
discussed.
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ARTICLE

he failure of frictional systems, composed of bodies inter-

acting along contact interfaces, is mediated by the propa-

gation of interfacial frictional rupture!=3. A prominent
example of such spatiotemporal frictional rupture processes is
earthquakes along geological faults3>~7. A widespread framework
for understanding frictional rupture invokes a close analogy to
ordinary cracks®-28, despite notable differences in the underlying
physics. Most importantly, an ordinary tensile (opening) crack
that propagates inside a material loaded externally leaves behind
it fully broken, stress-free surfaces, while the interface left behind
a frictional rupture front remains in contact and hence features a
finite frictional stress (strength) 7. Moreover, not only 7 does not
vanish as in ordinary tensile cracks, but in fact, is a dynamical
field that varies in space and time, and that is self-selected by the
failure dynamics; it depends on the local slip rate/velocity v and
on the instantaneous structural state of the frictional interface.

The rather well-developed theory of ordinary cracks, the
so-called linear elastic fracture mechanics (LEFM)2%30, offers
powerful tools that would be very useful for understanding,
interpreting, and quantifying frictional rupture if the analogy
holds. LEFM is based on scale separation between edge-localized
dissipation, which takes place on a short lengthscale ¢, and linear
elastic driving energy, which is stored on significantly larger
scales, larger than the crack length L. In particular, cracks in the
LEFM framework are characterized by edge-localized energy
dissipation per unit area G, (the so-called fracture energy), which
is balanced by an elastic energy flux G into the edge region. The
latter is transported from large to small scales by singular fields
that are characterized by a universal —1 exponent?*-?, valid at
intermediate scales between € and L. These relations between the
singularity order, lengthscale separation, and edge-localized
energy balance are illustrated in Fig. 1.

In relating frictional rupture to LEFM, one should consider the
residual stress 7,.,, which is finite for frictional rupture, but van-
ishes for ordinary tensile cracks propagating inside bulk materials
under external loading. 7, is not an intrinsic interfacial quantity
but rather it is an emergent property that is self-selected by the
dynamics of the system, through a coupling between the inter-
facial constitutive relation and bulk elastodynamics?2. Once 7, is
known, frictional rupture dynamics are quantified relative to a
sliding state characterized by 7, In particular, frictional rupture
is then described by the difference between the frictional stress t
and 7., i.e, by 7 — 7, as will become evident below.

While it is known that LEFM cannot be strictly valid for
frictional rupture, where the frictional strength 7 is self-selected
and generally depends on the structural state of the frictional
interface and on the slip velocity v, the conventional LEFM —1
singularity, lengthscale separation, and edge-localized energy
balance are extensively used in the context of modeling efforts,
laboratory experiments, and field observations®-28. Yet, to the
best of our knowledge, the range of validity of the approximated
LEFM picture for frictional rupture, and the interrelations
between the singularity order, lengthscale separation, and edge-
localized energy balance in frictional systems are still not fully
understood. Our goal in this paper is to shed basic light on these
fundamental issues by developing a comprehensive theory of
rupture-related dissipation, lengthscale separation, and the sin-
gularity order of near rupture edge fields.

We show that the generic rate-dependent nature of friction
leads to deviations from the conventional LEFM singularity, and
that these deviations can be small if a properly identified
dimensionless group of physical parameters is small. We also
show that the emergence of unconventional singularities in fric-
tional rupture is accompanied by the breakdown of scale
separation, which leads to spatially extended dissipation that
involves macroscopic scales. We show that when the deviation of
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Fig. 1 Scale separation and singularity order in conventional cracks.

A schematic illustration of dissipation-related lengthscale separation and
singularity order in conventional cracks. The breakdown energy Egp is
plotted as a function of the distance X behind a propagating crack (see
inset), in a logarithmic scale. The breakdown energy Egp quantifies the
energy dissipation associated with crack propagation and is given by
Egp(X) = G (AEpp(X) + 1), where the spatial integral A€gp(X) is given in
Eq. (1) and G is the fracture energy (defined in the text). Egp(X) increases
over the spatial range 0 < X <7# (i.e., inside the so-called cohesive/process
zone29.30), but saturates at Egp(X) = G, for X > ¢ (see dashed lines). That
is, conventional cracks feature strict scale separation, where dissipation
occurs only on a localization length #. (inset) A schematic illustration of the
slip velocity field v(X) behind a crack propagating at an instantaneous
velocity [ = ¢, from left to right (L is the crack length and the dot stands
for a time derivative. In addition, note that X here is increasing from right to
left, unlike the main panel). v(X) features the conventional linear elastic
fracture mechanics (LEFM) —% singularity (see triangle and note the
logarithmic scale) on intermediate scales, # < X < L. This square root
singularity is directly related to the strict dissipation-related lengthscale
separation illustrated in the main panel.

the unconventional singularity order from the conventional
LEFM —3 one is small, edge-localized dissipation G. can be
identified on a length ¢, but G, can be significantly smaller than
rupture-related dissipation (while they are identical in LEFM, cf.
Fig. 1). Furthermore, the latter is shown to be position-
dependent. The theory is quantitatively supported by extensive
numerical simulations of rate-and-state-dependent frictional
dynamics, including explaining recent puzzling observations?3.
Finally, some possible implications for earthquake physics are
discussed.

Results

In order to study rupture-related dissipation and the associated
scales involved, we consider the breakdown energy at an obser-
vation point x; along the rupture plane, defined as
Epp(t;x;) = fg(t; Nr(8'sx,) — Tpoi] 631, Here x; is a fixed
position away from the hypocenter (the nucleation site of fric-
tional rupture, whose instantaneous size is L(t), and nucleation
occurred at t=0), 7(&x;) the frictional stress at that position
and the slip displacement is 8(¢; x;) = [ ix v(t; x;) dt, where t, is
defined such that L(t, ) = x;. The term “breakdown” refers here
to the fact that Epp involves stresses surpassing 7., i.e., it does
not account for the background frictional dissipation (heat)
associated with sliding against the residual stress 7. Conse-
quently, Epp is the rupture-related dissipation. For ordinary
cracks, Epp(t;x;) is predicted to be independent of x; and to
increase over a short timescale £/c,(t, ) (for t > t, , where c,(t) =

L(t) is the instantaneous crack propagation velocity), until it

2 | (2021)12:2585 | https://doi.org/10.1038/541467-021-22806-9 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

— frictional stress
— slip velocity

29
Ures

Tl'(‘h‘

v=0

i)

— X=0

Fig. 2 The near-edge fields of a rupture front propagating along with a
rate-and-state frictional interface. A frictional rupture front that nucleated
at x =0 and propagates to the right in a 2D anti-plane rate-and-state-
friction simulation (its symmetric counterpart, propagating to the left, is
shown in Fig. 3a of ref. 23, see details about the computer simulation
therein). Its instantaneous half-length is L(t) and the instantaneous
propagation velocity is ¢,(t) ~ 0.94c,. Shown are the frictional stress
(strength) field z(X; c,, L) (green) and slip velocity field v(X;c,, L) (orange)
left behind the propagating edge. Here, X(t) is a coordinate moving with the
edge and pointing backward (cf. Fig. 1), whose origin (X(t) = 0) is defined
according to v="0. The two fields approach finite residual values, 7., and
Vs, respectively, far behind the propagating edge. (inset) A zoom in on the
edge region, revealing a localization lengthscale # associated with edge-
localized dissipation, resulting in an effective fracture energy G, (see

Fig. 3a, for a precise definition of £). v(x, t) follows, to a very good
approximation, the conventional square root singularity of linear elastic
fracture mechanics (LEFM) at an intermediate region, i.e., X > £ and prior to
approaching v,., (fit not shown here, see ref. 23). The same conventional
singularity is featured by z(X, t) ahead of the edge, X <0 and |X| > Z, but it is
not discussed here23.

saturates at G, as illustrated in Fig. 1. Our first goal is to develop
a theory of the breakdown energy Epp for generic rate-and-state
frictional interfaces.

Theory of the breakdown energy for rate-and-state frictional
interfaces. We start by parameterizing the breakdown energy
Epp(t; x;) according to the distance X(f) =L(t) — x; between
the observation point x; and the rupture edge, instead of
using ¢ itself (see Fig. 2). Moreover, as ordinary cracks fea-
ture localized dissipation quantified by G., we focus on
the dimensionless excess breakdown energy, defined as
App(X;x;) = (Egp(X;x;) — G.)/G,, where the term “excess”
refers here to the dissipation on top of the effective fracture
energy G.. To calculate A&y, consider a frictional rupture
front steadily propagating at a constant velocity c,, for which
the slip displacement increment at any point on the fault/
interface takes the form dé = v(X;c,, L)dX/c, (unsteady rup-
ture propagation will be discussed below). With this relation
at hand, one can use the definition of Egp to define A&y
through the following spatial integral

Agp(X;c,, L, 0) =

T’

X
(Gee,) ! /[ [T(X/; ¢, L) — Tres]V(X/; ¢, L) dX', W

for £<X<L (cf. Fig. 2, where ¢, X, and L are illustrated),

where we used the fact that the integral over 0<X<¢
equals G..

Consider then a frictional interface that is described by a
generic rate-and-state-dependent constitutive relation32-3%, char-
acterized by an N-shaped steady-state-friction curve 7(v)40:41
and a single-structural-state field ¢(x,#)32~4, as detailed in
refs. 2223 and in the “Methods”. For a broad range of materials,
T4(v) is characterized by a nonmonotonic and rather weak
logarithmic rate dependence?!. It is well-established that generic
rate-and-state frictional interfaces host propagating rupture once
the condition for rupture nucleation are met2. Suppose then that
rupture nucleates at x =0 (the hypocenter, cf. Fig. 2) at time
t=0, giving rise to two symmetrically propagating frictional
rupture fronts. In Fig. 2, we present the frictional stress 7(X; ¢, L)
and slip velocity v(X; c,, L) fields of the right-propagating front at
a later time ¢, as obtained by recent 2D anti-plane simulations of
rate-and-state frictional interfaces?3. In principle, the fields 7(X;
¢, L) and v(X; ¢, L) can be extracted from such a simulation and
plugged into Eq. (1). Then the integral can be evaluated
numerically to yield Afy,. Our goal, though, is to calculate
A&yp analytically in order to gain insight into the underlying
physics and then to test the resulting predictions against the
simulational data.

The starting point for our development is the idea that for rate-
and-state frictional interfaces we have [7(X; c,, L) — Tpo]/Tres K
1 for X > ¢, as is indeed observed in Fig. 2. A quantitative criterion
for this condition to hold is derived below. Had it been (X > ¢;
Cr, L) = Tres, we would have A€, = 0 and the conventional slip
velocity singularity »(X;c,,L) ~ 1/+/X would have been exact
for <X <L (as illustrated in Fig. 1 for ordinary cracks).
Therefore, we treat the latter as a leading order solution and aim
at expressing 7(X; ¢;, L) — Tpes in terms of v(X; ¢, L). We then
assume that the evolution of the internal state field ¢(X,1¢) is
“fast”, i.e., that it quickly equilibrates with v(X; ¢;, L). Under these
conditions, we are left with 7(X; ¢,, L) = 74[v(X; ¢,» L)], where the
latter is a nonlinear relation. To allow for an analytic treatment,
we further assume that the smallness of (7 (V) — T )/ Tyes also
implies the smallness of (v — v,.,)/V,e, presumably justifying a
linearization of 7 (v) — 7, around v = v, for the entire range
X>¢

With these ideas and assumptions in mind, we obtain the
following expansion

TSS(V) — Tres = (des(Vres)/dV) (V - Vres) ~nv, (2)

where 1 = dr(v,,)/dv is an effective viscous-friction coeffi-
cientand 7, >> v, d7(v,e)/dv, which is typically satisfied, has
been assumed. As will be shown next, this effective linear viscous-
friction relation allows to gain deep analytical insight into the
physics of the problem at hand®°. Plugging Eq. (2) into Eq. (1), we

obtain Afpp(X;c,, L, 6) = g ff [V(X/;Cr,L)]de/. Using then
the conventional singular slip velocity field w(X;c,,L) =~
2¢,K/[u a(c,)v/2nX] for anti-plane conditions?30, where
a(c,) = /1 —¢c/c2 is the relativistic Lorentz factor and K is

the stress intensity factor, we can perform the integration to obtain

A‘c/‘BD()(; Cr7 La g) = Af(cr)ln (X/f) I (3)
which is expected to hold for £ < X <« L, and where
47nc
A =———.
)= @

In deriving Eq. (3), we used the edge-localized energy balance
G=K%[2 pac;)] = G2%30, which is associated with dissipation
on the scale X ~ £.

The effective viscous-friction coefficient 7 is positive for the N-
shaped steady-state-friction curve 7y(v) because v, typically
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resides on the velocity-strengthening branch of the friction law
above its minimum, dr(v,,)/dv > 0. While there is ample
evidence that the N-shaped steady-state curve is a generic
property of frictional interfaces*!, hence # >0, it is important to
note that having 1 = dr(v,)/dv < 0 does not violate any law
of nature. The point is that A€y, x G. is not the total
dissipation, which includes also G, the background frictional
dissipation associated with sliding against the residual stress 7,
and radiated energy. Together, these ensure positive total
dissipation and in principle, one can have # <0, which implies
A& < 0. This would be the case if v, resides on a velocity-
weakening branch of the friction curve, dr (v, )/dv < 0.

The excess breakdown energy A&y, in Eq. (3), which
constitutes one of our major results, shows that whenever friction
is rate-dependent, i.e., 7 x d7y/dv # 0, the breakdown energy &y
deviates from the fracture energy G. (A& # 0), dissipation-
related scale separation breaks down and A&y explicitly depends
on a macroscopic scale X. As X is generally orders of magnitude
larger than ¢, Ay can, in general, be significantly larger than G,
(the limiting/saturation level of AEy, will be discussed below).
Our next goal is to understand the range of validity of the result
in Eq. (3) and its relation to deviations from the conventional
singularity of LEFM.

Relation to unconventional singularities. The results in Egs.
(3-4) were obtained by assuming that the conventional slip
velocity singularity »(X) ~ 1/+4/X can be treated as the leading
order solution of the frictional rupture problem (behind the
propagating rupture front). That is, it was implicitly assumed that
in some sense the singularity order of rate-and-state frictional
rupture only slightly deviates from the conventional —1 singu-
larity. Yet, it remains unclear at this stage how Egs. (3)-(4) are
related to the singularity order, and in particular how these are
related to the smallness of the deviation from the conventional
singularity and to [T(X) — T,e]/Tes K 1.

The key to answering these questions is A&(c,) in Eqs. (3)-(4)
and its physical meaning. While it is common to assume that the
conventional square root singularity of LEFM remains approxi-
mately valid for frictional rupture, and while this assumption is a
posteriori supported by some observations (see refs. 1:23), for the
effective linear viscous friction in Eq. (2) nothing should be
assumed, the singularity order can be explicitly derived in light of
the linearity of the problem. That is, we have

W(X;e) ~ (X/0)% (5)

where &(c,) does not necessarily and a priori equal —%, ie., it may
correspond to an unconventional singularity emerging from the
intrinsic rate dependence of the frictional stress*’.

Using Eq. (2) and specializing here for anti-plane
conditions, one can show that &(c,) satisfies cot[m &(c,)] =
=2 71 ¢,/[u a/c,)] (see “Methods”). This relation shows that the
singularity order is not a constant, but rather a dynamic quantity
that varies with the rupture velocity c,. Moreover, assuming that
&(c,) indeed deviates from —% only slightly, we obtain

&(c,) > —% [1 — Af(cr)] , (6)

where surprisingly A&(c;) is the same one given in Eq. (4).
Consequently, Eq. (3) is indeed valid when Aé(c,) < 1, i.e., when
the deviation from the conventional LEFM singularity is small.
Equations (5)-(6), together with Egs. (3)-(4), constitute the
major results of this work.

Equation (6) shows that frictional rupture is in fact
characterized by an unconventional singularity, yet that the
deviation from the conventional —1 singularity is small when A&

is small. According to Eq. (4), the latter is small when the rate
dependence of friction is weak, ie, when the properly
nondimensionalized dz(v,,)/dv is small. This is generically
the case for rate-and-state frictional interfaces. In such cases, the
excess breakdown energy Ay in Eq. (3) is proportional to the
very same small quantity A of Eq. (4), but A&y, is not
necessarily small because the smallness of A{ may be compen-
sated by an accumulated spatially extended contribution. There-
fore, we identify A as a hidden small parameter in rate-and-state
frictional failure dynamics.

The origin of this small parameter is the rate dependence of the
frictional stress, which in turn implies that the strict scale
separation assumed in LEFM is only approximately valid in
frictional rupture dynamics (manifested in the slow decay of 7(X)
toward 7, while satisfying [7(X) — 7,.]/7,es < 1). Moreover,
some physical quantities (e.g., Afpp) may be more strongly
affected than others (e.g., &) by the lack of strict scale separation.
Finally, we note that for other interfacial constitutive relations A&
may not be small and additional new physics may emerge. Such
situations will not be extensively discussed here but will be
mentioned below in relation to seismological observations. But
first, we set out to quantitatively test the predictions of the theory
against detailed cutting-edge computer simulations?3.

Testing the theory. In order to test the theoretical predictions in
Egs. (3-6), we consider the recent computer simulations of ref. 23,
where generic rate- and state-dependent frictional dynamics have
been studied. In these 2D anti-plane simulations, frictional rup-
ture fronts spontaneously emerge, allowing accurate calculations
of all of the physically relevant quantities discussed above. In
particular, it has been shown that the near rupture edge fields
(e.g., those shown in Fig. 2) follow the conventional LEFM —1
singularity to a very good approximation?3. That is, while A in
Eq. (6) has not been explicitly calculated, the results of ref. 23
clearly indicate that A§ < 1, which is precisely the validity con-
dition of Egs. (3-4).

In Fig. 3a, we present Epp(X(f);x;) for four different
observation points x;_4 along with the fault/interface. It is
observed that the Epp(X(f);x;) curves for all x;/s overlap on a
small lengthscale and then branch out. The curves then keep on
increasing and appear to saturate at x;-dependent values that are
substantially larger than the value of Epp at the branching out
point. This behavior is qualitatively different from the one of
ordinary cracks, cf. Fig. 1. On the other hand, it appears to be
consistent with the theoretical predictions of Eq. (3), not
considering for the meantime the x; dependence and the
saturation (to be discussed later).

A clear signature of the analytic prediction in Eq. (3) is the
logarithmic dependence of Ay, on X in the intermediate range
¢ < X< L. To test this prediction, we need to identify G., which
is nothing but the value of Epp, at the branching out point. Indeed,
it is shown in ref. 23 that this value of G. is exactly the one that
balances the elastic energy flux G into the edge region, as
determined from the extracted stress intensity factor K. Conse-
quently, the LEFM edge-localized energy balance G=G. is
satisfied to a very good approximation, which in turn determines
the rupture velocity ¢,23. Moreover, G. allows to explicitly extract
the localization length ¢. Having at hand both G and ¢, we plot in
Fig. 3b A&gp (corresponding to the data of Fig. 3a) against
In (X/?), for the lowest and largest x;’s. It is observed that A&y,
depends logarithmically on X in an intermediate range (for the
two extreme values of x;), as predicted analytically in Eq. (3),
lending strong support to the theory.

The slope/prefactor of the logarithmic relation depends on the
observation point x;, which in turn implies that A in Egs. (3-4)
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Fig. 3 The breakdown energy of frictional rupture. a The breakdown energy Egp(X(1); x;) as a function of X(t)/W for t > ty (see text for definition),

obtained in numerical simulations of rate-and-state frictional interfaces?3, for four different observation points x;_4 (see legend). W is the fault/interface
half-length and we set t, = 0 for i=1— 4 (for presentational convenience). All curves perfectly overlap over a short lengthscale, which identifies with #
(see Fig. 2), defining the effective fracture energy G, (dashed-dotted horizontal line), but branch out on larger scales. See text for additional discussion.
b A&y (X; x;), corresponding to the data presented in panel a, vs. In[X/4(x;)] for x;/W = 0.3 and x4/W = 0.6 (see legend). A&y (X; x;) follows a logarithmic
behavior at an intermediate range, as highlighted by the titled dashed lines (the slope of the lower line is 0.094 and that of the upper one is 0.165, their
ratio is 1.76). AEgp(X; x;) presumably crosses over, roughly at In[x;/¢(x;)] (light-gray vertical lines), to a plateau (illustrated by the horizontal dashed lines).

depends on x;. Equation (4) predicts, assuming that the effective
linear viscous-friction coefficient # is independent of x;, that the
observed x; dependence is attributed to the rupture propagation
velocity ¢,, in particular to the combination c./a(c,). Indeed,
frictional rupture in the numerical simulation corresponding to
Fig. 3 continuously accelerated®, ie., ¢,(t) > 0, where ¢,(t, ) =
0.94c, and ¢ (t,) = 0.983c,. Using these values inside Eq. (4),
the theory predicts the ratio of the slopes in Fig. 3b to be 1.94.
This prediction is in reasonably good quantitative agreement with
the observed ratio, which equals 1.76. Finally, the individual
slopes satisfy Aé(c,) ~ O(107"), which is in agreement with a
direct estimation of A&(c;) according to Eq. (4), using the
constitutive parameters of the numerical simulations?3.

Taken together, these results provide direct support to the
theoretical predictions. In particular, the results show that A&y,
can be, and in fact is, quite significantly larger than Aé(c,) < 1.
This happens due to accumulated spatial contribution associated
with the huge difference between X—that can reach the fault/
interface size—and the localization length ¢ (and despite the
logarithmic dependence on their ratio). We thus conclude that for
rate-and-state frictional interfaces, the non-edge-localized excess
breakdown energy in Eq. (3) is a product of a typically small
number, given by Eq. (4), and an accumulated spatially extended
contribution that can compensate the smallness of Aé(c,).
Consequently, the breakdown energy Epp can in general deviate
significantly from the fracture energy G..

The position dependence of the breakdown energy and its
saturation level. How large can the deviation of Epp from G be?
What determines the magnitude of the deviation? In the example
shown in Fig. 3a, the deviation can be as large as ~100%, but
more importantly it is observed that the saturation value of
Epp(X; x;) depends on the observation point x;. That is, in addi-
tion to the x; dependence discussed above in relation to non-
steady rupture propagation, the simulational results indicate an
intrinsic relation between the observation point and the

saturation value of Egp. It is clear that the In (X/¢) dependence of
A€y in Eq. (3), which was discussed and validated in the
intermediate range £ < X < L in Fig. 3b, cannot persist indefi-
nitely. This is simply the case because the logarithmic dependence
is directly related to the singular part of v(X), which is no longer
dominant at large X.

To understand the behavior of A&y, (X) at large X, note that
the during crack propagation the relation L(t) = x; + X(f) holds
for L(t) = x;, where both L(t) and X(¢) increase, while x; is fixed.
At short propagation times, measured relative to the time at
which L(f) =x; we have X <« x;. At intermediate propagation
times, A&y (X; x;) varies logarithmically with X, as demonstrated
in Fig. 3b, and finally, at long propagation times, we have X(f) —
L(t), which implies X>> x; and for which the logarithmic law is
not valid anymore. If 7(X) approaches 7, for large X in a way
that leads to the saturation of A&pL(X), then we expect the
logarithmic behavior of A€y (X; x;) to cross over to a plateau on
a scale X ~ x;, i.e., when In (X/¢) roughly equals In (x,/4(x,)). This
prediction is tested and supported in Fig. 3b, demonstrating that
A&yp(X; x;) indeed crosses over to a plateau on a scale X ~ x;. This
is a surprising and somewhat non-intuitive result that shows that
it is not the rupture size L per se that determines the magnitude of
the deviation of Egp from G, but rather the observation point x;.
Obviously, larger ruptures generally allow larger x;, so in general
these can feature larger deviations of Egp(X; x;) from G..

This physical insight can be used to quantitatively predict the
Epp(X; x;) curves, shown in Fig. 3a, over the full range of X’s
and different x;s. To that aim, we need to include higher
order, non-singular contributions to w(X;c¢, L). This is done
by using Broberg’s full-field solution for a self-similar crack
propagating at a constant velocity c,, which takes the form

v(X;c,, L) = C”/ﬂict;s(i)/ VI? — (L —X)*3, and is valid for

¢<X<L. Furthermore, as the full-fild expression anyway
requires numerical integration in Eq. (1), we can relax the
assumption that 7 (v) — 7, can be linearized around v,.. While
this assumption appears plausible, the smallness of (7(v) —
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Fig. 4 Testing the theoretical predictions. Comparison of the simulational

results for A&y (X; x;) (solid lines, see legend), presented earlier in Fig. 3a,

and the theoretical prediction A& (X;c,(x),L = x;, £(x;)) (dashed lines,
see legend) obtained using Eq. (1) (see text for additional details), vs.

[X —£(x)1/W for x;/W =0.3 and x4/W = 0.6 (see legend). The values of

#(x;) are given in Fig. 3b. Note that the theoretical curves, by construction,

extend up to X =x; (recall that £(x;) < x;) and that the simulational ones

are limited by the fault/interface half-length W, the smaller x; the larger the

maximal X.

0.5

Tres)/ Tres dO€S DOt strictly guarantee that the linear relation in Eq.
(2) is quantitatively accurate over the entire range X > ¢, which
involves a rather broad range of slip velocities. Consequently, we
use the fully nonlinear N-shaped 74(v) (see “Methods”) instead of
the linearized one of Eq. (2), and use Broberg’s full-field solution
V(X; ¢, L)] for v, when numerically evaluating the integral in Eq.
(1). It is important to note that as Broberg’s full-field solution is
obtained in the framework of LEFM, the proposed procedure is
still perturbative in nature; that is, it employs an LEFM solution
as the leading order contribution in order to calculate the relevant
dissipation integral in the main approximation®>.

A&yp(X;c,, L, ¢) of Eq. (1) is a spatial integral over a snapshot
of the rupture fields, which in itself is independent of the
observation point x; The observation point dependence is
introduced in two steps, corresponding to different pieces of
physics. First, as the integral in Eq. (1) extends up to X=1,
the insight about the saturation at X ~x; can be captured by
setting L = x;. This saturation is totally unrelated to the additional
x; dependence introduced by the nonsteadiness of rupture
propagation. The latter, as already discussed earlier, is captured
by setting ¢, = c.(x;) and €= #(x;). Consequently, we calculated
AEpp(X; ci(x;), L = x;,0(x;)) of Eq. (1) using the fully nonlinear
N-shaped 7(v) (see “Methods”) and Broberg’s full-field solution
V(X; ci(x;), L =x;), and compared it to the simulational results.
The comparison, which is presented in Fig. 4, reveals reasonable
quantitative agreement between the theory and the simulations,
lending strong support to the former.

Possible implications for seismological observations. As
explained above, the breakdown energy constitutes an important
contribution to the total frictional rupture energy budget, which
includes also the background frictional dissipation (heat) and the
radiated energy. In the context of earthquake physics, these three
contributions sum up to the potential energy release during an
earthquake!0. It would be interesting to discuss whether, and if so
to what extent, our theory might have some implications for
seismological observations. The latter typically aim at using
source spectra to obtain coarse-grained average estimates of the

following quantity®12:46-49

)
Gi(d) = / @) = (0] 45’ @)

Note that G{(d) differs from the breakdown energy Ep(6;x;) =

J 3[1(8';xi) — T,,] d& in two respects. First, it makes no refer-
ence to a fault observation point x;. Second, the reference stress
used in it is 7(6), rather than the constant residual stress 7.

Before discussing seismological observations, let us calculate
G¢(6) in the framework of the theory developed in this work. As
explained above, the dissipation in the spatial range 0 < X < £ near
the rupture edge gives rise to a well-defined effective fracture
energy G, marked in Fig. 3a. The edge-localized dissipation G, is
related to a strong strength reduction (cf. Fig. 2) over a
characteristic slip displacement §,, such that G{d.) = G. (note
that G, of Fig. 3a, which is based on Egp, slightly differs in its
value from the one associated with G due to the difference in the
definition of these quantities). This strong frictional strength
reduction is associated in the rate-and-state constitutive frame-
work with the evolution of the internal state field ¢. It has been
shown®%>! that while the rate-and-state constitutive framework
does not make explicit reference to d, the strength reduction from
1o—reached after the very initial increase in slip velocity near the
rupture edge— to 7. at § = §. (where 7. is close to, but still larger
than, 7,,,) follows an effective linear slip-weakening law of the
form 7(8) ~ 79 — (79 — 7.)8/d.. Plugging the latter into Eq. (7), we
obtain

Gi(&) ~ & for & <,. (8)

According to Eq. (8), G{d) follows a quadratic power law for
0<4,, ie., for GHJ) < G.. For &> 8., where the frictional strength
slowly reduces from 7. to the residual stress 7, (cf. Fig. 2, 7. is not
marked), G(6) is associated with the dissipation in the extended
spatial range X >¢. Our viscous-friction theory predicts that the
excess dissipation in this range—on top of G.—is intimately
related to the emergence of unconventional singularities in
frictional rupture, which in turn mainly depends on the rate
dependence of friction (and not on the internal state field ¢). To
obtain G¢(d) in this regime, we use the slip velocity in Eq. (5), the
viscous-friction relation in Eq. (2) and the steady-state relation

v=c do/dX. These yield 7(6) — 7,, ~ 7% which upon
substitution inside Eq. (7) leads to

Gi(8) — G, ~ 8% for §>4.. ©)

For the conventional singularity,§ = —1, Eq. (9) predicts that Gy
is independent of § for §> 6., as expected (in fact, the prefactor
also vanishes in this case, implying G¢= G,). In cases in which
unconventional singularities emerge, Eq. (9) predicts a power law
that depends on the unconventional singularity order &.

Our theory thus predicts that G{J) follows a quadratic power
law for §<6,, cf. Eq. (8), which is associated with the strong
frictional strength reduction taking place near the rupture edge.
The quadratic law is a signature of an effective linear slip-
weakening characterizing this strength reduction process. At
GH(d.) = G, the theory predicts a crossover to another power law,
valid for §> 0. (cf. Eq. (9)), which is associated with spatially
extended dissipation and is determined by the unconventional
singularity order . These predictions are being tested in Fig. 5 for
the smallest x; data presented earlier in Figs. 3-4 (green curves).
The numerical results quantitatively agree with the theoretical
predictions, revealing a quadratic power law at small § as
predicted by Eq. (8), and a weaker power low (here with an
exponent 0.172) for G(8) > G, as predicted by Eq. (9). Using the
latter, together with the transformation { = —1(1 — A&) (cf.
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Fig. 5 The slip dependence of rupture-related dissipation. G;(5), defined
in Eq. (7), for the very same rupture simulation whose results are presented
in Figs. 3-4 (for the observation point x;/W = 0.3). G{(6) features two
power laws, marked by the two triangles, in agreement with the theoretical
predictions in Egs. (8)-(9). The crossover between the two power laws,
marked by the vertical dashed line, occurs at (6., Go), as predicted
theoretically. G. and &, are used to normalize G and §, respectively (the
value used for the former, G. = 0.51)/m?, is slightly smaller than the one
observed in Fig. 3a due to the difference in the definition of G; and Egp).
Finally, comparing the power-law exponent in the 6 > . regime, 0.172, to
the analytic prediction in Eq. (9) and using the transformation & =

—%(1 — A&) (cf. Eq. (6)), one obtains A& =0.094. The latter is in perfect
quantitative agreement with A& extracted in Fig. 3a (see also Egs. (3-4)).

Eq. (6)), one obtains A& =0.094, which is in perfect quantitative
agreement with A extracted in Fig. 3a (see also Eqs. (3-4)). Note
that A& exhibits some dependence on the observation point x; (cf.
Fig. 3a), which is not discussed here since seismological
observations— to be considered next—completely lack the spatial
resolution required to reveal this dependence.

As explained above, seismological observations aim at using
source spectra to obtain coarse-grained average estimates of G¢in
Eq. (7), e.g., see refs. 1246-49_ Yet, such seismological observations
completely lack the spatiotemporal resolution to probe the slip §
as a function of time at a given observation point x; on the fault.
Instead, it is common to plot the seismological estimate of G as a
function of the total average slip & in an earthquake, making no
explicit reference to the spatiotemporal evolution of slip during
rupture. Moreover, it is common to superimpose the seismolo-
gical estimates of G¢ vs. § for many earthquakes (including both
crack-like and pulse-like events) occurring on different faults in a
single plot, while it is not a priori clear that the data should at all
collapse on a master curve. Finally, natural faults exhibit richer
constitutive behaviors at high slip velocities (e.g., related to flash
weakening and thermal pressurization*”) compared to the rate-
and-state framework used in this work, feature geometrical
complexity and are 3D in nature. Yet, with these caveats in mind
and following other authors!246-48, we identify 6 with & and
discuss the qualitative salient features of the theoretical predic-
tions in Egs. (8-9) in relation to the available G; vs. 5
seismological observations.

Various authors compiled seismological observations from
many earthquakes on different faults, spanning a broad range of
total average slip 6, ranging from the micron-scale to the scale of

< <2
tens of meters!246-48, Several authors*®*” reported G¢(§) ~ &

for relatively small 8, consistently with Eq. (8), i.e., with an
effective linear slip-weakening behavior near the rupture edge.
Others, e.g!248, suggested a weaker-than-quadratic small &
power law and interpreted it in terms of a sub-linear slip-
weakening behavior near the rupture edge. None of these, to the
best of our knowledge, managed to single out G.—i.e., the part of
Gy that is balanced the edge-localized energy flux G and that in
turn controls the rupture propagation velocity—from the data, as
our theory allows.

Probably most relevant for our theoretical predictions are the data

compiled in ref. 7, where a quadratic power law G(8) ~ & at

small & appears to cross over to a weaker power law G¢(6) ~ 57

at large . This behavior appears to be in qualitative agreement with
the theoretical predictions in Eqgs. (8-9), suggesting that different
physics controls the two power-law regimes, and in particular that
the latter is associated with an unconventional singularity and a
dissipation contribution from a spatially extended region behind the
rupture edge. Interestingly, the two power laws suggested in ref. 47
have been interpreted in terms of a thermal pressurization
constitutive model, where the fluid pore pressure plays a central
role. The quadratic power law has been interpreted to correspond to
an effective linear slip-weakening behavior associated with
undrained conditions and the % power law with drained
conditions*”. Most interestingly, the 3 power-law regime has been
related to an unconventional singularity of order & = —}
associated with the thermal pressurization model under drained
conditions and corresponding to large slips accumulated far behind
the rupture edge. In fact, substituting & = —% in Eq. (9), one
obtains a 2 power law, even though the linear viscous-friction
approximation of Eq. (2) does not seem to be directly relevant to the
analysis of ref. 47.

Discussion

In this work, we developed a theory that elucidates the inter-
relation between unconventional singularities, scale separation,
and energy balance in frictional rupture. We have shown that the
intrinsic rate dependence of friction, dry(v)/dv#0, generically
leads to deviations from the conventional LEFM near-edge sin-
gularity. It is this rate dependence, which in turn implies that the
frictional stress is self-selected, that leads to the emergence of
singular fields different from those of LEFM. For the widespread
rate-and-state-friction constitutive law, these deviations can be
small, yet they are accompanied by non-edge-localized break-
down energy that significantly deviates from the edge-localized
dissipation.

The developed theory sheds basic light on frictional rupture
energy balance and the underlying lengthscales. The crux of the
theory is the identification of a hidden small parameter A that
quantifies the deviation from the conventional LEFM singularity
and that is intrinsically related to the rate dependence of friction.
The theory quantitatively explains recent puzzling observations in
cutting-edge numerical simulations and offers predictions that
are amenable to laboratory testing using available techniques!.
Finally, the theory offers tools and concepts that can be used to
interpret seismological estimates of earthquake breakdown
energies.

The concepts and ideas developed in this work are applicable to
more complicated interfacial constitutive relations, incorporating
even richer multiphysics of frictional systems. These can include
healing, pore fluid effects, thermal pressurization, flash heating,
off-fault damage and plasticity, and more. The developed theory
remains valid as long as the frictional stress continues to evolve
behind the rupture front over scales much larger than the loca-
lization (cohesive/process zone) length ¢, implying that strict scale
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separation does not hold. In the most general case, the power-law

exponent &(c,) in Eq. (5) is not necessarily close to —% (ie., A& is

not necessarily small). This generalized theory is addressed
elsewhere®2, and applications to specific interfacial constitutive
relations are expected to emerge in the future.

Methods

Determining the singularity order. This work is analytic in nature and all of the
derivations are detailed in the text, except for the solution for the unconventional
singularity order, which is provided below. The theoretical predictions are com-
pared to numerical results that have been published in ref. 23 based on 2D anti-
plane spectral boundary integral method simulations®3-3>. These numerical
simulations employed a rate-and-state-friction constitutive relation

T = osgn(v)f(|vl, ¢), where o is the normal stress and

f(r1,¢) = [1+ blog(1+¢/¢)fo/ \/1+ (v./v)’ + alog(1 + [v]/v,)]. The
internal state field ¢ satisfies ¢ = 1 — 1/14 (v,/v)* [v|¢/D and the values of

the parameters appear in Table I in ref. 22. Under steady-state conditions, ¢ = 0,
the frictional strength 7(v) follows an N-shaped curve, as plotted in Fig. 2a of
ref. 22 and in Fig. 1b of ref. 23, and as supported by numerous experiments*!. The
numerical results of ref. 23 have been presented in this work in different forms,
depending on the theoretical predictions being tested, as detailed in the text.

The unconventional singularity order & can be obtained by considering the
interfacial boundary condition for 2D anti-plane steadily propagating rupture®

_paly) [ vX)
X = 2mc, ,/0

X —-X

where the left-hand side is the frictional strength and the right-hand side is the
shear stress at the interface, as obtained from bulk elastodynamics®. Using 7.(v) of
Eq. (2) for 7(X) and invoking the asymptotic power-law ansatz in Eq. (5), Eq. (10)
implies that the unconventional singularity order & satisfies

cot(m &) = —2 1 ¢ /(p a,(c,)), as reported in the text. Finally, plugging into the
last relation Eq. (6) and expanding to the leading order in A, the latter is calculated
and is shown to identify with Eq. (4), as stated in the text.

dx’, (10)
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