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According to Mayr, polar organic synthesis can be rationalized
by a simple empirical relationship linking bimolecular rate
constants to as few as three reactivity parameters. Here, we
propose an extension to Mayr’s reactivity method that is rooted
in uncertainty quantification and transforms the reactivity
parameters into probability distributions. Through uncertainty
propagation, these distributions can be transformed into
uncertainty estimates for bimolecular rate constants. Chemists

can exploit these virtual error bars to enhance synthesis
planning and to decrease the ambiguity of conclusions drawn
from experimental data. We demonstrate the above at the
example of the reference data set released by Mayr and co-
workers [J. Am. Chem. Soc. 2001, 123, 9500; J. Am. Chem. Soc.
2012, 134, 13902]. As by-product of the new approach, we
obtain revised reactivity parameters for 36 π-nucleophiles and
32 benzhydrylium ions.

1. Introduction

Polar organic reactions are ubiquitous in Nature and the
chemical industry. Synthesis planning involving reactions of this
kind relies on two fundamental questions (among others):
whether nucleophilic attack takes place on a relevant time
scale, and whether this time scale interferes with that of
another reaction in which either the same nucleophile or the
same electrophile participates. The answers to both questions
revolve around the quantification of reaction rates – absolute
ones in the former case, relative ones in the latter case. For
instance, in iminium-activated reactions,[1] it is important that
the nucleophile is strong enough (in absolute terms) to attack
the intermediate iminium ion but also weak enough (in relative
terms) not to react with the precursor carbonyl compound.

Herbert Mayr and co-workers provided unambiguous
evidence that a simple empirical relationship, known as the
Mayr–Patz equation (MPE),[2] addresses scenarios of this kind
reliably,[3]

log kexp � log kMPE ¼ sNðNþ EÞ (1)

We define log k � log10 k2ð20
�CÞ for the sake of brevity.

Here, the decadic logarithm of the bimolecular rate constant
measured at 20 °C (log kexp) is approximated as the sum of two
reactivity parameters (nucleophilicity N and electrophilicity E),
multiplied by a nucleophile-specific sensitivity factor (sN). The
MPE allows for semi-quantitative predictions of bimolecular rate
constants in a remarkable range of about � 5 < log k < 8. The
philicities (N and E) of the species involved in reactions verifying
this relationship cover a range of 30–40 orders of magnitude,
which can be considered a unique achievement given that the
accuracy of kMPE is within a factor of 10 to 100. On the basis of
these results, Mayr formulated an uncertainty principle of
organic reactivity: the accuracy of kMPE and chemical diversity
cannot be maximized at the same time. Even though higher
accuracy can be reached if one considers a narrower range of
chemical species, the small errors in kMPE appear impressive
given the diversity of Mayr’s reactivity database,[4,5] which
currently comprises reactivity parameters for 1251 nucleophiles
and 345 electrophiles.

In this work, we introduce uncertainty quantification (UQ)
into Mayr’s reactivity approach. This combined approach, which
we made openly available,[6] enables users to perform virtual
measurements of log k, which are reported as
expectation�deviation – just like physical measurements.
Usually, virtual measurement uncertainty (or prediction uncer-
tainty) is significantly larger than physical measurement
uncertainty, which can be attributed to a more comprehensive
list of uncertainty components including parameter uncertainty,
model discrepancy/inadequacy, and numerical noise.[7–9] A key
feature of our UQ approach is the transformation of reactivity
parameters into probability distributions, which can be trans-
formed – via uncertainty propagation – into probability
distributions of log kMPE. We argue that quantitative knowledge
of uncertainty in kMPE enhances the already powerful reactivity
approach by Mayr, for three reasons.

First, virtual measurements of log k (expectation � devia-
tion) represent testable statistical hypotheses. That is, one can
quantify an x% confidence interval of log kMPE and count how
often log kexp is located within that interval (ideally x%).
According to the Guide to the Expression of Uncertainty in
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Measurement,[10] it is recommended to express uncertainty as a
95% confidence interval. This recommendation is supported by
the community.[11–13] Such reporting standards help to identify
shortcomings, thereby increasing the overall reliability of Mayr’s
reactivity approach and guiding the search for new research
directions (e.g., proposing measurements of yet unobserved
reactions).

Second, in synthesis planning, where subtle reactivity differ-
ences may matter, our UQ-based approach can support the
decision-making process. The larger the overlap of two log kMPE

distributions corresponding to competing reactions, the less
certain one can discriminate between the two, which makes it
more difficult to predict selectivity. The more the overlap tends
toward zero (one), the more (less) certain it is that one can
predict the relative species flux through competing reaction
channels.

Third, since rate constant uncertainty can also be quantified
for reactions that have yet to be observed, new opportunities
arise for benchmarking computational chemistry methods.[14,15]

Even if the experimental benchmark for a reaction of interest is
not yet available – which, so far, severely constrained the
domain of application for theoreticians – our UQ approach still
enables benchmarking, but under uncertainty. This way, the
diversity of benchmark sets can be increased remarkably, which
we anticipate to accelerate method developments in theoretical
and computational chemistry.

To explore the potential of UQ for chemical research, we
build upon previous work by Proppe and colleagues,[15,16]

addressing Mössbauer spectroscopy,[9,17] dispersion corrections
to density functional theory,[18,19] reaction kinetics,[20,21] acid-base
equilibria,[22] and exchange spin coupling.[23] This foundation will
support our endeavor to pave the way for a novel approach to
determining reactivity parameters with steadily increasing
accuracy. For demonstration purposes, we selected more than
200 reactions of the two reference data sets published by Mayr
and co-workers,[24,25] which cover a wide range of log k values
(� 3.6 to þ8:0).

1.1. Optimization of Reactivity Parameters

We employed the following objective function for optimizing
reactivity parameters,

D2 ¼
XR

r¼1

wr � dr log kð Þ½ �2 (2)

dr log kð Þ ¼ log kexp;r � log kMPE;r (3)

Here, dr log kð Þ and wr are the residual and the weight of the
rth reaction (R reactions in total), respectively. We employed the
basin-hopping algorithm by Wales and Doye[26] as implemented
in SciPy 1.5.0[27] for minimizing the objective function. It is a
global optimization algorithm suited for multivariate non-
convex problems. We used the default settings of the basin-
hopping algorithm except for the argument niter, which we
set from niter=100 to niter=1 as preliminary tests

suggested that a single iteration is sufficient to find optimal
reactivity parameters (see Section S1 of the Supporting
Information for more details). In the original optimization
studies,[24,25] a special case of this objective function was
employed, where all weights are uniformly distributed, i. e., wr =

wr‘ for all possible values of r and r‘¼6 r. This special case may
lead to less-than-optimal results in view of the practitioner’s
main interest in the reactivity scale approach – the quantitative
prediction of (absolute or relative) reaction rates. In 2001, Mayr
and co-workers wrote:[24] “Imagine the case that a reaction
series, investigated for the elucidation of the reactivity parame-
ters of a structurally unique reagent, matches Eq. 1 only
moderately. One would then have to decide whether the
benefit of obtaining the new reactivity parameter compensates
for the deterioration of the quality of the overall correlation,
which is associated with the incorporation of a poorly matching
reaction series. An unambiguous decision would often be
impossible!” To avoid ambiguity, we argue in favor of a
procedure that allows us to include all reaction data but
weights them depending on their individual quality. This
procedure, which we coin discrepancy weighting, assigns an
importance (a value between 0 and 1) to each species depend-
ing on how well its associated reaction series matches with
experimental data (There exist approaches similar to discrep-
ancy weighting, such as the iteratively reweighted least squares
method[9,13] or the worst offender algorithm[28]). These species-
specific weights are then combined to yield the reaction-
specific weights wrf g of Eq. 2 (see Section 2.4). We point the
reader to Appendix A for a full derivation of those weights.
Eventually, they can be utilized to determine the uncertainty of
reactivity parameters and, as a consequence, of log kMPE on the
basis of Bayesian bootstrapping[29] (see Appendix B). The full
optimization workflow is summarized in Figure 1.

1.2. Quantification of Uncertainty in log kMPE

We define the model error as the root-mean-square error of the
residuals,

RMSE � e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R� 1
XR

r¼1

dr log kð Þ½ �2

v
u
u
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s2

p
(4)

It is equivalent to the definition of log s by Mayr and co-
workers (see Footnote 58 in Ref. [24]). In the case of uniform
weights, wr ¼ R� 1 for all r ¼ 1; :::; R, the squared model error, ɛ2,
equals Δ2. The model error combines information on both the
model bias (μ) and model dispersion (σ). The model bias or mean
error (ME) represents the centroid of the residuals and is an
estimate of the overall systematic error in log kMPE,

ME � m ¼ R� 1
XR

r¼1

dr log kð Þ (5)

The model dispersion represents the scatter of the residuals
and is reflected by the root-mean-square deviation,
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RMSD � s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R� 1
XR

r¼1

dr log kð Þ � m½ �2

v
u
u
t (6)

Under the assumption of normally distributed residuals (see
Section S3 and Figure S3 of the Supporting Information for
validation results), model dispersion represents the model’s
contribution to prediction uncertainty, i. e., the uncertainty in
log kMPE. The second contribution to prediction uncertainty is
parameter uncertainty, which can be estimated from the
ensemble of bootstrap samples generated in the course of our
optimization workflow. Since each bootstrap sample (B in total)
yields slightly different reactivity parameters, we obtain an
empirical distribution for each parameter. Uncertainty propaga-
tion is straightforward. For a given reaction, each bootstrap
sample yields a slightly different log kMPE value, leading again to
an empirical distribution. We define the parameter-related
uncertainty in log kMPE of the rth reaction as

br ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� 1
XB

b¼1

log k bð Þ
MPE;r � B� 1

XB

b0¼1

log k b0ð Þ
MPE;r

" #2
v
u
u
t (7)

Assuming normally distributed variables and independence
of the two uncertainty contributions,[30] the prediction uncer-
tainty (95% confidence) corresponding to the rth reaction can
be estimated as

U:95;r ¼ 1:96 � Ur ¼ 1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ b2
r

q

(8)

1.3. Data Selection

All 304 reactions (in dichloromethane) of the 2001 and 2012
studies were considered.[24,25] This pool (Figures 2 and 3, Table 1)
encompasses 33 benzhydrylium ions (electrophiles) and 45 π-
nucleophiles, and covers a wide range of log kexp values (� 3.6
to þ9:2). The two anchor species are E15 (E ¼ 0:00) and N7 (
sN ¼ 1:00);[25] their parameters E and sN, respectively, were kept
fixed throughout. We excluded those reactions from the

Figure 1. Flowchart illustrating our approach to optimizing reactivity param-
eters. Version labels (in blue rhomboid boxes) represent a hierarchy of
distinct parametrizations.

Figure 2. The 2001/12 reference set of electrophiles (benzhydrylium ions).
Substituents Y and Z for all electrophiles collectively addressed as Ex (x ¼5–
11, 15–33) are specified in Table 1. The 2022 reference set comprises the
same systems except for species E33.

Table 1. Specification of substituents for benzhydrylium ions of the
reference set (Figure 2).

Y Z Y Z

E5 4-(N-pyrrolidino) Y E21 4-Me H
E6 4-N(Me)2 Y E22 4-F Y
E7 4-N(Me)(Ph) Y E23 4-F H
E8 4-(N-morpholino) Y E24 3-F, 4-Me Y
E9 4-N(Ph)2 Y E25 H Y
E10 4-N(Me)(CH2CF3) Y E26 4-Cl Y
E11 4-N(Ph)(CH2CF3) Y E27 3-F H
E15 4-MeO Y E28 4-(CF3) H
E16 4-MeO 4-PhO E29 3,5-F2 H
E17 4-MeO 4-Me E30 3-F Y
E18 4-MeO H E31 3,5-F2 3-F
E19 4-PhO H E32 4-(CF3) Y
E20 4-Me Y E33 3,5-F2 Y
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optimization procedure (30 in total) for which log kexp > 8 as
the MPE (Eq. 1) loses its validity in that regime (diffusion limit).
We also excluded those reactions from the optimization
procedure (47 in total) that were not measured according to
the standard protocol: measurement at 20 °C plus least-squares
fit of absorbance data to a single exponential. While we do not
doubt the quality of these 47 data points, we still neglect them
in this study as we attempt to remove potential sources of bias
to draw conclusions from our UQ analysis that are as
unambiguous as possible.

Since we do not know the true values of the experimental
rate constants, we rely on an overdetermined system (more
equations than unknowns). Therefore, we introduced and
applied the 2E3N rule: First, every non-anchor electrophile
(single free parameter, E) needs to participate in at least two
observed reactions. Second, every non-anchor nucleophile (two
free parameters, sN and N) needs to participate in at least three
observed reactions. Third, the two anchor species (E15: no free
parameters; N7: single free parameter, N) need to participate in
at least one (E15) or two (N7) observed reactions. In addition to
the 2E3N rule, we required a fully connected network of

reactions such that one can traverse from any node (species) to
every other node through the edges that represent experimen-
tal reaction data (cf. Figure S1). In the 2012 study,[25] the
reactivity parameters of several known[24] non-anchor species
(N1–N3, E1–E13, E16–E20) were kept fixed. As the 2E3N rule
does not apply to non-anchor species with fixed parameters, all
systematic errors they embrace will propagate through the
reaction network. Reliable UQ, however, requires the elimina-
tion of all recognizable sources of systematic error.[10] Therefore,
we relaxed all fixed reactivity parameters of non-anchor species,
which increased the number of species violating the 2E3N rule.

Applying parameter relaxation and the exclusion criteria
mentioned above (log kexp > 8, non-standard protocol, violation
of 2E3N rule, isolated subnetworks) left us with 212 valid
reactions shared among 32 electrophiles and 36 nucleophiles
(Figure S1). This set of reactions represents 102 free reactivity
parameters, which were optimized as per Figure 1 (Section 2.2).
For 30 of the 212 valid reactions, we extracted detailed
experimental data from the supplementary material of the
2001/12 studies to quantify measurement uncertainty (Sec-
tion 2.3). For each reaction, there exists a series of observed rate
constants, kobs (ordinate), measured with respect to different
excess nucleophile concentrations, N½ � (abscissa). The slope of a
linear regression model, f kð½N�Þ, represents the bimolecular rate
constant k2,

kobs � f kð½N�Þ ¼ k2 N½ � þ constant (9)

Here, we applied Bayesian linear regression[31] as implemented
in Scikit-learn 0.23.1[32] to obtain uncertainty estimates of the
regression coefficients (Uncertainty estimates of this kind can
also be obtained through ordinary least-squares regression[33]).
The uncertainty associated with the slope (k2) represents the
experimental standard deviation of the mean,[10] which is the
accepted definition of measurement uncertainty. See Table S2
for experimentally derived values of k2 and associated uncer-
tainty estimates.

2. Results and Discussion

The structure of this section is reflected by the following
roadmap:
2.1. Reproduction of the 2012 results.[25]

2.2. Application of the data selection criteria introduced in
Section 2.3 and re-optimization (uniform weighting),
yielding a new set of reactivity parameters referred to as
version 1.1.

2.3. Quantification and assessment of measurement uncer-
tainty.

2.4. Re-optimization of reactivity parameters (version 1.2)
based on non-uniform weights determined through dis-
crepancy weighting.

2.5. Estimation of empirical parameter distributions via discrep-
ancy-weighted bootstrapping, building the newest set of
reactivity parameters (version 2.0).

Figure 3. The 2001/12 reference set of nucleophiles (p-systems). The 2022
reference set comprises the same systems except for species N6, N19, N33,
N36, N37, N39, N41, N44, and N45.
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2.6. Quantification and assessment of prediction uncertainty in
log kMPE.

2.1. Reproduction of the 2012 Parametrization

To validate our optimization procedure, we attempted to
reproduce the results of the 2012 parametrization study.[25] Both
the model error ɛ (Eq. 4) and model dispersion σ (Eq. 6) equal
0.13 and are 0.8% smaller than the model error determined in
2012 (see also Table S1 for summary statistics). We find that the
absolute difference of 0.17 in the nucleophilicity parameter (N)
for N5 constitutes, by far, the largest deviation. When excluding
this nucleophile from the optimization procedure, we still
obtain a model error/dispersion of 0.13, but a decreased model
error difference of 0.3% (with the 2022 error being smaller). The
largest absolute difference in reactivity parameters that remains
equals 0.02. This difference cannot be explained by the
truncation of reactivity parameter values (after the second
decimal) reported in the original article,[25] which we used for
this reproduction test. It is possible that the removal of N5
causes this remaining difference since all reactivity parameters
are coupled to each other through the objective function
(Eq. 2).

The remaining deviation or a fraction thereof could possibly
also be traced back to differences in the optimization
algorithms. Mayr and co-workers used proprietary software and,
hence, no detailed algorithmic information on the nonlinear
optimizer is available. We can, however, estimate the magni-
tude of numerical noise that emerges from the customized
settings of the basin-hopping optimizer. In Section S1 of the
Supporting Information, we show results that support the
hypothesis that numerical errors are not the origin of the
remaining difference.

We conclude that we can approximately, but not exactly,
reproduce the 2012 results, which we cannot fully resolve. In
particular, the disagreement caused by N5 requires further
investigation. Currently, we have no other explanation than a
technical problem related to the optimizer employed in the
2012 study, or a typo that was either reported in the 2012
paper or applied in the 2012 optimization procedure.

2.2. Revised Reactivity Parameters, Version 1.1: The Effect of
Data Cleaning

We defined several data selection criteria (cf. Section 1.3), which
led to a decrease of the number of reference electrophiles and
reference nucleophiles for the sake of consistency. Furthermore,
the previously fixed parameters of some non-anchor species[25]

were relaxed. These changes affect the reactivity parameters of
the reference species, which play a crucial role as they
constitute the basis of determining reactivity parameters for
any non-reference (i. e., new) species. Given that many
publications refer to the original reference parameters of the
combined 2001/12 study, changing them can be considered a
critical issue. See Section S2 of the Supporting Information for a

detailed analysis on how each criterion affects the optimization
outcome.

In Table 2, we report the reactivity parameters of the 2022
reference set, where version 1.0 refers to the original parame-
ters by Mayr and co-workers, and version 1.1 refers to the
parameters of case 4. The sensitivity parameter sN generally
decreases, but increases especially for nucleophiles that already
exhibited above-average sensitivity values. This behavior is
observed, e.g., for N14–N16, N20, and N21, the five least
reactive nucleophiles of the reference set when sorting by sNN.
The sign of all nucleophilicity parameters N is preserved but
their magnitudes significantly increase in almost all cases. This
increase is compensated by the increase (decrease) in sN for
nucleophiles with positive (negative) values of N. The large
change in the nucleophilicity parameter N of N5 (causing a
change of more than one order of magnitude in k2) appears
coherent with the findings of the previous subsection. On
average, the nucleophilicity parameter N changes by as much
as 0.72 units and mostly toward larger values, which is
compensated by changes in the electrophilicity parameter E
toward consistently smaller values, with an average change of
0.51 units. The model error with respect to the new 2022
reference set decreases by 19% (from 0.11 to 0.09) when
employing reactivity parameters of version 1.1 compared to
version 1.0.

2.3. Quantification and Assessment of Measurement
Uncertainty

Explicit consideration of (physical) measurement uncertainty in
optimization procedures is often neglected in scientific studies.
However, if its values are widely distributed and its magnitude
becomes a dominant contribution to the model dispersion σ
(Eq. 6), it can significantly alter the optimal values of the
parameters under consideration. (Model dispersion and model
error are interchangeable terms in this case as the model bias
equals zero.) To estimate the importance of explicitly consider-
ing measurement uncertainty, we selected 30 of the 212 valid
reactions (cf. Figure S1 and Table S2) that represent a diverse
set of species and cover a wide range of log kexp values (� 2.5 to
þ7:8). We find a positive dependence of the measurement
uncertainty, u, on the value of log kexp (Figure 4). Laser flash
photolysis experiments,[25] which were carried out to determine
k2 of faster reactions (log kexp > ca: 6), appear to introduce
larger measurement uncertainty than conventional and
stopped-flow UV/Vis spectrophotometry.[24,25] For the residuals,
however, we find no such trend, indicating homogeneous
quality of log kexp over the full relevance domain (see also
Figure S2).

We define the average measurement uncertainty (95% con-
fidence) as

�u:95 ¼ 1:96 � �u ¼ 1:96
ffiffiffiffiffiffiffiffiffi
hu2i

p
(10)
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hu2i ¼
1
30

X30

r¼1

u2
r (11)

We obtain �u:95 ¼ 2:78� 10� 3, which explains only 1.6% of
the model dispersion, s:95 ¼ 1:96 � s ¼ 1:70� 10� 1. A direct
comparison of the model residuals (Eq. 3) with individual
measurement uncertainties (95% confidence) shows that the
former are constantly larger than the latter, from a factor of
2.78 up to several thousands (Figure 4). Assuming a factor of
2.78 for all residuals relative to the associated measurement
uncertainties, one would obtain
�u:95=s:95 ¼ ð1:96 � 2:78Þ

� 1 ¼ 18%. This hypothetically high per-
centage would correspond to 1:96 � 2:78 ¼ 5:45 standard
deviations of the measurement uncertainty. Given that 1.96
standard deviations already correspond to 95% of the area
under a normal distribution, a factor of 5.45 effectively
corresponds to 100% of that area. We conclude that we can

safely neglect measurement uncertainty in the context of
reactivity scales.

2.4. Revised Reactivity Parameters 1.2: The Effect of
Discrepancy Weighting

An insignificant contribution of measurement uncertainty to
the model error is not a sufficient condition to neglect non-
uniform weights (cf. Eq. 2) in the optimization procedure.
Consider the case where the species-specific model dispersion
(Eq. 19, see Appendix A) of species S is significantly larger than
that of the other species. In such a scenario, species S may
deteriorate the quality of the overall optimization outcome.
One can resolve this situation and process data of potentially
heterogeneous quality by applying discrepancy weighting. The
discrepancy of a model is a measure of its inability to reproduce
the reference data within their uncertainty range (here,

Table 2. Updated reactivity parameters (2.0) for reference nucleophiles and reference electrophiles. Each value represents the first moment (mean) of the
associated empirical parameter distribution obtained through discrepancy-weighted bootstrapping. We also report the original values (1.0),[24,25] those
obtained by relaxing all fixed parameters corresponding to non-anchor species (1.1), and those obtained by relaxation plus discrepancy weighting (1.2). The
sN value (all versions) of the anchor nucleophile N7 is printed in italics as it was kept fixed during optimization. The anchor electrophile E15 is not shown as
its electrophilicity parameter E=0.00 was kept fixed during optimization. Nucleophiles and electrophiles that have been sorted out according to the criteria
outlined in Section 1.3 (i.e., N6, N19, N33, N36, N37, N39, N41, N44, N45, E33) are also not shown. RMSE(1.0) and RMSE(2.0) refer to the root-mean-square error
with respect to versions 1.0 and 2.0, respectively. See Table S1 for the corresponding model errors and related statistics.

sð1:0ÞN sð1:1ÞN sð1:2ÞN sð2:0ÞN Nð1:0Þ Nð1:1Þ Nð1:2Þ Nð2:0Þ Eð1:0Þ Eð1:1Þ Eð1:2Þ Eð2:0Þ

N1 0.98 0.84 0.87 0.87 9.00 10.13 9.84 9.84 E1 � 10.04 � 11.23 � 10.87 � 10.87
N2 0.93 0.84 0.86 0.86 6.57 7.33 7.13 7.12 E2 � 9.45 � 10.59 � 10.26 � 10.25
N3 0.96 0.86 0.89 0.89 4.41 4.92 4.78 4.77 E3 � 8.76 � 9.78 � 9.51 � 9.50
N4 0.91 0.86 0.87 0.87 3.76 4.16 4.05 4.05 E4 � 8.22 � 9.18 � 8.92 � 8.92
N5 1.17 0.98 0.95 0.95 1.18 2.50 2.63 2.64 E5 � 7.69 � 8.60 � 8.39 � 8.38
N7 1.00 1.00 1.00 1.00 1.68 1.78 1.70 1.70 E6 � 7.02 � 7.82 � 7.60 � 7.60
N8 1.06 1.07 1.05 1.05 0.84 0.87 0.92 0.91 E7 � 5.89 � 6.58 � 6.38 � 6.38
N9 1.04 1.02 1.01 1.01 1.16 1.40 1.39 1.38 E8 � 5.53 � 6.17 � 6.00 � 5.99
N10 1.07 1.05 1.04 1.04 0.79 1.02 1.01 1.01 E9 � 4.72 � 5.26 � 5.14 � 5.13
N11 1.00 0.91 0.98 0.98 0.65 1.47 0.90 0.93 E10 � 3.85 � 4.30 � 4.19 � 4.18
N12 1.07 1.07 1.09 1.08 0.06 0.20 0.07 0.15 E11 � 3.14 � 3.49 � 3.42 � 3.41
N13 1.09 1.09 1.10 1.10 � 0.25 � 0.10 � 0.21 � 0.21 E12 � 2.64 � 2.97 � 2.91 � 2.91
N14 1.06 1.25 1.24 1.24 � 0.57 � 1.31 � 1.16 � 1.14 E13 � 1.36 � 1.50 � 1.37 � 1.37
N15 1.97 2.13 2.10 2.08 � 3.65 � 3.72 � 3.72 � 3.73 E14 � 0.81 � 0.87 � 0.87 � 0.87
N16 1.41 1.54 1.51 1.52 � 2.77 � 2.87 � 2.76 � 2.77 E16 0.61 0.55 0.67 0.68
N17 1.29 1.15 1.18 1.18 1.33 1.48 1.43 1.43 E17 1.48 1.41 1.45 1.45
N18 0.99 0.88 0.90 0.92 1.35 1.50 1.47 1.43 E18 2.11 1.93 1.98 1.98
N20 2.08 2.28 2.04 2.04 � 3.57 � 3.66 � 3.54 � 3.54 E19 2.90 2.81 2.81 2.80
N21 1.77 1.88 1.52 1.57 � 4.36 � 4.36 � 4.24 � 4.24 E20 3.63 3.73 3.59 3.59
N22 0.81 0.72 0.75 0.75 8.23 9.21 8.93 8.92 E21 4.43 4.42 4.49 4.50
N23 0.84 0.75 0.78 0.78 8.57 9.58 9.30 9.29 E22 5.01 4.96 4.95 4.95
N24 0.86 0.77 0.80 0.80 10.61 11.87 11.47 11.47 E23 5.20 5.17 5.28 5.29
N25 0.83 0.74 0.77 0.77 11.40 12.76 12.37 12.35 E24 5.24 5.18 5.26 5.25
N26 0.70 0.63 0.65 0.65 12.56 14.07 13.59 13.62 E25 5.47 5.40 5.52 5.52
N27 0.81 0.72 0.76 0.76 13.36 14.98 14.42 14.42 E26 5.48 5.41 5.47 5.47
N28 0.89 0.79 0.82 0.82 7.48 8.36 8.14 8.14 E27 6.23 6.13 6.19 6.19
N29 1.00 0.89 0.91 0.91 5.21 5.82 5.66 5.65 E28 6.70 6.61 6.65 6.64
N30 0.90 0.82 0.85 0.85 3.09 3.47 3.40 3.39 E29 6.74 6.64 6.69 6.68
N31 0.91 0.82 0.86 0.86 5.41 6.04 5.88 5.87 E30 6.87 6.75 6.79 6.78
N32 0.89 0.82 0.85 0.84 5.46 6.07 5.91 5.94 E31 7.52 7.31 7.23 7.23
N34 0.96 0.85 0.89 0.89 6.22 6.93 6.73 6.73 E32 7.96 7.60 7.52 7.52
N35 1.11 0.99 0.99 1.00 3.61 4.05 3.95 3.92
N38 1.17 1.11 1.18 1.18 0.65 0.81 0.69 0.69
N40 1.17 1.38 1.45 1.46 0.90 0.66 0.49 0.49
N42 0.98 1.09 1.06 1.07 1.11 0.98 1.00 0.98
N43 1.06 1.11 1.09 1.08 1.70 1.63 1.60 1.63

RMSE(1.0) 0.11 0.10 0.10 0.72 0.54 0.54 RMSE(1.0) 0.51 0.38 0.38
RMSE(2.0) 0.10 0.07 0.01 0.54 0.22 0.02 RMSE(2.0) 0.38 0.15 0.01
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originating from physical measurements and data post-
processing).[9,13] The quantification of model discrepancy is an
iterative procedure because the weights of the objective
function and the species-specific model dispersions are func-
tions of each other. Consequently, the former need to be
refined until self-consistency is reached, i. e., until weights and
dispersions no longer change. Note that the weights in Eq. 2
refer to reactions and not to species. Hence, for a given
reaction, the species-specific model dispersions of the partic-
ipating nucleophile and electrophile need to be combined to
yield a reaction-specific weight. The full procedure is outlined in
Appendix A. See Table S3 for species-specific weights. Reaction-
specific weights can be accessed through the project-related
GitLab repository.[6]

For the weighting procedure to be sound from a statistical
perspective, it is important that, after reaching self-consistency,
the residuals of species S, drf ðlog kÞgS, are zero-centered
(mS ’ 0, cf. Eq. 19) and randomly distributed, i. e., they show no
trend with respect to the absolute value of log k. We find that
the latter condition is well met as evidenced by the close-to-
one correlation coefficient of log kexp versus log kMPE for each
species of the reference set. The former condition is also
fulfilled as confirmed by s2

S=e2
S ’ 1 (cf. Eq. 19) in most cases,

although for a small number of cases, the contribution of s2
S to

the overall species error e2
S can be as small as 75%. See Table S3

for details. We conclude that discrepancy weighting can be
reliably applied in the optimization of reactivity parameters.

Figure 5 shows the weights of all 212 valid reactions as a
function of log kexp. They are homogeneously distributed
around the red baseline, which represents uniform weights, and
show no trend with respect to log kexp. In the previous
subsection, we found that measurement uncertainty is overall
negligible but increases with log kexp. If measurement uncer-

tainty would, however, contribute significantly to the model
error, we would expect a negative trend of the weights with
respect to the value of log k. The actual missing trend further
supports our conclusion that measurement uncertainty contrib-
utes negligibly to the model error.

The revised version 1.2 of reactivity parameters (Table 2)
mitigates the upward and downward shifts of N and E to some
degree, respectively, but clearly has higher resemblance to
version 1.1 than to version 1.0. Consequently, the data selection
criteria applied in this study affect the reactivity parameters of
the reference set significantly more than discrepancy weighting
does.

2.5. Revised Reactivity Parameters 2.0: The Effect of
Bootstrapping

Due to the finite size of the reference set, which additionally
covers only a fraction of the reaction matrix it spans (cf.
Figure S1), the optimal values of the reactivity parameters can
be expected to carry uncertainty. In order to estimate
parameter uncertainty, we applied Bayesian bootstrapping (cf.
Appendix B). With this technique, we generated 10,000
synthetic reference sets referred to as bootstrap samples. For
each sample, we carried out an individual optimization (using
the self-consistent weights of parametrization 1.2), leading to a
unique set of optimal reactivity parameters. The set of 10,000
values per reactivity parameter is referred to as empirical
distribution.

For the first time, we can report reactivity parameters that
are equipped with quantitative uncertainty measures. We
define the first moment (mean) of the empirical parameter
distributions as version 2.0 reactivity parameters (Table 2). This
most recent parametrization is almost identical to version 1.2,
which is indicative of a well-balanced, representative set of
reaction data. Uncertainty in sN, N, and E (95% confidence) is

Figure 4. Absolute values of residuals (black dots), dj ðlog kÞj, versus log kexp

are shown for 30 selected reactions of the 2022 reference set. Version 1.1
parameters were used to calculate log kMPE. Red error bars represent
measurement uncertainty (95% confidence), which show a positive trend
with respect to log kexp (see also Figure S2 for a scatter plot of the
measurement uncertainty versus log kexp). The residuals are consistently
larger than their associated 95% confidence intervals (no error bar intercepts
with the abscissa), which indicates that measurement uncertainty contrib-
utes negligibly to the model error.

Figure 5. Reaction-specific and non-uniform weights (black dots), fwrg
R
r¼1,

obtained from discrepancy weighting versus log kexp are shown for all 212
valid reactions of the 2022 reference set. The red baseline represents the
case of uniform weighting, i. e., wr ¼ R� 1 for all r ¼ 1; :::; R. The non-uniform
weights show no trend with respect to log kexp.
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located in ranges of 0.02–0.55 (root-mean-square value, RMSV=

0.15), 0.04–1.10 (RMSV=0.44), and 0.04–0.55 (RMSV=0.26),
respectively. The large uncertainty of 1.10 in the nucleophilicity
parameter of N5 is another indication of bias that is coherent
with the above-mentioned findings. Most of the empirical
parameter distributions are symmetric and can be well approxi-
mated by a normal distribution, with a tendency of the
empirical distribution to be slightly leptokurtic, i. e., it is
narrower than the corresponding normal distribution. Parame-
ter uncertainty estimates and histograms of empirical distribu-
tions can be accessed through the project-related GitLab
repository.[6] A representative example is provided in Figure 6.

Empirical parameter distributions can be exploited in
several ways to underpin, improve, and find limitations to the
reactivity approach by Mayr. First, the uncertainty in reactivity
parameters of non-reference species can be estimated in
analogy to Mayr’s approach. For a non-reference nucleophile/
electrophile, measurements are performed on a series of
reactions including reference electrophiles/nucleophiles. Least-
squares optimization in accord with Eq. 2 yields the reactivity
parameter(s) for the non-reference species. Since 10,000 values
are available for sN, N, and E of the reference species, we can
repeat the optimization procedure 10,000 times (which is
computationally efficient), resulting in empirical distributions of

reactivity parameters also for non-reference species. Second,
combining empirical distributions of sN, N, and E yields an
empirical distribution of log kMPE from which its uncertainty can
be derived (see Section 2.6 and Figure 6).

We propose a third way to exploiting empirical parameter
distributions. A series of theoretical models predicting Mayr-
type reactivity parameters were proposed in the past.[34-43] The
predictive power of these models was assessed with respect to
some summary statistic (e.g., mean absolute error or root-
mean-square error). However, to put the resulting statistics into
context, it is necessary to know the uncertainty in the under-
lying reference values. Ours is the first study providing such
uncertainty estimates on a rigorous basis, which allows for
assessing previous theoretical work. For instance, regression
models were previously employed to predict nucleophilicity N
(Orlandi et al.,[42] Table 3 of this work) and electrophilicity E
(Hoffmann et al.,[40] Table 4 of this work) on the basis of
quantum-mechanical and empirical descriptors. Version 1.0
reactivity parameters (reference species) and those derived
therefrom (non-reference species) served as reference values in
both studies. Regarding the reference species, we find that only
21–45% of the predicted reactivity parameters (both N and E)
are located inside their 95% confidence intervals, indicating

Figure 6. Empirical distributions for nucleophile N28 (sN and N), electrophile E11 (E), and the reaction N28+E11 (log kMPE) obtained from Bayesian
bootstrapping. Mean values (green solid line) and symmetric 95% confidence intervals (green dashed line) of the distributions are reported. Corresponding
normal distributions are shown as black dashed curves and serve as reference frames. The mean values of the sN, N, and E distributions (msN , mN , and mE)
correspond to the version 2.0 reactivity parameters reported in Table 2. The blue dashed line in the bottom-right plot represents the value of log kMPE

obtained via msN ðmN þ mEÞ. It is identical, within two decimals, to the mean value of the asymmetric log kMPE distribution.
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that the theoretical models cannot reproduce the reference
values within their uncertainty ranges.

It should be noted that Tables 3 and 4 draw an overly
pessimistic picture. On the one hand, both studies included a
much larger pool of species than those reported here,
comprising several non-reference species. It is well known that
the accuracy of reactivity parameters corresponding to non-
reference species is significantly smaller than that observed for
reference species.[3] This heterogeneity in accuracy obviously
has an effect on theoretical predictions, which we did not take
into account in our analysis due to the lack of empirical
parameter distributions for non-reference species. On the other
hand, our comparison is based on uncertainties corresponding
to version 2.0 reactivity parameters, even though the regression
models by Orlandi et al. and Hoffmann et al. were trained with
respect to the currently accepted set of reactivity parameters
(version 1.0).[4,5] We would like to raise one issue, though.
Hoffmann et al.[40] provided uncertainty estimates for reactivity
parameters that are a by-product of their regression framework
(Gaussian processes[44]). Only 45–62% of their predictions (with
respect to reference species only) fall within their 95%
confidence intervals, indicating that their model underestimates

parameter uncertainty. We observed this behavior of Gaussian
processes in another context[21] and concluded to select kernel
functions not only with respect to predictive power; they
should also yield statistically reliable results, i. e., about 95% of
the predictions should be located inside their 95% confidence
intervals.

2.6. Quantification and Assessment of Uncertainty in log kMPE

Due to the empirical nature of the reactivity parameter
distributions, we can propagate uncertainty without assuming
some parametrized distribution (e.g., a normal distribution
parametrized by mean and variance). That is, for each set of
reactivity parameters we obtain one set of log kMPE values.
Histograms and statistics of the corresponding empirical
distributions of log kMPE can be accessed through the project-
related GitLab repository. All distributions are unimodal, and
many of them are clearly asymmetric, see Figure 6 for a
representative example. A consequence of this skewness is that
log kMPE calculated from version 2.0 reactivity parameters may

Table 3. Predictions of nucleophilicity, N(O21), by Orlandi et al.[42] for nucleophiles of the reference set. Differences with respect to parametrizations 1.0 (Mayr
and co-workers[24,25]) and 2.0 (this work) are provided, DNð1:0=2:0Þ ¼ Nð1:0=2:0Þ � N(O21). Parameter uncertainty (95% confidence, assuming normally distributed
variables) estimated by us, a:95 N 2:0ð Þ

� �
, is reported. The root-mean-square value (RMSV) as well as the percentage of differences, DNð1:0=2:0Þ , located inside the

95% confidence interval (PDCI95) are provided as summary statistics.

NðO21Þ DNð1:0Þ DNð2:0Þ a:95ðN
ð2:0ÞÞ NðO21Þ DNð1:0Þ DNð2:0Þ a:95ðN

ð2:0ÞÞ

N1 10.62 � 1.62 � 0.78 0.51 N22 8.91 � 0.68 0.01 0.45
N2 7.93 � 1.36 � 0.81 0.37 N25 11.02 0.38 1.33 0.61
N5 � 0.21 1.39 2.85 1.08 N27 12.56 0.80 1.86 0.70
N10 0.77 0.02 0.24 0.09 N34 5.29 0.93 1.44 0.35
N12 0.02 0.04 0.13 0.52 N35 4.37 � 0.76 � 0.45 0.48
N13 2.58 � 2.83 � 2.79 0.07 N38 2.76 � 2.11 � 2.07 0.08
N15 � 2.09 � 1.56 � 1.64 0.37 N42 1.38 � 0.27 � 0.40 0.12
N17 2.18 � 0.85 � 0.75 0.13 N43 1.60 0.10 0.03 0.52
N18 1.66 � 0.31 � 0.23 0.32 RMSV

PDCI95(1.0)
1.15 1.31 0.46

32%N20 � 3.34 � 0.23 � 0.20 0.20
N21 � 4.07 � 0.29 � 0.16 0.34 PDCI95(2.0) 32%

Table 4. Predictions of electrophilicity, E(H20), by Hoffmann et al.[40] for electrophiles of the reference set. Differences with respect to parametrizations 1.0
(Mayr and co-workers[24,25]) and 2.0 (this work) are provided, DEð1:0=2:0Þ ¼ Eð1:0=2:0Þ� E(H20). Parameter uncertainty (95% confidence, assuming normally
distributed variables) estimated by Hoffmann et al., α.95(E

(H20)), and by us, α.95(E
(2.0)), are reported. The root-mean-square value (RMSV) as well as the

percentage of differences, ΔE(1.0/2.0), located inside the 95% confidence interval (PDCI95) are provided as summary statistics.

EðH20Þ DEð1:0Þ DEð2:0Þ a:95ðE
ðH20ÞÞ a:95ðE

ð2:0ÞÞ EðH20Þ DEð1:0Þ DEð2:0Þ a:95ðE
ðH20ÞÞ a:95ðE

ð2:0ÞÞ

E1 � 9.71 � 0.33 � 1.16 0.24 0.53 E19 3.00 � 0.10 � 0.20 0.33 0.09
E2 � 9.78 0.33 � 0.47 0.25 0.51 E20 3.22 0.41 0.37 0.24 0.14
E3 � 8.57 � 0.19 � 0.93 0.35 0.47 E21 4.34 0.09 0.16 0.27 0.14
E4 � 8.44 0.22 � 0.48 0.24 0.44 E23 6.07 � 0.87 � 0.78 0.20 0.11
E5 � 8.04 0.35 � 0.34 0.31 0.42 E24 5.44 � 0.20 � 0.19 0.33 0.07
E6 � 7.02 0.00 � 0.58 0.39 0.39 E25 5.15 0.32 0.37 0.20 0.09
E7 � 6.16 0.27 � 0.22 0.33 0.34 E26 5.15 0.33 0.32 0.41 0.08
E8 � 6.55 1.02 0.56 0.43 0.32 E27 6.10 0.13 0.09 0.24 0.11
E9 � 3.80 � 0.92 � 1.33 0.55 0.29 E28 6.70 0.00 � 0.06 0.49 0.12
E10 � 3.62 � 0.23 � 0.56 0.43 0.25 E29 6.82 � 0.08 � 0.14 0.35 0.12
E11 � 3.06 � 0.08 � 0.35 0.33 0.23 E30 6.69 0.18 0.09 0.25 0.15
E13 � 1.17 � 0.19 � 0.20 0.47 0.12 E31 6.73 0.79 0.50 0.29 0.15
E14 � 0.70 � 0.11 � 0.17 0.31 0.16 E32 6.53 1.43 0.99 0.35 0.22
E16 0.16 0.45 0.52 0.33 0.07 RMSV 0.48 0.54 0.35 0.26
E17 1.25 0.23 0.20 0.35 0.04 PDCI95(1.0) 62% 45%
E18 2.30 � 0.19 � 0.32 0.41 0.05 PDCI95(2.0) 45% 21%
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not well represent the mean of its empirical distribution, even
though we observe such a behavior only for a handful of cases.

From the ensemble of log kMPE values for a given reaction
we can estimate the contribution of parameter uncertainty to
the overall prediction uncertainty (Eq. 8). A heat map compris-
ing uncertainty estimates for log kMPE (95% confidence) of the
full reaction matrix is shown in Figure 7. For many of the
observed reactions (represented by crosses), the contribution of
parameter uncertainty to the overall prediction uncertainty is
effectively zero, and model dispersion remains the sole
contribution, i. e., U:95 ’ s:95 ¼ 0:21. For the set of observed
reactions, we find prediction uncertainties of 0.21–0.92 (RMSV=

0.25). Taking all combinations of reference nucleophiles and
reference electrophiles into account that lie within a range of
� 5 < log kMPE < 8, we find a maximum prediction uncertainty
of 2.14 (RMSV=0.50). Consequently, the average accuracy of

kMPE that we can expect for any valid combination of reference
nucleophile and reference electrophile is within a factor of 10.
In most cases, a simple uncertainty pattern can be observed:
the larger the distance to an observed reaction in terms of
electrophilicity E, the larger the prediction uncertainty (no such
trend can be observed with respect to nucleophilicity N or
sensitivity-weighted nucleophilicity sNN). This gradual change in
uncertainty indicates that information is propagated from
observed reactions to similar yet unobserved reactions. We can
derive a simple rule for experimental design from this finding:

For a given nucleophile, measure log kexp for a series of
electrophiles that are as equidistant as possible with respect to
electrophilicity E.

To assess the quality of our uncertainty estimates, we
counted how often the residual of a reaction is located within

Figure 7. Uncertainty (95% confidence) in log kMPE, sNN, N, and E. Crosses represent observed reactions. Colored fields represent reactions within a range of
� 5 < log kMPE < 8. White fields in the main matrix indicate reactions outside that range. White fields outside the main matrix represent anchor species whose
reactivity parameters (either sN or E) are fixed.
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its 95% confidence interval (hypothesis testing). The result is
visualized in Figure 8A. Only a single residual (or less than 1%
of all 212 residuals) is located outside its 95% confidence
interval (ideal value: 5%). Hence, our UQ model is rather
conservative as it tends to overestimate prediction uncertainty.
Overestimation is particularly strong when the contribution of
parameter uncertainty to the overall prediction uncertainty
tends toward zero. It appears that the model dispersion – a
global/constant contribution to the overall prediction uncer-
tainty – is too rough an approximation of the local/reaction-
specific model dispersion. Noteworthy, we found a trend
between the squared residual, d½ ðlog kÞ�2, and the squared
parameter-related uncertainty in log kMPE, β

2 (cf. Eq. 7). This
trend is not linear but describes a monotonically increasing
function. We found that a quadratic ordinary least-squares
regression model, g b2ð Þ, appropriately quantifies this trend,

d½ ðlog kÞ�2 � gðb2Þ ¼ aþ b1b
2 þ b2b

4 (12)

Here, a, b1, and b2 are the coefficients of the model. We can
generalize Eq. 8 to resolve local model dispersion (LMD),

ULMD
:95;r ¼ 1:96 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcrsÞ
2 þ b2

r

q

(13)

Eqs. 8 and 13 are identical if cr ¼ 1. The weight cr is not to
be confused with the weight wr of the objective function
defined in Eq. 2. The quadratic regression model offers a way to
re-define the weights of Eq. 13 such that
PR

r¼1 c2r s2 ¼ s2 �
PR

r¼1 c2r ¼ s2 � R is a conservation law,

cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R �
gr b2

r

� �

PR
s¼1 gs b2

s

� �

s

(14)

Replacing the uniform weights with those obtained accord-
ing to Eq. 14, we obtain an expression of the prediction
uncertainty with an effectively local model dispersion. The
resulting hypothesis test is visualized in Figure 8B. The shape of
the updated prediction uncertainty band better reflects the
increasing scatter of the residuals (from left to right). Again, a
single residual is located outside its 95% confidence interval
after the update. The UQ model remains conservative, but
overall is a much better fit to the actual distribution of
residuals.

It should be noted that the hypothesis test is biased
somehow and possibly presents an overly optimistic picture as
the reactions included in this test were also used to optimize
reactivity parameters and quantify prediction uncertainty. As a
preliminary test, we split the 212 reference reactions into a
training set (Rtrain ¼166 reactions) and a validation set (Rval ¼46

Figure 8. Assessment of uncertainty estimates (95% confidence) for log kMPE. (A) Prediction uncertainty is estimated according to Eq. 8. A single residual (or
<1% of all residuals) is located outside its 95% confidence interval. (B) Prediction uncertainty is estimated according to Eq. 13. Again, a single residual is
located outside its 95% confidence interval. (C) Equivalent to (A), but 46 of the 212 reference reactions were excluded from the optimization workflow and
subsequent uncertainty quantification. Four (9%) of the 46 validation residuals are located outside their 95% confidence intervals. (D) Equivalent to (B), but
the same procedure as outlined in (C) was applied. Again, four of the 46 validation residuals are located outside their 95% confidence intervals.
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reactions). We selected the validation set reactions (cf. Fig-
ure S1) in such a way that the 2E3N rule was not violated for
any species of the 2022 reference set. The training set was
subjected to the optimization workflow and subsequent UQ. A
hypothesis test (Figures 8C and 8D) reveals that 9% of the
validation set residuals are located outside their 95% con-
fidence intervals. This finding may suggest that our UQ model is
too optimistic. Confidence intervals, however, are sample
statistics and as such functions of the underlying data set. To
estimate the uncertainty of the 95% confidence interval
corresponding to the validation set, we calculated the standard
error of a binomial distribution,[31] pð1 � pÞ=Rval ¼ 4% with
p ¼ 9%. Hence, we cannot reject the compatibility with a 95%
coverage, although the validation sample size appears to be
too small to draw a robust conclusion. The decreased training
sample size is also problematic: as the number of reactivity
parameters remains unchanged, uncertainty estimates are
expected be of lower quality than in the previous scenario
(Figures 8A and 8B). Eventually, we would like to point out that
the model dispersion can also be understood as a tunable
parameter through which a correct calibration of the prediction
uncertainty can be ensured. This approach is known as
parameter uncertainty inflation.[45]

3. Conclusions

We showed that the incorporation of uncertainty quantification
(UQ) into the reactivity scale method by Mayr[3] sheds new light
on the topic. As a by-product of the UQ-extended reactivity
approach, we obtained revised reactivity parameters for 68
reference species. Compared to the original parametrization by
Mayr and co-workers,[24,25] the revised parameters differ by as
much as one unit. It remains to be discussed how these
changes could be integrated into Mayr’s reactivity database.[4,5]

Since the reactivity parameters of all non-reference species
(about 1200 nucleophiles and 300 electrophiles) are derived
from the ones of the reference species, our revised set of
parameters would affect the entire database.

Our results suggest that the prediction uncertainty associ-
ated with log kMPE (95% confidence) amounts to 0.21–0.92 units
for the set of 212 observed reference reactions. For combina-
tions of reference nucleophiles and reference electrophiles that
have not yet been observed and lie within the relevant range of
� 5 < log kMPE < 8, we found a maximum prediction uncer-
tainty of 2.14 units. These numbers reflect the accuracy in kMPE

estimated previously.[3] To take into account potential non-
normality of the empirical log kMPE distributions computed by
us, we define the following “best practice”. For a rough
estimation of log k, which is still expected to be highly accurate
in most cases, we recommend to use the revised reactivity
parameters (version 2.0) reported in Table 2. For a critical
analysis of log k, we recommend to explicitly calculate the
empirical distribution of log kMPE by an interactive tool that can
be accessed through the project-related GitLab repository.[6] We
further encourage the community to assess future theoretical
predictions of reactivity parameters in the context of parameter

uncertainty (as discussed in this study, cf. Tables 3 and 4). Such
benchmarks ensure that theoreticians interpret their predictions
as critically as possible, but also enable experimentalists to
unambiguously evaluate theoretical work.

Uncertainty estimates for log kMPE also allowed us to
formulate testable statistical hypotheses, on the basis of which
we could assess their quality. The estimates appear to be
reliable, but the results are not yet conclusive due to the small
sample size. In future UQ-related work on reactivity scales, the
pool of both species and reactions needs to be increased to
draw more robust conclusions. We would also appreciate
support by the community in this context. For instance, there
are many unobserved combinations (� 5 < log kMPE < 8)
present in the reaction matrix of the reference set (Figures 7
and S1). Measurements of these combinations will further
increase the accuracy of reactivity parameters and uncertainty
estimates corresponding to reference electrophiles and refer-
ence nucleophiles, which are at the heart of Mayr’s reactivity
scale approach.

In the long run, we aim at deriving reactivity parameters
from first-principles calculations, especially for species not yet
listed in Mayr’s reactivity database. An achievement of this kind
would facilitate reactivity predictions to an unprecedented
extent due to the resource efficiency and the high automation
capacity of computations, thereby reducing experimental
expense and accelerating research on polar organic reactivity.
Despite their first-principles character, thermochemical calcula-
tions are based on approximations that require benchmarking,
i. e., an assessment with respect to reference values with well-
defined accuracy (here, experimental rate constants, log kexp).
We anticipate that the incorporation of UQ supports our
ambition as the reaction matrix spanned by the electrophiles
and the nucleophiles of Mayr’s reactivity database is rather
sparse (cf. Figures S1 and 7). The vacancies of the reaction
matrix (representing unobserved reactions) can be filled by
means of our UQ-based approach, allowing for benchmarking
under uncertainty. The diversity of benchmarkable reactions can
be increased remarkably in this way, which increases the
significance of conclusions drawn from theoretical studies and
is particularly important in the context of data-driven chemical
design.[46–48] Currently, we are benchmarking first-principles
models of reactivity against results of this study.

Appendix A: Discrepancy Weighting

We define the global discrepancy d as the square root of the
difference between the squared model error (Eq. 4) and the
average squared measurement uncertainty (Eq. 11),

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � hu2i

p
(15)

Note that ɛ2 is generally significantly larger than hu2i and,
hence, the square root of a positive number is taken. It is
required that the model has been corrected for bias (Eq. 5),
such that
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e2 ¼ m2 þ s2 � s2 (16)

In uniformly weighted least-squares optimization (cf. Eq. 2),
the model bias is zero by definition (provided it contains a
constant term). Assuming that measurement uncertainty is also
negligible (s2 � hu2i), as is shown in Section 2.3, we can write

d2 ¼ e2 � hu2i � s2 (17)

By design, this approximation also holds true when
determining discrepancies for individual species,
S 2 fN1 � � �N45; E1 � � � E33g, i. e.,

d2
S � s2

S (18)

Since electrophiles and nucleophiles can participate in as
few as two or three reactions, we take the statistical degrees of
freedom of each species explicitly into account,

sS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1S

X

r2I S

dr log kð Þ � mS½ �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1S

X

r2I S

dr log kð Þ½ �2
s

¼ eS(19)

nS ¼ RS � gS (20)

Here, νS constitutes the degrees of freedom of species S, RS

is its number of occurrences, γS represents its number of free
reactivity parameters, and I S is the index set of reactions in
which it participates. Hence, the smaller RS, the larger the effect
of γS on σS will become. The discrepancy d.95 of the rth reaction,
in which species SN;r and SE;r participate, can then be calculated
under the assumption of t-distributed, independent errors,

d:95;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2:95;r s2
SN;r þ s2

SE;r

� �r

(21)

The reaction-specific t-factor t.95,r corresponds to the folded
t-distribution for degrees of freedom νr that defines an interval
encompassing 95% of the distribution. The degrees of freedom
for the rth reaction, νr, can be estimated on the basis of the
Welch–Satterthwaite equation[49,50] (in particular, we refer the
reader to Eq. 17 of the latter reference),

nr ¼
cSN;r s

2
SN;r
þ cSE;r s

2
SE;r

� �2

c2SN;r s4
SN;r

nSN;r
þ

c2SE;r s4
SE;r

nSE;r

(22)

cS ¼ ðnS þ 1Þ� 1 (23)

The reaction-specific degree of freedom, νr, is at most as
large as the sum of the species-specific degrees of freedom, nSN;r

and nSE;r ,

nr � nSN;r þ nSE;r (24)

The inverse of the squared discrepancy, d� 2:95;r , constitutes the
weight of the rth reaction. We additionally normalize the
weights such that they sum up to one,

wr ¼
d� 2
:95;r

PR
s¼1 d� 2:95;s

(25)

In the unweighted case, normalization leads to wr ¼ R� 1 for
all possible values of r. Normalization does not affect the
position of the global minimum of the objective function, but
allows for comparability between different sets of weights. It
should be noted that discrepancy weighting is an iterative
procedure as reaction-specific weights and errors are functions
of each other. Hence, we need to update the weights until self-
consistency is reached.

Appendix B: Bayesian Bootstrapping

This technique[29] simulates drawing new samples from an
underlying but unknown population by assuming that the data
set at hand itself is the population. Consequently, only available
data is used to draw samples, each of which yields slightly
different parameters.

The following procedure describes sampling from a uniform
Dirichlet distribution.[31] Given R data points, R � 1 real numbers
between zero and one are sampled from a uniform distribution.
The numbers 0.0 and 1.0 are added to the tuple of R � 1
sampled numbers. The tuple is then sorted in ascending order,
yielding q0 ¼ 0:0 < q1 < ::: < qR� 1 < qR ¼ 1:0. We define
pr ¼ qr � qr� 1 as weight of the rth data point (i. e., pr ¼ wr),
which is a number between zero and one. Summing over all
weights yields

PR
r¼1 pr ¼ 1 and, therefore, each weight can be

considered the probability of drawing the corresponding data
point from the underlying population. Note that if both
discrepancy weighting and bootstrapping are applied, the
weight of the rth reaction reads

wr ¼
pr � d

� 2
:95;r

PR
s¼1 ps � d� 2:95;s

(26)

We repeat this random procedure B times, representing B
bootstrap samples, each characterized by an individual set
P bð Þ :¼ fp bð Þ

r g
R
r¼1. The original sample (the data set at hand) can

be characterized by the set P 0ð Þ with a uniform distribution of
weights, i. e., p 0ð Þ

r ¼ R� 1 for all possible values of r.
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