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There have been several recent attempts at using Artificial Intelligence systems to model aspects of consciousness
(Gamez, 2008; Reggia, 2013). Deep Neural Networks have been given additional functionality in the present
attempt, allowing them to emulate phenological aspects of consciousness by self-generating information repre-
senting multi-modal inputs as either sounds or images. We added these functions to determine whether knowl-

edge of the input's modality aids the networks' learning. In some cases, these representations caused the model to
be more accurate after training and for less training to be required for the model to reach its highest accuracy

scores.

1. Introduction

Discussions about the properties of consciousness have taken place
within multiple disciplines. Interested parties include philosophers (e.g.
Block and Dennett, 1993; Block, 1995; Chalmers, 1995), neuroscientists
(e.g. Crick and Koch, 1990; Hohwy and Frith, 2004), cognitive psy-
chologists (e.g. Dehaene, 2014), and computer scientists (e.g. Bengio,
2017; Reggia and Davis, 2020). The last group listed are mostly artificial
intelligence (AI) researchers interested in the related concept of artificial
consciousness (see Gamez, 2008; Reggia, 2013). However, attempting to
create a conscious Al is not the only way this group can contribute to the
discussion. By recreating properties of consciousness within AI models,
those researchers can test those properties' effects directly. This is the
approach that has been used in this article and has been used by others
previously (Arrabales et al., 2010b; Zaadnoordijk and Besold, 2018;
Schartner and Timmermann, 2020). This article aims to contribute to the
existing literature by introducing experiments using Deep Neural Net-
works (DNN) trained to classify multi-modal data. We found that it is
possible to extract simple representations of the modality being pro-
cessed by the DNN using information from the hidden layers within that
network. Following that, we used these simple representations to aid
other DNNs to classify the same multi-modal data. The purpose of these
experiments was to determine whether the addition of these represen-
tations improved network performance. In our view, the simple repre-
sentations of modality are analogous to phenomenology awareness of
that modality. Therefore, the experiment investigates whether there is
any utility in having some limited phenomenology.
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1.1. Background

The interdisciplinary nature of consciousness studies is a double-
edged sword. On the one hand, the field has engaged minds from
across the academic community. On the other hand, those minds disagree
on foundational concepts, such as what counts as consciousness. For
example, some believe that anything — be it biological, artificial, physical,
or virtual — that possesses specific architectural components could be
conscious (Aleksander and Dunmall, 2003; Aleksander & Morton, 2007,
2008; Arrabales et al., 2010a; Tononi and Koch, 2015). Others believe
that specific behaviours are required; if something possesses functions
equivalent to consciousness, it is conscious. Some researchers use this
functional definition when describing robots demonstrating behaviour
such as mirror self-recognition (Takeno et al, 2005) and other
self-awareness research (Chella et al., 2020). Defining consciousness
architecturally or functionally differs from the neuroscience approach of
focusing on biological consciousness by examining the functioning of
structures within the (typically human) brain (see Dehaene, 2014 for
review).

We approached consciousness from Al's perspective for our experi-
ments, focusing on functional properties rather than physiological
mechanisms. Specifically, we have focused on the knowledge represen-
tation functions of consciousness. In preliminary experiments, we have
referred to this representation as a limited form of phenomenal con-
sciousness (see Bensemann and Witbrock, 2020) because those data
provided information about the “senses” required to process the task.
However, without a consensus about how to scientifically study
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phenomenology (see Chan and Latham, 2019 for review), the success of
those arguments likely depends on the reader's point of view. For now,
we will continue with that point of view. Those opposed to that char-
acterisation can view this as an experiment using internal representations
of knowledge to improve an Al system's performance.

Our experiments were primarily motivated by the fact that one
electrochemical signal in the brain looks like every other. While it is
possible to determine what processes are occurring using signal aver-
aging (see Dehaene and Changeux, 2011), the signal itself is comprised of
electrochemical signals that are unreadable to those external to the brain.
The existence of subjective cognitive phenomena shows that the brain's
hardware must have some mechanism for decoding those signals. In the
present study, we were interested in examining an analogist principle in
artificial neural networks, where the signals are the values being prop-
agated throughout the network. It is generally difficult, if even possible,
to decode that signal within the hidden layers of a DNN by merely
examining the values. Due to this difficulty, the first part of our investi-
gation was to determine whether it was possible to partially decode the
signals passing through a basic DNN model learning a multi-modal task.
In this case, the decoder was a simple Hebbian learner (Hebb, 1949)
trained to predict input data's modality.

The second part of our investigation was to determine whether the
decoded information could be of any use to DNNs. Our decoding method
created a 1-bit representation of the file inputs modality, and we used the
decoded information as meta-data input for a hidden layer of a second
DNN. The second network was then trained on the original multi-modal
classification task to see if the additional information improved the
DNN's performance. We believe that representations of modality are
sufficient to represent a limited form of phenomenology because human
visual, auditory, tactile, olfactory, and other experiences represent the
type of input that the brain is receiving from the body. For example,
visual experiences represent electromagnetic waves, and auditory expe-
riences are representations of physical waves.

The ability to have experiences caused by the physical world is known
as phenomenal consciousness (P-Consciousness; Block, 1995), which is
related to yet separate from access consciousness (A-Consciousness;
Block, 1995). If a signal's representation is in a state of A-Consciousness,
it can be manipulated by the intelligent agent containing that represen-
tation. This state occurs when the representation's content is available for
higher-order thought and can be reasoned over and used to determine the
agent's actions, such as movement and speech. The critical difference
between A-Consciousness and P-Consciousness is that the former is
manipulating information without any experience of that information. In
contrast, the latter is the phenomenological experience of that informa-
tion. For example, both humans and neural networks can identify images,
but only humans will visually experience (i.e. see) those images. This
experience is P-Consciousness. The human versus neural network
example leads to an essential question about the phenomenological
experience: How does the ability to experience an image benefit the
experiencer?

Neural network performance in image classification tasks is contin-
uously improving. For example, ImageNet (Krizhevsky et al., 2012) ac-
curacy has increased from 50.9% to 88.5% (Touvron et al., 2020) in less
than a decade. We might not know whether P-Consciousness improves
image classification performance, but as neural networks approach 100%
accuracy, it becomes increasingly likely that phenomenology is unnec-
essary to perform that task. The same reasoning could be generalised to
other sensory modalities (sound, smell, touch, etcetera), which means
that the human brain's ability to decode signals into experiences is not
required for artificial neural networks to complete classification tasks.

Even if neural networks never reach human performance, there is
evidence from human studies that suggest phenomenology is unnec-
essary for classification tasks. Studies of blindsight patients show that
humans can make visual judgements without the experience of sight
(Weiskrantz, 1998). Blindsight patients suffer from damage to their pri-
mary visual cortex and report being blind even though their eyes and
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optic pathways are intact. Despite the lack of visual experience, they can
perform basic visual identification tasks above chance accuracy (Wei-
skrantz et al., 1974; Overgaard, 2011). Performing about chance accu-
racy is evidence that experience is unnecessary for humans to complete
some visual tasks. Furthermore, there is evidence that similar conditions
exist in other sensory modalities (see Garde and Cowey, 2000; Zucco
etal., 2015). The human brain's ability to decode signals into experiences
might not even be required for the human brain to complete classification
tasks.

The utility of phenomenology has long been the subject of discussion.
Some have speculated that it exists to create stability within cognitive
processes (Ramachandran and Hirstein, 1997); having a common rep-
resentation of colour perception allows the representation to be reused in
the future. Others suggest that we use the vividness of experience to
distinguish between information occurring in real-time, such as images
captured by the eyes, compared to mental images of prior inputs (Greg-
ory, 1998). Experimental evidence has suggested that this experience
could have some predictive function; our experience of being in control
of our body disappears when there is a contrast between what we intend
to do with our body and the feedback we receive (Hohwy and Frith,
2004). Alternatively, others have speculated that experience has no
purpose and that its existence is a side effect of cognitive processing
(Dennett, 2016).

By necessity, discussions on phenomenology's utility are predicated
on indirect evidence as it is difficult to manipulate the presence/absence
of experience experimentally. With that said, it is possible to induce
blindsight using transcranial magnetic stimulation temporarily (TMS; see
Ro et al., 2004). However, TMS methods cause transient lesions to the
brain, which may disrupt more than just experience. An alternative to
TMS is to use Al models as a substitute for the brain. By adding
phenomenological properties to existing Al architectures, it is possible to
observe whether the resulting models benefit from these additions. These
additions provide a stepping stone to identifying the utility of such
properties in conscious beings. This approach, known as Synthetic phe-
nomenology (Chrisley, 2009), has been discussed and implemented by
others (Arrabales et al., 2010b, 2011; Zaadnoordijk and Besold, 2018),
and we hope to add to this discussion by simple experimentation with
deep neural networks.

1.2. Present experiment

There were two general steps to our experiment. First, we trained
neural networks to classify both sound and image inputs on two different
tasks using the same dataset (see Figure 1). In the Entity task, we trained
the models to classify 60 different classes (i.e. entities) consisting of 30
sound and 30 image classes. In the Concept task, each of the 30 image
classes was paired with a sound class to create 30 concepts to classify.
Without explicitly training the network to differentiate between the
sound and image file inputs, we could recover whether the input was
initially a sound or an image using the information present in the net-
work's hidden layer. We believe that this approximates an emergent
symbol of experience for the processing occurring within the network.
Second, we trained networks using both the original inputs for the task
and the recovered “experiential” information.

We have termed the models in the second experimental step as
“Experimental” to help the reader identify which models have this
additional information. In terms of phenomenology, this experiment was
to see whether the ability to identify an otherwise indistinguishable
signal as either sight or sound impacts classification performance. By
providing this ability, we were able to improve the performance of the
network in some situations.

The present experiment is an expansion of our preliminary work
(Bensemann and Witbrock, 2020). Those results suggested that it was
possible to improve a DNNs performance using internal representations
of the data modality. However, due to its preliminary nature, that work
lacks control conditions included in the present experiment. The
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Entity Task
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Classes 01 — 30 (Images 01 — 30),
Classes 31 — 60 (Sounds 01 — 30)
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Concept Task

Images Sounds

Class 01 (Image 01, Sound 01),
Class 02 (Image 02, Sound 02), ...,
Class 30 (Image 30, Sound 30)

Figure 1. Tasks: A diagram of the Entity and Concept Tasks. Entity task: the models were required to classify 60 different classes consisting of 30 sound and 30 image
classes. Concept task: each of the 30 image classes was paired with a sound class to create 30 classes.

preliminary work balanced the number of image and sound examples
within the dataset; the present experiment took the additional step of
balancing the number of classes.

2. Method
2.1. Data

The full dataset consisted of two parts, an image dataset and a sound
dataset. The image data consisted of the balanced version of the EMNIST
dataset (Cohen et al., 2017). Although this set contains 47 classes of
handwritten letters and digits, we used only the first 30 classes; this
differs from preliminary work, where all 47 classes were used (Bense-
mann and Witbrock, 2020). The sound data were drawn from the Speech
Commands dataset (Warden, 2017), consisting of 30 classes of spoken
words.

The sound data were initially in the wave file format and required
several pre-processing steps to create an input format compatible with
the image data. Each sound was converted into a Mel spectrogram using a
sampling rate of 22050 samples per second. The conversion resulted in
128 by 44 matrix representations of each wave file. These representations
were then modified to match the 28 by 28 file size of the EMNIST dataset.
We achieved this final format by zero-padding the files to a size of 140 by
56. Max pooling was then applied using a pool size of 5 by 2, which
resulted in the final format. After pre-processing, we reserved 20% of the
sound data for validation.

We normalised the values of both the image and sound datasets to
between 0 and 1. The datasets were then combined to make two varia-
tions of a final dataset; One version where all 60 classes were separate

(Entity Dataset) and one version where each image was paired with a
sound to create 30 classes (Concept Dataset).

2.2. Models

We created two different baseline models, one for each of the data-
sets. Both baselines model consisted of 3 convolution layers followed by
two dense hidden layers and a dense output layer. Hyperband optimi-
sation (Li et al., 2018) was used to determine each layer's best hyper-
parameters. This optimisation was run on each of the datasets separately,
resulting in one model optimised for the Entity Dataset (Entity Base) and
the other optimised for the Concept Dataset (Concept Base). Table 1
shows the complete structure of each model.

A Hebbian learner (Hebb, 1949) was attached to each of the baseline
model's dense hidden layers to determine whether the models were
developing “representations” of input type. These learners received
non-activated outputs from their layer. The outputs were divided by their
absolute value, converting all output values into 1 or -1. We trained the
Hebbian learners using the output data and a 1 or -1 label representing
whether the layer's output was generated via a sound or image file,
respectively.

We derived two experimental models from the baseline models (En-
tity Exp and Concept Exp). Both experimental models had the same
structure as the corresponding baseline model. The difference being that
we concatenated the output from a Hebbian learner of a pre-trained
baseline model on to the data entering the first dense layer of the
experimental models. This concatenation provided the experimental
models with the equivalent of one bit of additional information during
training.

Table 1. Model Architectures. The parameters selected for each layer of the neural networks after hyperband optimisation.

Model Both Models Entity Concept
Filters/Nodes Activation Filters/Nodes Activation
Convolutional Layer 1 3 x 3 Kernel size 32 Filters Relu 16 Filters Tanh
Max Pooling Layer 1 2 x 2 Pool Size
Convolutional Layer 2 3 x 3 Kernel size 64 Filters Tanh 16 Filters Relu
Max Pooling Layer 2 2 x 2 Pool Size
Convolutional Layer 3 3 x 3 Kernel size 16 Filters Sigmoid 32 Filters Relu
Max Pooling Layer 3 2 x 2 Pool Size
Dense Layer 1 512 Nodes Relu 320 Nodes Relu
Dense Layer 2 288 Nodes Tanh 448 Nodes Sigmoid

Output Softmax Activation
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Finally, we developed two control models for Condition 1, Expanded
Base and Constant Input. The Expanded Base was created by adding a
node to the first dense layer to increase the number of trainable param-
eters. The Constant Input model was identical to the Exp Model but
received a constant input of 1 instead of 1 or -1 from the Hebbian
learners. The constant input caused the model to have an equal number
of parameters to the Exp Model.

2.3. Training

We used the Adam optimiser (Kingma and Ba, 2015) with a learning
rate of 0.0005 to train the models. Each model was trained a total of 30
times using the sparse categorical cross-entropy loss function. Each
training run lasted for 500 epochs consisting of 1000 steps. A batch of
128 training examples was created by sampling uniformly between the
image and sound samples during each step.

Hebbian learners attached to the base models were reset at the start of
each epoch and retrained over the 1000 steps. Accuracy data from the
learners were collected but otherwise ignored during the baseline model
training procedure.

Training experimental models started by pre-training a baseline
model until at least one of the attached Hebbian learners achieved
greater than 99% accuracy on the validation dataset. Once this occurred,
we froze the baseline model weights along with the more accurate of the
two Hebbian learners. This process often required one epoch of pre-
training. After pre-training, training the experimental model proceeded
like baseline training. The exception is that we first passed the batch of
data through the pre-trained baseline model and Hebbian learner. The
batch was then used as input for the experimental model. Finally, the
output from the Hebbian learner was concatenated onto the flattened
outputs of the convolutional layers within the experimental model.

We ran four different conditions, each using a different combination
of models and dataset. Table 2 shows the complete list of conditions. In
Condition 4, neither of the Hebbian learners reached the 99% accuracy
criterion during baseline training. Due to this, the learners from a pre-
trained Concept Base model were used to provide the additional data
required to train the Entity Exp model in this condition.

2.4. Statistical analysis

We conducted non-parametric tests during the analysis: The Kruskal-
Wallis Test (Kruskal and Wallis, 1952), the Conover test with
Holms-Method correction (Holm, 1978; Conover and Iman, 1979), and the
Mann-Whitney-U (Mann and Whitney, 1947). We chose non-parametric
methods to avoid making assumptions about the underlying structure of
data.

3. Results
3.1. Successfully using Hebbian Learners to identify training sample origin

The baseline version of each neural network had a Hebbian learner
(Hebb, 1949) attached to both of its dense hidden layers. We trained
these learners to identify whether the network's input was sampled from
the image or sound datasets using the hidden layer's non-activated out-
puts. Figure 2 shows the average accuracy of each learner at the end of
each epoch. Note, we reset the learners at the start of every epoch;
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changes in accuracy over epochs indicate how difficult it was to train a
learner using the linear outputs during that epoch. The difficulty changes
resulted from the modifications made to hidden layers weights by
training the neural network; this training was not affected by the Heb-
bian classifiers.

We obtained accuracies greater than 99% from at least one learner in
the baseline models of the first three conditions. Often, only one epoch of
training was required to obtain these high levels of accuracy. Focusing on
Condition 4, we can see that the 2™ layer learner did exceed 95% ac-
curacy after sufficient training. Interestingly, the 1% layer learner in the
same condition was the only one that continued to decrease in accuracy
across epochs.

Comparing across conditions (Figure 2), we can see that the Hebbian
learner on the 2™ layer was more accurate when training the Baseline
Model optimised for identifying all 60 classes (Entity Base). In contrast,
the 1% layer learner was more accurate when training the Baseline Model
optimised for 30 classes (Concept Base). It also appears that training with
the 60 class dataset (Entity Dataset) caused both learners to exceed 95%
accuracy regardless of which model was used.

3.2. Identifying sample origin improves optimised models' performance

Condition 1. compared performance between four variations of the
model optimised for learning the Entity Dataset where the 30 sound
classes and the 30 image classes were 60 separate classes. These varia-
tions included the Baseline and Experimental Models used in all other
conditions, plus the two control models, Constant Input (Experimental
Model that always concatenates 1 instead of -1 or 1) and Expanded
Baseline (Baseline Model with additional node on the first dense layer).
Figure 3 shows the Baseline and Experimental models' average perfor-
mance; the control models' performances were almost identical to the
Baseline, so they were excluded for visual clarity (the entire figure is
available in the supplementary materials). The average training loss was
lower for the Experimental Model, which resulted in higher average
training accuracy. The same pattern was observed in the validation data
until training exceeded approximately 150 epochs, at which point the
models began to overfit the training data.

The minimum validation loss obtained during each training run of all
four models was collected and compared using the Kruskal-Wallis Test
(Kruskal and Wallis, 1952). The test confirmed a statistically significant
difference between at least one group (P < .001). We conducted Post hoc
tests using the Conover test with Holms-Method (Holm, 1978; Conover
and Iman, 1979) for corrections; results indicate that the Experimental
Model significantly outperformed all other models in classification ac-
curacy (Figure 4). We also performed tests on the number of epochs
required to reach minimum validation loss. Results indicated a signifi-
cant difference between groups (P < .001), and posthoc tests indicated
differences between the Experimental Model and both the Baseline and
Expanded Baseline Models; tests indicate there was no difference be-
tween the Experimental Model and the Constant Input Model (Figure 4).
These results suggest that the Experimental Model achieved maximal
performance with less training than the Baseline and Expanded Baseline
Models.

Condition 2. trained models on the Concept Dataset, where we paired
each of the 30 sound classes with one of the 30 image classes. The models
used were optimised to work with this version of the dataset. Due to

Table 2. Condition Order. The order of conditions run in the experiment.

Condition Dataset Models

1 Entity Entity Base, Entity Exp, Expanded Base, Constant Input
2 Concept Concept Base, Concept Exp

2] Entity Concept Base, Concept Exp

4 Concept Entity Base, Entity Exp
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Hebbian Listener Results
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Figure 2. Hebbian Learner Results: The average accuracy obtained from the Hebbian learners attached to the 1°t and 2" dense layers during Baseline Model training

for each condition. Data are presented with 95% confidence intervals.

resource constraints, we could only train the Baseline and Experimental
variations of the model.

Figure 5 shows the average training results from Condition 2. Mann-
Whitney-U (Mann and Whitney, 1947) tests indicated that the Experi-
mental Model's performance in the classification task was equal to that of
the Baseline Models (P = .31) but that less training was required for the
Experimental Model to reach optimal performance (P = .01).

3.3. Non-optimised models not improved by identifying sample origin

Conditions 3 and 4 were trained with the Entity and Concept Datasets,
respectively. In these conditions, we switched the models used in Con-
ditions 1 and 2 so that each dataset was trained with models optimised
for the other dataset. Due to the same resource constraints as Condition 2,
we only tested the Baseline and Experimental variations of each model.

Figure 6 shows the results of training the 60 class Entity dataset with
the non-optimised model (Condition 3). Mann-Whitney U tests indicated
non-significant differences between the models' minimum validation loss
(P = .23) and epochs required to reach that minimum loss (P = .17).

Figure 7 shows the results from Condition 4. While the Mann-Whitney
U tests indicated significant differences between the minimum validation
loss (P = .01), this difference was due to the baseline model outperforming
the Experimental Model. There was, however, no difference in the number
of epochs required to reach minimum validation loss (P = .23).

It should also be noted that the minimum validation loss in Condition
4 is lower than that of Condition 2, despite models in Condition 2 being
optimised for the Concept Dataset. The optimisation procedure can
explain this. The Hyperband optimisation (Li et al., 2018) was applied to
the first 50 epochs of training to find models that achieve lower minimum

validation loss after 50 epochs. Closer inspection of the data indicates
that after 50 epochs, the model from Condition 2 does have a lower
validation loss and was chosen by the optimisation procedure.

4. Discussion
4.1. Decoding signals

The purpose of the Hebbian learners (Hebb, 1949) in the experi-
mental system was to determine whether information about the type of
the input, contained implicitly in the hidden layers of a deep neural
network, could provide additional information that could aid in learning
the input's label. We trained the Baseline Models to identify the 60 or 30
classes within the Entity or Concept Datasets. We did not directly train
those models to identify whether each class came from the image or
sound dataset. Instead, we trained the Hebbian learners to classify
whether an input was an image or a sound by using the hidden layers'
linear outputs, and these outputs were changing during training. Being
able to classify the hidden layer outputs accurately suggests some orga-
nisation occurring during the training of those layers, making it possible
to separate the data (see also Veldhoen et al., 2016). Visual inspection of
Figure 2 suggests that this organisation changes during training as the
learners' accuracy tended to change continually.

Visual inspection of Figure 2 shows that, in general, it was possible to
identify which sample each of the inputs came from using the otherwise
indistinguishable signal of a hidden layer's linear outputs. This finding
was critical to the experiment as we held the assumption that there is
some mechanism in the brain that can achieve the same result and that
there may be some utility in the ability to do so. We could have emulated
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Figure 3. Condition 1 Training Results: A comparision between the Baseline and Experimental Models' average training loss, training accuracy, validation loss, and
validation accuracy during Condition 1 (Entity task with optimised models). Data are presented with 95% confidence intervals. See also S1 and S2.

this same effect via directly inputting a sound/image label into the 4.2. Baseline versus experimental models

Experimental Models; however, showing the process occurring increases

the likelihood that the assumption is valid. Furthermore, the Hebbian The results from all four experiment conditions provide mixed evi-
learners used to make this distinction use Hebb (1949) simple yet bio- dence for whether adding one bit of information to a model to emulate
logically plausible learning method. If the brain's ability to distinguish basic phenomenology benefitted the model. The first two conditions
signals is not hardwired at birth, our success with Hebbian learners provided evidence supporting a benefit. The last two conditions, espe-
suggests strongly that this ability could be readily learned. cially Condition 4, did not.
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Figure 4. Condition 1 Statistical Test Results: The Conover test results with Holms-Method correction in Condition 1.
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Figure 5. Condition 2 Training Results: A comparision between the Baseline and Experimental Models' average training loss, training accuracy, validation loss, and
validation accuracy during Condition 2 (Concept task with optimised models). Data are presented with 95% confidence intervals.

As a whole, the results from the first two conditions indicate that
providing the Experimental Model with a single bit of information about
the training samples modality improves performance. In Condition 1, an
accuracy improvement occurred in both training and validation tasks,
and a reduced number of epochs were required to reach this accuracy. In
Condition 2, this improvement manifested as a decrease in the training
epochs that were required. Additionally, Condition 1's control models
performed on par with the Baseline Model, meaning that the Experi-
mental Model's performance was unlikely to have been due to the in-
crease in trainable parameters required to incorporate the Hebbian
learner's output into that model.

The results of Condition 4 are contrary to those of the first two con-
ditions. Providing the Experimental Model with additional information
significantly degraded the models average classification performance.
These results are not entirely problematic for the findings of Conditions 1
and 2. Firstly, like Condition 1 control performance, this result decreases
the likelihood that the significant differences obtained in the first two
conditions were due to increased trainable parameters in the model;
increasing the number of parameters led to decreased performance
during Condition 4. Secondly, these results may indicate an interaction
between the model architecture and the trained dataset. The only way to
resolve this second issue is to repeat the experiment with many more
neural network architectures, which was not possible here due to
resource constraints.

4.3. Phenomenal consciousness in artificial intelligence

We designed the present experiment to emulate P-Consciousness's
phenomenological property to determine whether limited forms of

phenomenology provides any utility to an AI model and, by extension,
the possible utility for that property within organic beings. Our emula-
tion consisted of providing the Experimental Models with the equivalent
of one bit of information (1 or -1 in this case) that represented whether
the current training sample was predicted to have been a sound or an
image file. That representation provided the Experimental Models with a
way to separate the modalities while learning classification tasks. By
analogy, a human may not be able to identify a new object or sound but is
aware that the visual system experiences objects and that the auditory
system experiences sound but not vice versa.

In effect, our experiment treated phenomenology as a shortcut to
important information. This shortcut is similar to an idea raised by
Zaadnoordijk and Besold (2018) when discussing implementations of
phenomenal experience in Al They suggested that phenomenal experi-
ences can be viewed as a direct mapping from sensory inputs to mental
representations that bypass many high-level cognitive functions and
provide information more efficiently than when it needs to be fully
processed. They also argued that systems with P-Consciousness-like
properties should implement the phenomenal systems as a parallel pro-
cess rather than embed it within the primary system. Our experiment is
consistent with their proposal as the pre-trained model and attached
Hebbian learner run parallel to parts of the neural network being trained.

Others have approached synthetic phenomenology by attempting to
create qualia (basic units of experience; Loosemore, 2009; Schwitzgebel,
2016) within their systems (see Arrabales et al., 2010b; 2011). While this
is a valid strategy that differs from our own, it highlights an issue that
occurs when contributing to this field. As Arrabales et al. (2011) point
out, there is no generally accepted model for qualia in biological beings;
therefore, it is difficult to model them. Others have raised similar issues
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Figure 6. Condition 3 Training Results: A comparision between the Baseline and Experimental Models' average training loss, training accuracy, validation loss, and
validation accuracy during Condition 3 (Entity task with non-optimised models). Data are presented with 95% confidence intervals.

(e.g. Gamez, 2019). With this in mind, it is of interest to see whether the
single bit of experiential information of our experiment shares any
properties with qualia models. As we do not have a working memory
component to our model, we can rule out any qualia model such as
Arrabales et al.'s that depends on the Global Workspace Theory (Baars,
1988).

We could make the argument that the information provided by the
Hebbian learning in our model is consistent with a quale from Ram-
achandran and Hirstein (1997) three laws of qualia. The first law is
satisfied because the model cannot decide to experience the information
differently, making it irrevocable. We did not force the neural network to
produce the same output during the experience, which satisfies the 2"
law. The main issue is the 3" law that requires that the experiential in-
formation exist long enough to be experienced, which Ramachandran
and Hirstein suggested requires working memory. Although we, as with
all other works in synthetic phenomenology, do not claim that the Al
models are experiencing anything, perhaps the momentary existence of
the experiential information in our model is long enough to be consistent
with Ramachandran and Hirstein's model.

It is also challenging to determine whether the Hebbian learner's
output can also be considered consistent with qualia under Information
Integration Theory (IIT; Tononi, 2004). On the one hand, the output is
maximally irreducible, as Oizumi et al. (2014) described, as it cannot be
separated into sub-experiences. On the other hand, Balduzzi and Tononi's
(2009) describe qualia as having a complicated geometric structure
arising from binary operations. IIT is typically described using binary
switches, so it is not easy to apply IIT directly to neural networks using
continuous variables.

Geometric structures also appear in other models of consciousness
that could be of relevance to our experiment. Recently, models of con-
sciousness based on quantum decision making have been proposed that
incorporate context into the equation (Ishwarya & Cherukuri, 2020a,
2020b). According to these models, consciousness arises due to
high-dimensional representations of concepts within a contextual
sub-space. Information within the hidden layers of a DNN are already
high-dimensional representations of data, so we could argue that
providing a modality label to neural networks changes the context within
that representation. These added changes should then influence the
model's decision making (i.e. output), which was reflected in our results.

4.4. Applications of experimental models

One limitation of the present experiment was that we had to train the
Hebbian learners had using supervised learning. Therefore, it would be
not easy to apply this method to unsupervised settings directly. One
potential method could be to use something like DeepCluster (Caron et
al., 2018) that creates classes while training. Instead of clustering the
output, we could cluster information within the hidden layer to create the
classes required to train the Hebbian Learner.

4.5. Conclusion

The present experiment was an attempt at two different tasks. The
first was to extract simple representations of the modality being pro-
cessed by the DNN using information from the hidden layers within that



J. Bensemann, M. Witbrock

Heliyon 7 (2021) e07246

Training Results Condition 4

Training Loss

Model
—— Baseline
Experimental

T T
200 300 400

Epoch

T
0 100

Validation Loss
1.8

Val_Loss
O -
w B w o ~

=
N

114

1.0

T T
200 300 400

Epoch

T
0 100 500

Training Accuracy

90% A
80% A
2 70% A
e
5
o
o]
<
60% 1
50% 1 |
40% T T T T
0 100 200 300 400 500
Epoch
Validation Accuracy
70.0%
ST A e YOS i g |
St i,
65.0% 1
2 60.0% A
e
E
o
o]
£ f
£ 55.0% - (/
50.0% A
45.0% T T T T
0 100 200 300 400 500
Epoch

Figure 7. Condition 4 Training Results: A comparision between the Baseline and Experimental Models' average training loss, training accuracy, validation loss, and
validation accuracy during Condition 4 (Concept task with non-optimised models). Data are presented with 95% confidence intervals.

network. The second task was to determine whether feeding these rep-
resentations into a new DNN lead to improved network performance.

We were successful with the first task as representations could be
recovered from the network in most experimental conditions. We also
observed that our accuracy in recovering these representations changed
throughout an experiment.

We obtained mixed results during our second task. When the DNN
was optimised to learn a particular dataset, the representation led to
improved network performance in validation accuracy and decreased the
amount of training required. When the DNN was not optimised for the
dataset, the performance was either negatively impacted or unaffected.

While more work is required before we can determine the efficacy of
our approach to improving DNN performance, our results do show some
promise. It would also be of interest to see how far we could push our
model's phenomenological aspects. For example, could future models
extract colours or pitch from the hidden layers, and if so, would that
cause further improvements to the model. For now, all we can say is that
the ability to separate sounds from images can lead to some improvement
in performance.

5. Limitations of the study

This study opted for a between-groups experimental design that ran
large models multiple times to create group averages. Due to this, we
only tested a few neural network architectures. Future studies could
investigate a broader range of architectures to test the robustness of the

effect described here. Additionally, we trained the Hebbian learners
using supervised learning where the samples' origin was already known.
Additional techniques would need to be developed to apply this model to
an unsupervised learning setting.
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