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SUMMARY 
 
Myelination facilitates the rapid conduction of action potentials along axons. In the central 
nervous system (CNS), myelinated axons vary over 100-fold in diameter, with conduction 
speed scaling linearly with increasing diameter. Axon diameter and myelination are closely 
interlinked, with axon diameter exerting a strong influence on myelination. Conversely, 
myelinating Schwann cells in the peripheral nervous system can both positively and 
negatively affect axon diameter.  However, whether axon diameter is regulated by CNS 
oligodendrocytes is less clear. Here, we investigated CNS axon diameter growth in the 
absence of myelin using mouse (Mbpshi/shi and Myrf conditional knockout) and zebrafish 
(olig2 morpholino) models.  We find that neither the ensheathment of axons, nor the 
formation of compact myelin are required for CNS axons to achieve appropriate and diverse 
diameters. This indicates that developmental CNS axon diameter growth is independent of 
myelination, and shows that myelinating cells of CNS and PNS differentially influence 
axonal morphology. 
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INTRODUCTION  

In the vertebrate nervous system, two principal mechanisms have evolved to facilitate the 
rapid conduction of action potentials along axons: increasing axonal diameter and the 
myelination of axons. While myelination provides a means to increase speed without 
increasing axon diameter, axon diameters between myelinated CNS axons still vary over 
100-fold 1, 2, 3.  In general, conduction speeds along myelinated axons scale linearly with axon 
diameter 4, 5; thus, diversity in myelinated axon diameter provides the nervous system with a 
huge capacity to control the speed of axon potential propagation and contributes to the 
precise timings required for nervous system function 6, 7, 8, 9. Despite this importance, there 
remains large gaps in our knowledge as to how myelinated axon diameter is regulated. 

The health and function of myelinated axons is dependent on a multitude of bidirectional 
interactions. Myelin affects the underlying axon by organizing its excitable domains 10 and 
providing support via the transfer of metabolites and extracellular vesicles 11, 12. Conversely, 
signals from the axon, including axon diameter, influence which axons get myelinated, as 
well as the length and thickness of myelin sheaths 13, 14, 15, 16, 17, 18. However, comparatively 
little is known about how myelin affects the growth of axons in diameter. In fact, myelination 
often occurs before axons have finished growing in diameter and thus has the potential to 
both promote or restrict diameter growth.  For example, the growth of axons to large 
diameters may rely on trophic or metabolic support from myelin. Alternatively, the presence 
of myelin may signal to axons a reduced need for diameter growth that would otherwise be 
required to increase conduction speeds, or it may physically restrict the growth of axons in 
diameter.  

Indeed, in the peripheral nervous system (PNS) there is evidence that myelin can both 
positively and negatively affect axon diameter. Schwann cell manipulations that result in 
fewer axons becoming myelinated or in thinner myelin sheaths are associated with reduced 
axon diameters 19, 20, 21, 22. Similarly, deficiency of myelin-associated glycoprotein (MAG) 
leads to smaller diameter myelinated axons 23, 24, suggesting roles for myelinating Schwann 
cells in promoting or maintaining diameter growth.  In contrast, loss of the myelin protein 
chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 
(CMTM6) leads to axon expansion in the absence of any notable myelin pathologies, 
indicating that signals from myelinating Schwann cell also restrict axon diameter 23.  

Fewer studies have explored the role of myelinating oligodendrocytes in regulating axon 
diameter within the CNS, where available space for diameter growth is constrained by the 
skull and vertebral column. However, there is evidence that the influence of myelinating glia 
in the CNS may be different than in the PNS, which is perhaps not surprising given that the 
developmental origin, structure (e.g. myelin periodicity, number of myelin sheathes per 
myelinating cell) and protein composition of myelin formed by oligodendrocytes and 
Schwann cells are not the same 25, 26, 27. For example, in the CNS loss of MAG was found to 
result in larger, not smaller,  diameter axons 28, and CMTM6 is not expressed by 
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oligodendrocytes 29, indicating that myelin may not regulate diameter in the same way. 
Furthermore, while it is often interpreted that myelin regulates the growth of CNS axons in 
diameter, disruption of myelin composition and morphology often leads to complex 
pathologies. It remains unclear whether changes in diameter observed in myelin mutants 28, 

30, or following demyelination 31, in the CNS represent a role for myelin in promoting or 
restricting normal diameter growth, or whether axon diameter is changed as a consequence 
of abnormal myelin. Here, we performed an in-depth analysis of axon diameter growth in the 
absence of CNS myelin, oligodendrocyte ensheathment, or oligodendrocytes in mouse and 
zebrafish models and find that developmental growth of axons in diameter is unaffected. 
Together these findings show that axons in the CNS do not rely on ensheathment or 
myelination by oligodendrocytes to grow to appropriate and diverse diameters and highlight 
a difference in the role of myelin in regulating developmental axon diameter growth between 
the CNS and PNS.  

 

RESULTS 

Absence of compact myelin does not impact axon diameter in the Shiverer mouse 
optic nerve 

To address the role of myelin on axon diameter in the CNS, we first used the well-established 
Mbpshi/shi (shiverer) mouse model 32. The shiverer (shi) allele is characterized by a large 
deletion within the gene encoding myelin basic protein (MBP)33, 34 and Mbpshi/shi mice display 
no detectable Mbp mRNA or protein 35, 36, 37. This results in a severe CNS dysmyelination, 
while myelin in the PNS remains largely normal 38, 39. Oligodendrocytes in Mbpshi/shi mice are 
able to extend processes which contact axons, and a subset of axons are 
wrapped/ensheathed by oligodendrocyte membrane; however, these wraps do not become 
properly compacted into mature myelin sheaths 40, 41, 42. Previous studies examining axon 
diameter within the optic nerve of Mbpshi/shi mice have reported conflicting findings regarding 
how the absence of compact myelin influences the growth of axons in diameter. Kirkpatrick 
et al 43 reported an increased proportion of smaller diameter axons suggesting that the 
formation of compact myelin was required for axons to reach their appropriate diameters. 
However, Sanchez et al 44 reported oligodendrocyte ensheathment, in the absence of 
compact myelin was sufficient for axons to reach their appropriate diameters in Mbpshi/shi 
mice.  

We revisited the Mbpshi/shi model using an increased sample number, and ensuring equal and 
unbiased sampling of axons across entire optic nerve cross sections of Mbpshi/shi mice and 
their wild-type littermates (see Methods). The optic nerve, which is composed of retinal 
ganglion cell axons, starts to be myelinated around postnatal day (P)5 and is almost 
completely myelinated (~95% of axons) by P75 in wild-type mice 45. We assessed axon 
diameters in transmission electron micrograph images of optic nerve cross sections 
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obtained from P75 Mbpshi/shi mice and their wild-type littermates, when myelination is well-
established (Figure 1 A,B). There was no difference in the median axon diameter in the 
Mbpshi/shi mice compared to wild-type littermates at this age (Figure 1 C, Supplemental Figure 
1). We also did not observe any significant difference in the distribution of axon diameters 
observed within the optic nerve of Mbpshi/shi mice (Figure 1 D,E, Supplemental Figure 1), with 
both wild-type and  Mbpshi/shi  axons exhibiting a roughly 10-fold range in diameter. Together, 
these data indicate that optic nerve axons grow to their normal and diverse diameters in the 
absence of compact myelin. 

 

Early axon diameter growth is unaffected in the absence of oligodendrocyte 
ensheathment 

While the Mbpshi/shi mice lack compact myelin, oligodendrocytes processes still contact and 
ensheathe a subset of axons and may therefore influence axon diameter via myelin-
independent signaling mechanisms and/or trophic support. Therefore, we next asked how 
axon diameter is influenced by the absence of both myelination and oligodendrocyte 
ensheathment by conditionally disrupting expression of myelin regulatory factor (MYRF) in 
oligodendrocytes using Myrffl/fl; Olig2wt/cre mice 46. MYRF is a transcription factor that is 
necessary for CNS myelination. In the absence of MYRF, oligodendrocyte precursor cells fail 
to differentiate into mature oligodendrocytes and ensheathe axons 46. We examined axon 
diameter in the optic nerve of Myrffl/fl; Olig2wt/cre mice (Myrf cKO) and Myrffl/+; Olig2wt/cre (control) 
littermates at P14. This is the latest timepoint we could assess, as mutant animals develop 
severe tremors and ataxia and die during the third postnatal week 46. We have previously 
shown that by this timepoint, approximately 50% of retinal ganglion cell axons are 
ensheathed or myelinated in controls, versus less than 0.1% of axons being ensheathed in 
conditional mutants 46.  

In line with the greatly reduced number of oligodendrocytes 46, we found that at P14 the 
cross-sectional area of the Myrf cKO optic nerves was roughly 43% smaller than that of 
control optic nerves (Figure 2 A,D). By transmission electron microscopy, there was a 
notable absence of oligodendrocytes processes and myelin, with axons packed 1.8x more 
densely than in controls (Figure 2 B,C,E). Quantification of axon number revealed a similar 
number in control and Myrf cKO mice, suggesting axon loss did not contribute to the smaller 
nerve size (Figure 2 F). Sampling of axon diameters throughout the optic nerve indicated that 
there were no differences in the median or distribution of axon diameters in Myrf cKO mice 
(Figure 2 G-I, Supplemental Figure 2), with the same proportion of mutant axons reaching 
the diameter of myelinated axons in control mice (Figure J). This indicates that the 
population of larger diameter myelinated axons in wild-type mice are not larger due to their 
being myelinated, but rather that larger axons are those that are first selected for 
myelination. While we can not exclude later roles for oligodendrocyte ensheathment in 
regulating or maintaining axon diameter, these results indicate that the early developmental 
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and differential diameter growth of retinal ganglion cell axons in the optic nerve is not 
dependent on ensheathment or myelination by oligodendrocytes.  

 

Axon diameter growth in the spinal cord of zebrafish is unaffected by the absence of 
oligodendrocytes and myelin 

As an additional model to examine axon diameter growth in the absence of 
oligodendrocytes, we turned to the zebrafish spinal cord, which also offered the additional 
advantage of being able to follow diameter growth of specific identifiable neurons over time. 
Myelination in the zebrafish spinal cord begins around 2.5 days post-fertilization (dpf) 47, with 
robust myelination observed within both the dorsal and ventral tracts by 5 dpf (Figure 3 A-
D). At this timepoint, axon diameters already vary by over 40-fold between neurons 48, with 
the largest of these axons belonging to a bilateral pair of reticulospinal neurons known as 
the Mauthner neurons 49. We have previously characterized the diameter growth of the 
Mauthner axon in relation to its myelination using time course live-imaging and shown that 
within the first three days of its myelination, the axon grows 3-4x in diameter 48. To determine 
if this growth in diameter is regulated by oligodendrocytes we disrupted function of Olig2, a 
transcription factor required for the specification of oligodendrocyte precursor cells from 
neural progenitors within the spinal cord 50, 51, 52, 53. To do this, we used an established olig2 
morpholino (MO)-based knockdown protocol 54 to block translation of Olig2 protein.  

We first confirmed the absence of oligodendrocytes and myelin within the spinal cord by 
using the Tg(mbp:eGFP-CAAX) reporter line to fluorescently label oligodendrocytes (Figure 
3 E), as well as by transmission electron microscopy (Figure 3 G,H). Next, we performed 
time-course live imaging and found that the absence of oligodendrocytes/myelin had no 
measurable effect on rapid diameter growth of the Mauthner axon that occurs during the 
time window in which it is usually myelinated, or the following days (Figure 3 F). In addition 
to the Mauthner axon, we also assessed the diameter of the next ten largest axons in the 5 
dpf ventral spinal cord using electron microscopy (Figure 3 G,H). Similar to the Mauthner 
axon (Figure 3 I), no change in axon diameter was observed for these axons (Figure 3 J).  

To determine whether myelination might have a delayed effect on diameter growth, we 
imaged the Mauthner axon at later time points, up to 9 dpf when its diameter growth begins 
to plateau. At this latest timepoint, we still did not observe any changes in Mauthner axon 
diameter in the absence of myelin (Figure 3 K). As distance from the cell body might 
potentially influence the reliance of the axon on myelin to support diameter growth, we 
extended our analyses at 9 dpf to include both proximal (somite 8) and distal (somite 22) 
portions of the axon, in addition to our standard measurements mid-way along the axon at 
somite 15 (Figure 3 M). While axon diameter did taper between the proximal to distal regions 
of the axon, no differences in axon diameter were observed between the control and olig2 
MO conditions (Figure 3 L).  
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In some olig2 MO-treated larvae we did observe the occasional oligodendrocyte that did 
differentiate and form a myelin sheath along the Mauthner axon, usually along its proximal 
region. We took advantage of this to ask whether we could observe local changes along 
individual axons in response to the formation of myelin by comparing the diameter of the 
axon beneath the myelin to the diameter along the adjacent unmyelinated region (Figure 3 
N). Again, we observed no significant differences in axon diameter along myelinated 
segments of sparsely myelinated Mauthner axons (Figure 3 O), further supporting the 
conclusion that interactions between myelin and the underlying  axons do not locally 
modulate axon diameter. 

 

DISCUSSION 

Together, our data from zebrafish and rodent models support the conclusion that the 
developmental growth of CNS axons to their normal and quite diverse diameters does not 
require ensheathment or myelination by oligodendrocytes. This contrasts with the PNS, 
where axons fail to reach appropriate diameters when they are not myelinated 19, 21, 22, 
highlighting a difference in how myelin produced by CNS oligodendrocytes and PNS 
Schwann cells affects axons. We also do not find a role for myelin in restricting axon 
diameter, as has been shown for CMTM6 expressed by Schwann cells in the PNS 23. 
Interestingly, the regulation of myelination by axon diameter also differs between the CNS 
and PNS. In the PNS, axon diameter is tightly linked to the amount of Neuregulin type III 
present on the axonal surface, which determines whether an axon is myelinated and the 
thickness of the myelin sheath, with axons over 1 μm typically being myelinated 55, 56. In 
contrast, no single axonal signal for myelination has been identified in the CNS, and 
myelination is less strictly correlated with diameter; axons between 0.2 μm and 1 μm may 
be either myelinated or unmyelinated 57, 58, 59, 60. The reasons for these differences in the 
reciprocal regulation of axon diameter and myelination between the CNS and PNS remain 
unclear, but may reflect distinct evolutionary pressures on conduction speed and space. 

While we have shown that the developmental diameter growth of CNS axons does not 
depend on their myelination, it is noteworthy that previous studies indicate that axon 
diameters in the CNS can be affected by preventing the expression of certain myelin 
proteins28, 30 or following demyelination 31, 61. This highlights that while CNS myelin is not 
required for axons to achieve their appropriate and diverse diameters, its molecular, 
morphological or metabolic disruption can influence axonal size. Once myelinated and 
insulated from the extracellular environment, axon diameter growth and maintenance may, 
for example, become reliant on trophic and metabolic support from oligodendrocytes 62, 63, 

64. Interestingly, decreases to axon diameter following demyelination appear to be transient, 
as chronically demyelinated axons have been shown to recover their normal diameters over 
time 31, further supporting that it is the disruption of myelin, not its presence, that influences 
axon diameter. 
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It remains to be determined what are the primary factors regulating axon diameter within the 
CNS, and to what extent this is intrinsic to neuronal sub-type versus non-cell autonomously 
regulated. While our results argue against a major role for oligodendrocytes in axon diameter 
growth and diversity, the potential contribution of other glial cell types warrants further 
investigation. Given the importance of axon diameter in modulating conduction speeds, 
axon diameter growth may also be regulated by the neuronal circuit into which a neuron is 
integrated, for example, by levels of neuronal activity 65, 66, 67, signals from target cells 18, 
and/or number of synapses 68. Further studies will be essential to unravel the interplay 
between cell-intrinsic growth programmes and extrinsic regulatory cues that shape axon 
diameter. A deeper understanding of these mechanisms will provide critical insights into 
CNS development and the function of neuronal circuits. 

 

MATERIALS AND METHODS 

Mouse husbandry and transgenic lines  
Mbpshi/shi 33 and littermate control mice were bred under a 12 hr light/dark cycle with food and 
water available ad libitum in the animal facility of the Max Planck Institute for 
Multidisciplinary Sciences (MPI-NAT, Göttingen, Germany) and tissue was dissected under 
license 33.19-42502-04-16/2337 issued by the Niedersächsisches Landesamt für 
Verbraucherschutz und Lebensmittelsicherheit (LAVES). The animal facility at the MPI-NAT 
is registered at the LAVES according to TierSchG §11 Abs. 1. According to the German Animal 
Welfare Law (Tierschutzgesetz der Bundesrepublik Deutschland, TierSchG) and the 
regulation about animals used in experiments, dated 11th August 2021 (Tierschutz-
Versuchstierverordnung, TierSchVersV), an animal welfare officer and an animal welfare 
committee are established for the institute.  
 
Mice used to generate Myrf cKO mice were housed in a pathogen-free temperature-
controlled environment on a 12 hr light/ dark cycle with food and water available ad libitum 
and animal procedures performed in accordance with, and approved by, the Oregon Health 
& Science Institutional Animal Care and Use Committee (TR02_IP00001328). Myrf 
conditional knock-out mice were generated by crossing Myrffl/fl mice 46 (B6;129-Myrftm1Barr / J, 
JAX: 010607) to Olig2wt/Cre mice 69 (Olig2tm2(TVA,cre)Rth / J, JAX: 011103) for two generations. Myrffl/fl; 
Olig2wt/Cre mice were used as dysmyelinated mice with Myrfwt/fl; Olig2wt/Cre littermates serving 
as aged-matched controls.  
 
Mbpshi/shi transmission electron microscopy and axon diameter analyses  
Mbpshi/shi and littermate control optic nerves (P75) were immersion fixed in Karlsson–Schultz 
fixative (4% PFA, 2.5% glutaraldehyde in 0.1 M phosphate buffer) solution 70 for at least 24 h 
at 4°C and prepared using the reduced osmium tetroxide—thiocarbohydrazide—osmium 
(OTO) method as originally introduced by Deerinck and colleagues 71 with minor 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.10.632348doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632348
http://creativecommons.org/licenses/by-nc-nd/4.0/


modifications as previously described 28, 72, 73. After resin polymerization, ultrathin sections 
(60–70 nm) were cut using an ultramicrotome (Leica UC-7, Vienna, Austria) and a 35° 
diamond knife (Diatome, Biel, Switzerland). The sections were placed on 100 mesh 
hexagonal copper grids (Science Services, Munich, Germany) and imaged with a Leo 912 
electron microscope (Carl Zeiss, Oberkochen, Germany) and an on-axis 2 k CCD camera 
(TRS, Moorenweis, Germany). To determine axonal diameters, 10–15 random non-
overlapping electron micrographs per mouse and 4–5 mice per genotype were analyzed. 
Analysis was performed using Fiji version 1.53c74. Per electron micrograph, up to 30 axons 
were selected at random using the Grid-Tool (Circular grids, 3 μm2 per point, random offset). 
The Feret diameter of all normal appearing axons comprised in the grid circles was analyzed. 
 
Myrf cKO transmission electron microscopy and axon diameter analyses 
At P14 experimental mice were deeply anesthetized with a lethal dose of ketamine/xylazine 
(400mg/kg and 60mg/kg respectively) and subsequently perfused with 3 mL of phosphate 
buffered saline (PBS) followed by 15 mL of freshly hydrolyzed 4% paraformaldehyde (PFA, 
Electron Microscopy Sciences) in PBS. Optic nerves were dissected and processed for 
transmission electron microscopy largely as previously described75. Optic nerves were fixed 
in 2% PFA (15710, Electron Microscopy Sciences) and 2% Glutaraldehyde (16310, Electron 
Microscopy Sciences) in 0.1 M cacodylate buffer at room temperature for at least 2 hours, 
then moved into 4oC overnight. The following day, the nerves were stored in 1.5% PFA, 1.5% 
glutaraldehyde, 50 mM sucrose, 22.5 mM CaCl2•2H2O in 0.1 M cacodylate buffer for no 
more than one month. Optic nerves were then further fixed in 2% osmium-tetroxide (19190 
Electron Microscopy Sciences) using a Biowave+ microwave (Ted Pella). The nerves went 
through subsequent acetone dehydration steps and embedding in Embed 812 (14120 
Electron Microscopy Sciences). 400 nm semithin sections were cut using a Leica UC7 
ultramicrotome, stained with 1% toluidine blue (Fisher Scientific) in 2% sodium tetraborate 
decahydrate (Fisher Scientific), and examined using a light microscope (Leica DM300) to 
ensure quality before cutting for TEM. Ultrathin sections (70 nm) were cut and placed on 
Formvar-coated copper grids (EMS), then counterstained with UranyLess (Electron 
Microscopy Sciences) and 3% lead citrate (Electron Microscopy Sciences). Images were 
acquired with an FEI Tecnai T12 TEM microscope equipped with an Advanced Microscopy 
Techniques (AMT) CCD camera. 
 
To measure axon diameters, we used 17-22 non-overlapping electron micrographs (88.5 
µm2 per image) sampled from across the optic nerve cross section per mouse from 4 mice 
per genotype. Analysis was performed using Fiji version 1.51n. For each image, axons were 
selected by placing a grid of crosses over each image using the Grid tool (crosses, 1.5 µm2, 
random offset). Due to differences in axon density between genotypes, ever second cross 
was selected for the Myrf cKOs to ensure a similar numbers of axons were sampled across 
all mice.  Axons overlaid by crosses were traced using the polygon selection tool to obtain 
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an area measurement, and the diameter calculated using the equation diameter = 

2*√(Area
π
). 

 
Zebrafish husbandry and transgenic lines  
Adult zebrafish (Danio rerio) were housed and maintained in accordance with standard 
procedures in the Queen’s Medical Research Institute zebrafish facility at the University of 
Edinburgh, with both adult and larval zebrafish subject to a 14/10 hr, light/dark cycle. All 
experiments were performed in compliance with the UK Home Office, according to its 
regulations under project licenses 70/8436 and PP5258250.  
 
The following stable, germline inserted transgenic lines were used in this study: 
Tg(mbp:eGFP-CAAX) 47, Tg(hspGFF62A:Gal4) 76, 77 and Tg(UAS:mRFP) 76. Embryos were 
produced by pairwise matings of homozygous Tg(mbp:eGFP-CAAX) x homozygous 
Tg(hspGFF62A:Gal4); Tg(UAS:mRFP) zebrafish. Embryos were raised at 28.5 ̊C, with 50 
embryos (or less) per 10 cm petri dish in ~45 mL of 10 mM HEPES-buffered E3 embryo 
medium or conditioned aquarium water with methylene blue. Larvae were staged according 
to days post-fertilisation (dpf), with larvae between 2 dpf and 9 dpf used in this study. At 
these ages, sexual differentiation of zebrafish has not yet occurred.  

 
Eliminating myelin using olig2 MO 
In order to inhibit oligodendrocyte development in the zebrafish embryo, 7.5 ng of olig2 
morpholino (Gene Tools, LLC, Philomath, USA) in nuclease-free water was injected into 
fertilized eggs at 1-4 cell stages. Olig2-ATG-MO sequence: 5’- 
ACACTCGGCTCGTGTCAGAGTCCAT 3’ 54. 
 
Live-imaging and quantification of axon diameter 
Zebrafish larvae were anaesthetised with 600 µM tricaine in E3 embryo medium and 
immobilised in 1.3% low melting-point agarose on a glass coverslip, which was suspended 
over a microscope slide using high vacuum silicone grease to create a well containing E3 
embryo medium and 600 µM tricaine. Z-stacks (with optimal z-step) were obtained using a 
Zeiss LSM880 microscope with Airyscan FAST in super-resolution mode, using a Zeiss Plan-
Apochromat 20x dry, NA = 0.8 objective, and processed using the default Airyscan 
processing settings (Zen Black 2.3, Zeiss). Images of the Mauthner axon and myelin were 
taken from a lateral view of the spinal cord centred around somite 15, unless otherwise 
indicated.  
 
Axon diameters from AiryScan FAST confocal images were measured in Fiji using custom 
macros (available at https://github.com/jasonjearly/Axon_Caliber/releases/tag/v1.0.0) as 
previous described 48. Briefly, a “Split Axons Tool” was used on the whole spinal cord z-stack 
datasets to separate the two Mauthner axons and generate a maximum projection image of 
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each axon. The maximum intensity projection for the axon closest located closest to the 
imaging objective was then used to measure axon diameter. To measure axon diameter, an 
“Axon Trace Tool” was used to trace the centre point of the axon along its length. Then the 
“Axon Caliber Tool” was used to measure the average axon diameter along the length of the 
axon selected by the Axon Trace Tool.  
 
Zebrafish transmission electron microscopy  
Zebrafish tissue was prepared for transmission electron microscopy according to a 
previously published protocol 78. Briefly, zebrafish embryos were terminally anaesthetised 
in tricaine and incubated with primary fixative of 4% paraformaldehyde + 2% glutaraldehyde 
in 0.1 M sodium cacodylate buffer with microwave stimulation (100 W for 1 min ON, 1 min 
OFF, 1 min ON followed by 450 W for 20 s ON, 20s OFF repeated five times), followed by 3 hr 
incubation at room temperature. Tissue was then stored for 5 days at 4oC in a 2% 
glutaraldehyde post-fixative. Samples were washed in 0.1 M Cacodylate buffer and 
incubated with microwave stimulation (100 W for 1 min ON, 1 min OFF, 1 min ON followed 
by 450 W for 20 s ON, 20s OFF repeated five times) in secondary fixative of 2% osmium 
tetroxide in 0.1 M sodium cacodylate/0.1 M imidazole buffer pH7.5, then left 3 hours at room 
temperature. Samples were washed with distilled water, then stained en bloc with a 
saturated (8%) uranyl acetate solution with microwave stimulation (450 W for 1 min ON, 1 
min OFF, 1 min ON) followed by overnight incubation at room temperature. Next, samples 
were dehydrated with an ethanol series and acetone using microwave stimulation (250 W 
for 45s). Samples were embedded in Embed-812 resin (Electron Microscopy Sciences) and 
sections (70-80 nm in thickness, silver) cut using a Leica Ultracut Microtome and diamond 
knife (Diatome). Sections were mounted on hexagonal copper electron microscopy grids 
(200 Mesh Grids, Agar Scientific). Mounted sections were stained in uranyl acetate and 
Sato’s lead stain (refer to  78  for stain preparation). TEM imaging was performed at the 
University of Edinburgh Biology Scanning Electron Microscope Facility using a Jeol JEM1400 
Plus Transmission Electron Microscope. The ventral spinal cord was imaged at 12000x 
magnification. In order to create panoramic views, individual electron micrograph tiles were 
aligned using the automated photomerge tool in Adobe Photoshop 2020 (v21.0.2). To assess 
axon diameter, the Mauthner axon, as well as the next 10 largest axons in the ventral spinal 
cord were traced in Fiji (v1.51n) to obtain cross-sectional areas, which were then used to 

calculate diameter using the equation diameter = 2*√(Area
π
). 

 
Statistical analysis 
Statistical analysis was performed using GraphPad Prism 10 (up to version 10.2.3) and R 
version 4.4.1 (The R Foundation for Statistical Computing), with results included in the figure 
legends. Significance was defined as p < 0.05. For evaluation of differences between axon 
diameter means for mouse datasets, the data were fit with linear mixed effect models using 
the R package lme479, and comparisons made using ANOVA to compare the model 
containing genotype information with a null model. Evaluation of axon diameter 
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distributions for mouse data sets was carried out using the package Linear Quantile Mixed 
Models (lqmm)80, with Nelder-Mead optimization and maximum iterations set to 5000. 
Estimation of p values for the coefficients for each quantile were obtained using the block-
bootstrap method with 500 iterations. 
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FIGURES 

 

Figure 1: Normal axon diameters in optic nerves of Mbpshi/shi mice in the absence of 
compact myelin. (A-B) Representative transmission electron micrograph images from 
cross sections of the optic nerve at P75 for wild-type (MbpWT/WT) (A) and Mbpshi/shi (B) mice. 
Shaded red axons highlight large diameter axons present in both genotypes. (C) Median axon 
diameter per mouse (mean +/- standard deviation for MbpWT/WT 1.089 +/- 0.1270, n=4; 
Mbpshi/shi 1.072 +/- 0.1371, n=5, two-tailed unpaired t-test, p=0.8597). (D) Violin plots 
showing the distribution of axon diameters measured (MbpWT/WT n=4 mice, 219-291 axons 
per animal; Mbpshi/shi n=5 mice, 259-290 axons per animal). Solid horizontal line marks the 
median and horizontal dotted lines mark the quartiles. See Supplemental Figure 1 for 
distributions per animal and statistical analysis. (E) Relative frequency distribution of axons 
in (D) divided in 0.2 µm bins. Scale bars = 2 µm. 
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Figure 2: Normal axon diameters in optic nerves of Myrf cKOs in the absence of 
oligodendrocyte ensheathment and myelination. (A) Representative overview images of 
the optic nerve cut in cross section for control and Myrf cKO.  Scale bars = 50 µm. (B-C) 
Representative transmission electron micrographs from cross sections of the optic nerve at 
P14 for control (B) and Myrf cKO (C) mice. Shaded blue axons highlight large diameter axons 
present in both genotypes. Scale bars = 1 µm. (D) Cross-sectional area of the optic nerve 
(mean +/- standard deviation for control 37220 +/- 2914, n=4; Myrf cKO 21331 +/- 2618, n=4, 
two-tailed unpaired t-test, ****p=0.0002). (E) Axon density in the optic nerve (mean +/- 
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standard deviation for control 1.31 +/- 0.25, n=4; Myrf cKO 2.73+/- 0.43, n=4, two-tailed 
unpaired t-test, **p=0.0055). (F) Number of axons in the optic nerve estimated using the 
axon density and optic nerve cross-sectional area measurements (mean +/- standard 
deviation for control 48467 +/- 6874, n=4; Myrf cKO 49937+/- 6302, n=4, two-tailed unpaired 
t-test, p=0.7633). (G) Median axon diameter in the optic nerve per mouse (mean +/- standard 
deviation for control 0.514 +/- 0.040, n=4; Myrf cKO 0.5398+/- 0.039, n=4, two-tailed 
unpaired t-test, p=0.3911). (H) Violin plots showing the distribution of diameters for all axons 
measured (control n=4 mice, 214-301 axons per animal; Myrf cKO n=4 mice, 260-290 axons 
per animal). Solid horizontal line marks the median and horizontal dotted lines mark the 
quartiles. See Supplemental Figure 2 for distributions per animal and statistical analysis. (I) 
Relative frequency distribution of axons in (H) divided in 0.2 µm bins. (J) Axon diameters for 
all axons measured color coded based on whether the axon is myelinated (green) or 
unmyelinated (black). 
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Figure 3: Absence of oligodendrocytes and myelin does not influence Mauthner axon 
diameter growth. (A) Brightfield images of 5 dpf larval zebrafish. (B) Fluorescent image of a 
5 dpf larval zebrafish in which all myelin has been labelled using the transgenic reporter line 
mbp:EGFPCAAX. (C) Myelin in the zebrafish spinal cord (somite 15) at 2.5 dpf and (D) 5 dpf 
labelled using the transgenic reporter line mbp:EGFPCAAX. (E) Representative images of the 
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Mauthner axon and oligodendrocytes/myelin at 5 dpf (somite 15) in control zebrafish and 
zebrafish injected with an olig2 MO to eliminate oligodendrocytes and myelin. (F) Time 
course analysis of axon diameter growth (somite 15) for individual Mauthner axons imaged 
daily from 2 to 5 dpf. No significant difference between control and olig2 MO (n=13 control, 
16 olig2 MO axons from individual fish, 2-Way RM ANOVA, p=0.7864). (G) Representative 
transmission electron microscopy images of the 5 dpf ventral spinal cord (somite 15-16) in 
control and (H) olig2 MO-injected zebrafish. Purple shading highlights the Mauthner axon 
and magenta shading highlights the next 10 largest axons (I) Mauthner axon diameter 
measured from 5 dpf transmission electron microscopy images (n=6 control, 6 olig2 MO 
axons from individual fish, two-tailed unpaired t-test, p=0.5064). (J) Average diameter of the 
ten largest axons (*excluding Mauthner) in a hemi-ventral spinal cord (n=6 control, 6 olig2 
MO fish, two-tailed unpaired t-test, p=0.6124). (K) Time course analysis of axon diameter 
growth (somite 15) for individual Mauthner axons imaged from 5 to 9 dpf. No significant 
difference between control and olig2 MO (n=20 control, 9 olig2 MO axons from individual 
fish, 2-Way RM ANOVA, p=0.7693). (L) Mauthner axon diameter at 9dpf for the same axons 
at somite 8, 15, and 22 in control and olig2 MO injected zebrafish. There are no significant 
differences between control and olig2 MO (n=24 control, 13 olig2 MO axons from individual 
fish, 2-Way RM ANOVA, p=0.7802). (M) Schematic depicting the locations imaged along the 
Mauthner axon in panel L. (N) Representative image of a partially myelinated Mauthner axon. 
(O) Comparison of axon diameter along adjacent unmyelinated and myelinated regions of a 
partially myelinated Mauthner axon at 7 dpf. There is no significant difference between 
myelinated and unmyelinated regions (n=9 axons from individual zebrafish, Two-tailed 
paired t-test, p=0.0826). Scale bars = 500 µm (A,B); 20 µm (C,D); 10 µm (E,N); 1 µm (G,H). 
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Supplemental Figure 1: Normal axon diameters in Mbpshi/shi optic nerves at P75. (A) Axon 
diameter distribution for each animal. Solid horizontal line marks the median and horizontal 
dotted lines mark the quartiles.  To evaluate possible differences between groups, while 
also accounting for all observations made from each animal, we fit the data with linear 
mixed effects models that included animal identity as a random effect and genotype as a 
fixed effect. Comparison to a null model did not reveal any significant effect of genotype on 
the mean diameter (p = 0.939, Chisq = 0.0058, df = 1, chi squared test). Evaluation of the 
distribution of the diameters using quantile analysis did not identify differences at the 
quartile boundaries (first and second quartile boundary: p = 0.74; median: p = 0.74; third and 
fourth quartile boundary: p = 0.70, block-bootstrap). (B) Log transformation of data in (A). A 
similar analysis to (A) also did not reveal a significant effect of genotype on the mean axon 
diameter (p = 0.836, Chisq = 0.0429, df = 1) or differences at the quartile boundaries (first 
and second quartile boundary: p = 0.68; median: p = 0.75; third and fourth quartile boundary: 
p = 0.71, block-bootstrap). 
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Supplemental Figure 2: Normal axon diameters in Myrf cKO optic nerves at P14. (A) Axon 
diameter distribution for each animal. Solid horizontal line marks the median and horizontal 
dotted lines mark the quartiles. Evaluation of linear mixed effects models that included 
animal identity as a random effect and genotype as a fixed effect did not reveal any 
significant effect of genotype on the mean diameter (p = 0.80, Chisq = 0.0664, df = 1, chi 
squared test). Evaluation of the distribution of the diameters using quantile analysis 
suggested a possible defect of genotype on the boundary between the first and second 
quartiles (p = 0.0046, block bootstrap) did not identify differences in the median or at the 
boundary between the third and fourth quartile (median: p = 0.88; third and fourth quartile 
boundary: p = 0.80). (B) Log transformation of data in (A).  A similar analysis to (A) also did 
not reveal a significant effect of genotype on the mean axon diameter (p = 0.406, Chisq = 
0.691, df = 1) or differences at the quartile boundaries (first and second quartile boundary: 
p = 0.086; median: p = 0.40; third and fourth quartile boundary: p = 0.79, block-bootstrap).  
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