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Abstract: Energy-based source localization is an important problem in wireless sensor networks
(WSNs), which has been studied actively in the literature. Numerous localization algorithms,
e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have
been reported. In the literature, there are relevant review papers for localization in WSNs, e.g.,
for distance-based localization. However, not much work related to energy-based source localization
is covered in the existing review papers. Energy-based methods are proposed and specially designed
for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review
of these different algorithms for energy-based single and multiple source localization problems,
their merits and demerits and to point out possible future research directions.

Keywords: wireless sensor network (WSN); source localization; maximum likelihood method;
least-squares method; Cramer–Rao bound (CRB)

1. Introduction

Wireless sensor networks (WSNs) are often used for monitoring tasks, such as detection,
classification, localization and tracking of one or more targets in two-dimensional (2D) or
three-dimensional (3D) sensor fields [1–5]. Due to the limited resources for sensing, communication
and computation in WSNs, energy-efficient collaborative signal processing algorithms are needed [4,6].
The localization problem has received considerable attention recently [7–10]. Source localization in
wireless sensor networks (WSNs) is an important problem encountered in many indoor and outdoor
applications [2,5,7,11–14].

There has been a rich history of published work that attempts to solve the source localization
problem in WSNs. These solutions fall into three categories, in which the localization solutions are
based on three different types of physical measurements: (1) time of arrival (TOA) [15–20] or time
difference of arrival (TDOA) [21–25]; (2) direction of arrival (DOA) [4,26,27]; and (3) received signal
strength (RSS) or energy [1,7,11,12,28–38].

Among three types of physical measurements, TOA and TDOA requires high precision hardware
for timing purposes. Usually, in passive source localization, we do not know the propagation
time. Hence, TDOA-based methods are chosen instead of TOA-based ones, however, in which
the time synchronization problem arises. This needs extra calibrations. Furthermore, these time-based
methods require precise acquisition of the phases of the signals arriving at different nodes. However,
the features of some signals tend to be narrow-band, making precise phase acquisition difficult in
a noisy environment.

DOA-based methods need sensors equipped with antenna sub-arrays, e.g., a microphone sensor
in acoustic networks, each capable of independently detecting the source signal and producing a
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DOA bearing estimate. The crossings of these bearing estimates are then combined to produce
an estimate of the most likely source location. DOA-based methods can be used for narrow-band
signals. In [27], a DOA-based collaborative acoustic environmental monitoring system is developed.
An embedded networked sensing box (ENSBox) platform is used, which can measure DOA from birds,
etc. The method in this paper can be used to localize actual animals in their natural habitat. However,
deploying many ENSBox nodes can be prohibitively costly.

Compared to the TDOA and the DOA methods, RSS- or energy-based approaches are attractive
because they are widely applicable to WSNs, do not require additional hardware and can reuse the
existing wireless infrastructure. Hence, in this paper, we are more interested in source localization
using RSS or energy measurements in acoustic sensor networks.

For the acoustic sources, the wideband signal model may be more appropriate. Since acoustic
signals are unmodulated and may contain a wider bandwidth. In many cases, we are interested
in locating the source in the near-field [4]. Here, the term ”near-field” means the sensors are
close to the source. In [4,26], the authors explained acoustic source localization and beamforming
problems well. In their work, maximum likelihood-based methods were used to solve the DOA
source localization problem using near-field wide-band acoustic signals. Recently, in [39], by using
distributed asynchronous sensors, acoustic source localization was achieved using the TDOA technique.
Another good work done in acoustic source localization is [40]. In this work, the authors presented a
low-complexity method for acoustic event detection and localization considering a change detection
statistical framework. Two possible implementation approaches based on the efficient cumulative sum
(CUSUM) algorithm [41], namely CUSUM-FT (fixed time) and CUSUM-ML (maximum likelihood),
were presented and discussed. For the source localization method, the TDOA technique was adopted.
A real implementation was conducted to demonstrate the validity of the proposed CUSUM method in
a rectangular room of dimensions of 7 m × 6 m. For noisy and reverberant environments, in [42–44],
a wide range of acoustic source localization methods based on steered-response power (SRP) was
proposed, e.g., the steered response power-phase transform (SRP-PHAT) algorithm in [43], a modified
SRP-PHAT in [42], etc.

The methods for acoustic source localization presented above can be categorized as signal-based
methods, which are different from energy-based ones. Energy estimates of the source are obtained at
each sensor via averaging of the data samples; these single estimates are fused either in a centralized
(transmitted to a fusion center) or decentralized fashion to form the final localization estimate. For some
scenarios, signal-based methods may offer improved performance versus energy-based methods since
the information conveyed in all samples is directly exploited (without averaging), but at the expense
of larger transmission resources, e.g., wireless bandwidth [37]. The energy-based model was first
presented in [7,29], which is derived from the acoustic RSS model. In essence, the energy of the
signal is the average RSS measurements over the time window [t− T/2, t + T/2]. An energy-based
approach for acoustic source localization is an appropriate choice since the acoustic energy emitted by
the sources usually varies slowly. As such, the acoustic energy time series can be sampled at a much
lower rate compared with the raw acoustic time series [7]. Therefore, few data will be transmitted
to the fusion center via the often congested wireless communication channels. This will reduce the
energy consumption for data transmissions at the individual sensor node and save communication
bandwidth over shared wireless channels.

This paper provides a survey on the energy-based source localization in acoustic sensor networks.
Most of the works in the literature focus on the single source localization case. In this paper,
an overview of different methods, including weighted least-squares (WLS) [28,29,35,37], semidefinite
programming [30,45], second-order cone programming (SOCP) [46] and project-onto-convex set
(POCS) [38], will be provided. Furthermore, two methods for the energy-based multiple-source
localization problem, i.e., the multi-resolution (MR) search method and an efficient expectation
maximization (EM) method, will be introduced.
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The paper is organized as follows. Section 2 briefly introduces the energy-based sensing model.
Sections 3 and 4 present the algorithms for the single and multiple source localization problems,
respectively. Section 5 concludes the paper and points out possible future research directions.

2. Energy-Based Sensing Model

The model below is widely used for acoustic signals [7,28,29,47]. The acoustic signal received by
a sensor at time instant n can be expressed as:

z(n) = γ
P(n)
d(n)

+ ε(n) = s(n) + ε(n), (1)

where z(n) represents the acoustic intensity, γ is the gain factor of the sensor, P(n) denotes the intensity
of the source signal measured at a location with distance of 1 m from the source, d(n) is the distance
between the sensor and source and ε(n) is modeled as a zero-mean additive white Gaussian (AWGN)
noise with variance ς2.

The energy-based model was first presented in [7,29,48], which is derived from the acoustic RSS
Equation (1). In essence, the energy is the average intensity measurements over the time window
[t− T/2, t + T/2].

Assume that ε(n) and P(n) are uncorrelated, such that:

E{P(n)ε(n)} = E{P(n)}E{ε(n)} = 0.

Then, one may represent the acoustic energy as (setting g = γ2, and S(n) = E{P2(n)}):

E{s2(n)} = γ2 E{P2(n)}
d2(n)

= g
S(n)
d2(n)

. (2)

In practice, the expectation is realized using the ensemble average over a time window T = M/ fs,
where M is the number of sample points used for estimating the acoustic energy received by the sensor
during the time interval T and fs is the sampling frequency. The average energy measurement over
the time window [t− T/2, t + T/2] denoted by y(t) is given by:

y(t) =
1

fsT

(t+T/2) fs

∑
n=(t−T/2) fs

z2(n) =
1

fsT

(t+T/2) fs

∑
n=(t−T/2) fs

s2(n) +
1

fsT

(t+T/2) fs

∑
n=(t−T/2) fs

ε2(n). (3)

Then, according to the result in Equation (2), Equation (3) can be rewritten as:

y(t) = g
S(t)
d2(t)

+ w(t). (4)

The square of the background noise ε2(n) in Equation (3) will have a χ2 distribution with the
mean equal to E{ε2(n)} = ζ2 and the variance equal to 2ζ4/M. If M is sufficiently large (M � 30),
according to the central limit theorem, w can be approximated well with a normal distribution, namely
w ∼ N(ζ2, 2ζ4/M).

3. Single Source Localization: Algorithms and Analysis

This section covers the single source localization case for energy-based methods. Considering the
implementation issue, source localization algorithms can be categorized as three types: centralized,
sequential and fully-distributed, as shown in Figure 1. In a centralized algorithm, as shown in Figure 1a,
the sensors need to transmit the data to a central point or a fusion center for source location estimation.
However, in a sequential or a fully-distributed method, no fusion center is required. As shown in
Figure 1b, for the sequential algorithms, the measurements by the sensors are processed sequentially
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through the networks. A specified data transmitting path is needed. How to do path planning in such
networks is a big issue. Furthermore, the convergence rate is low when the sensor density is high
and data transmission becomes unreliable when some of the nodes fail; while in a fully-distributed
algorithm, as shown in Figure 1c, at each time step, the sensors can exchange their estimates with
their one-hop neighbors. All of the sensors update their estimates simultaneously, and finally, they are
able to achieve consensus on a possible minimizer asymptotically. The fully-distributed algorithms
avoid the path planning problem in the sequential distributed method and improve the robustness of
the network.

(a) Centralized (b) Sequential (c) Fully distributed

Figure 1. Types of source localization algorithms.

Centralized methods: The first work on energy-based source localization was done by Li and
Hu. In their papers [28,29], the energy-ratio least-squares (ER-LS) method is proposed. The first step
of this method is to obtain the energy-ratio to eliminate the unknown parameter S(t). Then, in the
second step, the localization of the source is solved by minimizing a nonlinear least-squares cost
function. This method is an approximate solution for maximum likelihood estimation (MLE) for single
source localization. Another method reported in their work is two-dimensional CPA (closest point of
approach). In general, the CPA method searches for the sensor with the maximum energy reading for
the single source situation. However, the estimation accuracy of this method highly depends on the
density of the sensors. In [35], a two-stage algebraic closed-form solution was presented. The first stage
computes the source location together with an auxiliary variable using the weighted least-squares
method. The second stage explores the relationship between the source location and the auxiliary
variable to improve the location estimation. In [30], a weighted direct least-squares formulation
was presented in [37] that provides a tradeoff between performance and computational complexity.
In [45,46,49], the source localization problem was formulated using semi-definite programming and
second-order cone programming methods.

Sequential methods: In [34], Rabbat and Nowak proposed a distributed implementation of the
incremental gradient (IG) algorithm to solve the nonlinear least-squares problem. However, in their
work, the source energy S(t) is assumed to be known. Later in [32], they propose to use a kernel
averaging estimator for robust source localization. In [38], Blatt and Hero first formulated the source
localization as a convex feasibility problem (CFP) and proposed to use a projection-onto-convex sets
(POCS) method. This method can be implemented in a distributed manner. However, the convergence
of the method is verified by simulation, and no rigorous analysis is provided. An incremental
optimization algorithm for maximum likelihood-based source localization was proposed in [36].

Fully-distributed method: In [5,13], the authors formulated the source localization problem as
a convex feasibility problem (CFP) and proposed a fully-distributed method for it. In the proposed
method, sensor nodes only need to communicate with one-hop neighbors and update their estimates
simultaneously based on a projection algorithm. Finally, they are able to achieve consensus on
a possible minimizer asymptotically. The proposed method has low complexity and can achieve global
optimality fast.
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In the following, we will give more details about the algorithms for the energy-based single source
localization problem.

3.1. Centralized Algorithms

In this part, we give a brief introduction about the existing methods for centralized source
localization. For the energy-based source localization using weighted least-squares method, we mainly
introduce algebraic closed-form solutions proposed in [28,29,35]. The interested readers are referred
to [30,37] for the alternative methods therein.

Let the source be located at an unknown coordinate pair θ = [x, y]T . We assume that there are N
sensor nodes performing sensing based on energy detection. The location of the i-th sensor is denoted
by ri = [xi, yi]

T , i = 1, 2, . . . , N.
Here, we reproduce the energy-based sensing model for convenience.

yi(t) = gi
S(t)
d2

i
+ εi(t), (5)

where di = ‖θ − ri‖ is the Euclidean distance between the i-th sensor and the source. For simplicity,
let us assume the mean ζ2 has been subtracted from Equation (5) so that εi follows a zero mean
Gaussian distribution with variance σ2

i = 2ζ4/M.

3.1.1. Unconstrained Least-Square Method

In [29], the authors formulated the energy-based source localization as an unconstrained
least-square problem. Firstly, the energy-ratio κij of the i-th and the j-th sensors can be computed
as follows:

κij :=
( yi/yj

gi/gj

)−1/2
=
‖θ − ri‖
‖θ − rj‖

(6)

Note that for 0 < κij 6= 1, all of the possible source coordinates θ that satisfy Equation (6) must
reside on a two-dimensional hypersphere described by the equation:

‖θ − cij‖2 = ρ2
ij, (7)

where the center cij and the radius ρij of this hypersphere associated with sensor i and j are given by:

cij =
ri − κ2

ijrj

1− κ2
ij

, ρij =
κij‖ri − rj‖

1− κ2
ij

(8)

This hypersphere is called a source location hypersphere.
Consider two hyperspheres based on Equation (7):

‖θ − ci0‖2 = ρ2
i0 ‖θ − cj0‖2 = ρ2

j0. (9)

They are formed from the sensor pairs (i, 0) and (j, 0). Subtract each side, and cancel the term
‖θ‖2; we have a hyperplane equation:

2(ci0 − cj0)θ = (c2
i0 − ρ2

i0)− (c2
j0 − ρ2

j0). (10)

Substitute the definition in Equation (8); the above equation is simplified to:

uijθ = ηij (11)
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which is a linear hyperplane equation with:

uij =
2ri

1− κ2
i
−

2rj

1− κ2
j

, ηij =
‖ri‖2

1− κ2
i
−
‖rj‖2

1− κ2
j

(12)

Then, the linear least-square cost function can be written as:

JLinear(θ) =
N−1

∑
i=1
‖uT

i θ − ηi‖2 (13)

Given the coefficients, a solution of θ can be found in closed form since there is no constraint
imposed in Equation (13) [29].

3.1.2. Weighted Least-Squares Method

The unconstrained least-square mentioned above is closed-form and is computationally attractive.
However, it is not able to reach the Cramer–Rao bound (CRB). In [35], a two-stage closed-form
least-squares method was proposed, which can achieve CRB when the signal-to-noise ratio (SNR)
tends to infinity.

From Equation (5), we can see that the measurement yi(t) is highly nonlinearly related to the
unknown source location θ and source energy S. Generally, we need to take the energy ratio to remove
the dependency of S. Without loss of generality, we choose Sensor 1 as the reference. Then, the ratios
of the energy measurements with respect to the reference can be written as:

qi1 '
y1
g1
yi
gi

=
d2

i
d2

1

(
1 +

ε1d2
1

Sg1

)(
1−

εid2
i

Sgi

)
, (14)

where (εid2
i )/(Sgi) � 1 is assumed to hold, which means the signal-to-noise ratio in the energy

measurements should be large enough [35].
Expanding the right-hand side and ignoring the second-order noise term yield:

qi1 = q◦i1 +4qi1

=
( di

d1

)2
+
( ε1d2

i
Sg1
−

εid4
i

Sgid2
1

)
, (15)

The first term is the true value of qi1, and the second term is noise. If we collect qi1, ∀i = 2, . . . , N
to form the vector q = q◦ +4q = [q21, q31, . . . , qN1]

T , then the covariance matrix of q, Q has elements:

Q[i− 1, j− 1] =


d2

i d2
j

S2g2
1
σ2

1 , i 6= j;
d4

i
S2g2

1
σ2

1 +
d8

i
S2g2

i d4
1
σ2

i , i = j.
(16)

After obtaining the formulation in Equation (15), the source localization problem was solved
by a two-stage closed-form solution proposed in [35]. The basic idea of the two-stage least-squares
method is that in the first stage, θ and d2

1 are considered as independent unknown variables. The source
estimate can be obtained using the standard weighted least-squares method. Then, in the second stage,
the relationship between θ and d2

1 is explored to improve the result. The details of the algorithm can be
found in [35].

In [37], the authors claimed that the errors that perturb the least-squares equations (based
on energy model) are not i.i.d, zero-mean Gaussian random variables. Hence, the noise term in
Equation (5) is not white, but a colored one. In [37], a weighted one-step least-squares (WOS) method
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and weighted direct least-squares method (WD) are proposed to solve the formulated energy-based
source localization problem. The WD method yields the same the location estimate as WOS. However,
WD offers lower computational complexity than WOS. Similar to the two-stage weighted least-squares
method stated above, a correction technique can be used to improve the location estimation by
incorporating the relationship of two dependent unknown variables, which is assumed independent
in the first stage. The WD with correction (WDC) method can attain CRB for the case of a white source.

3.1.3. Semidefinite Programming Method

For the centralized methods, in [45,46,49], the author formulated the energy-based source
localization problem in different ways. For example, the problem was solved by using the semidefinite
programming method [45], second-order cone programming relaxation (SOCP) [46].

Denoting Θ = θθT , and relaxing it into Θ � θθT , then the source localization problem can be
formulated using following SDP:

min
θ,Θ

N

∑
i=1

(
yi
gi

fi(θ, Θ)− 1
N

N

∑
j=1

yj

gj
f j(θ, Θ)

)2

(17)

subject to: [
Θ θ

θT 1

]
� 0 (18)

As we can see from Equation (18), the condition for the optimization function in Equation (17)
(the initial maximum-likelihood (ML) problem) is an approximated one compared to the fact that
Θ = θθT . Hence, we can claim that the SDP is an approximated solution to ML estimation of the source
localization problem. Motivated by the idea of complexity reduction while keeping the performance
at an acceptable level, the nonconvex ML-based localization problem is approximated by a convex
second-order cone programming (SOCP) optimization problem, which can be solved very efficiently
by interior point methods [50]. The basic idea of SOCP is similar to the SDP formulation. Both SOCP
and SDP can be considered as approximated ML solutions.

The SDP method perform well in terms of localization accuracy. However, its main disadvantage
is that it can only be used for centralized implementations.

3.1.4. Quantized Signal Energy

For practical systems, it will require the quantization of the measurements before transmission.
In [51–53], source localization using the quantized sensor signal energy readings was considered.
Different quantization strategies, e.g., equally distance-divided quantizer (EDQ) [51], were proposed
for energy-aware source localization. In [52], two heuristic quantization design methods were proposed
from maximum-likelihood (ML) target localization. In [53], the authors consider Byzantine attacks for
the location estimation task where each sensor uses a binary quantization scheme to send binary data
to the fusion center.

In these target localization methods with quantized signal energy, the location estimators adopt
simple or improved grid search strategies.

3.2. Distributed Algorithms

In this part, firstly, we introduce the existing sequential distributed methods and fully-distributed
projection methods.

Distributed algorithms include the sequential and fully-distributed methods. In the
literature, the distributed algorithms are mostly formulated as a convex feasibility problem (CFP).
The mathematical formulation of CFP is as follows.
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Suppose that C1, . . . , CN are closed convex subsets in a Hilbert space with intersection C:

C = C1 ∩ . . . ∩ CN

Convex feasibility problem (CFP): Find some point x in C.
We call the CFP consistent if C 6= ∅ and otherwise call it inconsistent. The projection-based

method is well studied and can be used for solving the CFP.
In this section, we firstly formulate the source problem as a CFP. Then, we will present the

sequential and fully-distributed algorithms as the solutions. Note that in the distributed algorithms,
the source energy S is assumed known a priori.

3.2.1. Convex Feasibility Problem Formulation

The maximum likelihood estimator (MLE) is found by solving the nonlinear least-squares problem
when the noise is Gaussian:

θ∗ML = arg min
N

∑
i=1

[
yi − gi

S
d2

i

]2

= arg min
N

∑
i=1

fi(θ), (19)

where fi(θ) =

[
yi − gi

S
d2

i

]2
. Clearly, fi(θ) attains its minimum of zero on the circle:

Ci = {θ ∈ R2 : ‖θ − ri‖ =
√

giS/yi}. (20)

However, due to the observation noise, the source may not appear on the circles defined

in Equation (20), but be included in a ring area, i.e.,
√

giS
yi+ζσi

≤ ‖θ − ri‖ ≤
√

giS
yi−ζσi

if a ζ − σ area of
the noise distribution is adopted, where ζ is a constant (Generally, ζ = 1–3). This will lead the source
localization problem being a non-convex optimization problem, which is generally difficult to handle.
To overcome the difficulty, a relaxation method needs to be used. We define a convex set, which is a
circular area:

Di =
{

θ ∈ R2 : ‖θ − ri‖ ≤
√

giS
yi − ζσi

}
, (21)

where only the outer ring is considered. In this paper, we set ζ = 1. Intuitively, the source may or may
not reside in Di. If the source is inside Di, ∀i, then it is easy to see that the source localization problem
can be solved by letting the estimator be a point in the intersection of the setsDi, i = 1, 2, . . . , N. That is,

θ̂ ∈ D =
N⋂

i=1

Di ⊂ R2. (22)

However, due to the observation noise, the feasibility problems may turn out to be inconsistent,
i.e., the intersection D may be empty. An illustration for the consistent and inconsistent cases is given
in Figure 2.
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    sensor s  location

    source s true location

Figure 2. Consistent case and inconsistent case [5].

Since the convex feasibility problem may turn out to be inconsistent, the localization problem can
be reformulated as finding a point θ∗ that minimizes the sum of the squares of the distances to the
convex set Di.

θ∗ = arg min
θ∈R2

N

∑
i=1
‖θ −PDi (θ)‖

2, (23)

where for a closed convex set S ⊆ R2 and vector x ∈ R2,PS (x) is the orthogonal projection of x onto S.
That is,

PS (x) = arg min
y∈R2
‖x− y‖, y ∈ S. (24)

For the source localization problem, the projection operator in Equation (24) has a closed-form
expression given as:

PDi (x) =

 x, ‖x− ri‖ ≤
√

giS
yi−ζσi

;

ri +
√

giS
yi−ζσi

x−ri
‖x−ri‖

, otherwise.
(25)

It can be easily checked that if the problem is consistent, i.e., D =
⋂N

i=1Di 6= ∅,
then ∑N

i=1 ‖θ̂ −PDi (θ̂)‖ = 0, where θ̂ ∈ G and G =
⋂N

i=1Di.

3.2.2. Sequential Algorithm

The sequential projection method, also termed POCS (projection on convex sets), is a cyclic
algorithm [38]. From Figure 1b, we can see that the data are processed across sensors in sequence.
The method is used for the energy-based source localization problem in [38]. The update rule of the
sequential projection method is given as follows:

θ(k + 1) = θ(k) + λ(k)
[
PDτ(k)

(θ(k))− θ(k)
]

(26)

where {λ(k)} is a sequence of relaxation parameters satisfying for all k, ε1 ≤ λ(k) ≤ 2 − ε2 for
some ε1, ε2 > 0, τ(k) = k mod N. The pseudocode of the sequential projection method is given by
Algorithm 1.

Theorem 1. If D =
⋂N

i=1Di 6= ∅, any sequence θ(k), k ≥ 0 converges to a point in D [54].
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Algorithm 1: Sequential projection method

(1) Initialization: Set θ(0) to be an arbitrary value.
(2) Iteration step: k ≥ 0

θ(k + 1) = θ(k) + λ(k)
[
PDτ(k)

(θ(k))− θ(k)
]

.

(3) Stopping rule: ‖θ(k + 1)− θ(k)‖ ≤ ε. where ε is a predefined threshold.

From the above theorem, we can see that the POCS algorithm has good convergence performance
in the consistent case of CFP. However, the convergence behavior of POCS in the inconsistent case is
generally unsatisfactory. A new relaxation sequence {λ(k)(k≥0)} needs to be used, which is given by:

+∞

∑
k=0

λ(k) = +∞, λ(k + 1) ≤ λ(k), lim
k→+∞

λ(k) = 0. (27)

By using the relaxation sequence stated above, the POCS will converge to a point in G, which has
been verified by simulation in [38], but no theoretical analysis is provided.

Incremental subgradient optimization method For the sequential distributed algorithms, in [36],
the authors proposed an incremental optimization algorithm called the normalized incremental
subgradient algorithm. Since in their algorithm, a simple subgradient operator is adopted, hence it is
hard to avoid the local optima solutions. The localization performance is low even though the authors
claim and prove the convergence of the proposed algorithm.

One issue of the sequential distributed algorithm is that a specified data transmitting path
is required. How to do path planning in a large sensor network is challenging. Furthermore,
the convergence rate is low when the sensor density is high, and data transmission becomes unreliable
when some of the nodes fail. Hence, the robustness of such networks is low.

3.2.3. Fully-Distributed Algorithm

To avoid the path planning problem in the sequential distributed method and improve the
robustness of the network, a fully-distributed method is useful, in which no fusion center is required
and sensor nodes only need to communicate with their closest neighbors, therefore reduces the
probability of congestion around the sink nodes and increases the robustness of the network against
node failures or unpredictable switches to sleeping mode. Note that data transmission path planning
is not needed for a distributed method.

Before introducing the proposed method, we give a brief introduction to a diffusion network.
Let us represent the network as an undirected graph defined by G := (N , E), where N is the node set
N := 1, . . . , N and E ⊆ N ×N is the edge set. If node k and node l can communicate with each other
directly, we define the undirected link by (k, l) ∈ E .

If the CFP of the source localization problem is consistent, a fully-distributed protocol that can
be used for source localization can be found in [55]. It works as follows: sensor i at time step k + 1
generates its estimate according to the following protocol:

θi(k + 1) = PDi

(
N

∑
j=1

wi
j(k)θ

j(k)

)
, (28)

where wi
j(k), i = 1, . . . , N, j = 1, . . . , N denote the weights at time step k; θi(0), i = 1, . . . , N are arbitrary.

Assumption 1. (Network connectivity) The network is connected, i.e., there exists a direct or indirect path
between any two nodes.
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Assumption 2. (Weighting rule) W(k) whose i-th row is the vector

wi(k) = [wi
1(k), . . . , wi

N(k)],

is an N × N doubly-stochastic weighting matrix with the following properties:

1TW(k) = 1T , W(k)1 = 1. (29)

In real applications, actually, it is hard to know whether the CFP of the source localization problem
is consistent or not. In this case, a new distributed localization protocol needs to be designed:

θi(k + 1) =
N

∑
j=1

wi
j(k)θ

j(k) + β(k)

[
PDi

(
N

∑
j=1

wi
j(k)θ

j(k)

)

−
N

∑
j=1

wi
j(k)θ

j(k)

]
, (30)

where β(k) is the relaxation sequence and wi
j(k) is the same as in Equation (28). We can see that if

β(k)k≥0 = 1, then the protocol Equation (30) is the same as Equation (28). The relaxation sequence β(k)
plays an important role in the convergence of the method. Next, we study the case when β(k) 6= 1.
The details will be given below.

Assumption 3. ∑∞
k=1 β(k)(1− β(k)) = ∞, β(k + 1) ≤ β(k), limk→+∞ β(k) = 0.

Theorem 2. If Assumptions 2 to 4 hold, then by using the proposed fully-distributed protocol Equation (30),
the location estimates of all sensors will converge to the optimal minimizer of Equation (23) [5].

Ring-based problem formulation: In [56], similar to the problem formulation shown in Figure 2,
the authors formulate the localization problem as the intersection computation of a group of sensing
rings as shown in Figure 3. In this work, the non-convex problem is converted into two weighted
convex optimization problems.

Similarly, the authors also consider two cases: the consistent case and the inconsistent case. For the
consistent case, the problem can be formulated as finding a point in the intersection set of the sensing
rings. However, due to the existence of noises, there is still some possibility for the source to be located
outside of the rings.

In [56], the authors propose to use a distributed protocol (refer to Equation (8) in [56]), which is
the same as Equation (30). In this work, with alternating the computing of the projection on the inner
and outer disks of each sensor, by using Protocol Equation (30), the estimates of all sensors converge to
the optimal solution of the designed ring intersection optimization problem.

The projection-based method stated above is a good choice for real implementation in a centralized
or distributed manner. However, it is hard to claim its accuracy theoretically, since it only considers
bounded noise cases.
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Figure 3. Intersection of rings. (a) consistent case; (b) inconsistent case [56].

3.3. Summary for Single Source Localization

In the above, we have provided a detailed literature review for the energy-based single source
localization problem. As we can see, plenty of algorithms have been proposed, including centralized,
sequential and fully-distributed algorithms. In this subsection, we give a brief summary for the single
source case. For the single source localization, ML-based algorithms, weighted least-squares, SDP,
SOCP, subgradient, distributed projection, etc., can be used as a solution.

Generally speaking, centralized algorithms have a low robustness to network failures. In the
designed algorithms, the fusion node is required to collect all measurements from others, and hence,
communication congestion may occur during the data transmission. In the sequential algorithms,
the sensor nodes compute the source location sequentially. Still, the network robustness is low.
The fully-distributed algorithms have their advantage: robustness and easy implementation. For the
localization accuracy performance, since in the projection-based distributed algorithms, only parts of
Gaussian noise information are used for the derivation, it is hard to evaluate and compare the accuracy
theoretically. However, simulation results in [5,56] have reported that the localization accuracy of
projection-based methods is comparable to ML-based centralized algorithms.

3.3.1. Localization Accuracy

For the localization accuracy performance, generally, centralized algorithms, e.g., weighted
least-squares, grid search, SDP, are better than POCS and its fully-distributed version [5,56]. Since in
the projection-based distributed algorithms, only parts of Gaussian noise information are used for
derivation, it is hard to evaluate and compare the accuracy theoretically. To compare all of the methods
fairly, we give an example test environment. A number of N sensors are placed randomly and
uniformly in the region of interest sized 50 m × 50 m. In the simulations, we vary the noise level
and the number of the sensors in the field. The comparison results are shown in Figures 4 and 5.
In the figures, ML represents the grid search (with a 1× 1 meter-sized grid), and LS represents the
unconstrained least-squares method.

From the results, we can see that the SDP and WDC methods outperform the POCS and LS-based
ones. For the POCS method, the noise term is ignored even though global optimization can be achieved.
LS uses the general linear least-squares strategy, and the relationship between the unknown parameters
is not considered.
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Figure 4. The noise levels versus RMSE. WDC, weighted direct least-squares method with correction;
SDP, semidefinite programming; POCS, projection-onto-convex set.
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Figure 5. The number of sensors versus RMSE.

3.3.2. Computational Complexity

For the computational complexity, for the grid search, its complexity isO(N3). For the WDC-based
methods, it is reported that the complexity is at the level of O(N2). SDP- or SOCP-based methods
usually have a larger computational complexity. They both have a complexity in the order of O(N3.5).
For POCS-based methods, its computational complexity is the lowest, which is in the order of O(N).
However, it will also depend on the number of iterations upon the convergence of the POCS.

3.3.3. Communication Burden

For the centralized methods, all of the sensor measurements have to be transmitted to a fusion
center or one of the sensors. For the fixed quantized level of energy estimates, yi and sensor coordinates,
conveying the information from the sensors to a fusion center requires the transmission of O(N) bits
over a distance of O(1) per bit [38]. However, for POCS-based ones, O(N) bits are transmitted
over a distance of O(log2 L/L) per bit. Hence, it can be seen that the communication burden grows
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linearly with the number of sensors in the centralized approaches and sublinearly (
√

L log L) in the
decentralized approach.

Generally speaking, in sensor networks, it has been shown if the application and the sensor
architecture permit, it is much more energy efficient to perform distributed local processing than to do
central processing that requires extensive communication [4]. Of course, not all algorithms can use
distributed/decentralized processing. It has been reported that POCS [38] and WDC [37] can be run in
a distributed way.

3.3.4. Implementation Issue

As we reported in this survey paper, most of the works done in the literature are algorithm
developments. In these works, computer simulations are normally used to verify the corresponding
algorithm performance in terms of complexity, accuracy, power consumption, etc. In view of the
real implementation issue, the SDP algorithm is hard to implement in a large sensor network, since
it can only be run in a centralized way. Distributed convex optimization methods, such as POCS,
are easier to implement in a centralized, sequential or fully-distributed manner. In addition, POCS
can be used for a large sensor network. LS-based methods, i.e., WDC, can also be implemented in a
larger sensor network compared to SDP, but still, LS methods can be run in a fully-distributed manner.
Hence, for the real implementation, POCS-related methods are highly recommended due to their high
robustness to the network failures.

4. Multiple Source Localization: Algorithms and Analysis

In this section, we introduce the methods to solve the energy-based multiple source localization
problems. The multiple source localization problem is more difficult since the sensor measurement is
a superimposition of energy signals emitted from multiple sources. The number of unknown variables
is quite large, and hence, an efficient number of sensors should be deployed to take the measurements.

We consider a signal model as in [7]. We assume that a total of N sensors is deployed, and K static
acoustic sources are present in the sensor field, where K is the known number of acoustic sources.
A fusion center is used to collect the measurement data of the sensors and to run the source localization
algorithm. The locations of sensors, denoted by ri = [xi, yi]

T , i = 1, . . . , N, are known to the fusion
center. The locations of sources, denoted by rsk = [xsk, ysk]

T , k = 1, . . . , K, are unknown. The signal
energy received by sensor i at time t is:

yi(t) = ysi(t) + wi(t) = gi

K

∑
k=1

Sk(t)
dα

ik(t)
+ wi(t), (31)

where dik = ‖ri − rsk‖ is the Euclidean distance between the i-th sensor and the k-th source; α denotes
the unknown decay factor with typical value in the range from two to four; Sk(t) is the signal energy
at one meter away from the k-th source; gi is the gain factor of the i-th sensor; wi(t) is a Gaussian
measurement noise with mean µ and variance σ2, i.e., wi(t) ∼ N(µ, σ2).
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In the following, the time t is omitted for brevity. We define the following matrix notations.

Y = [y1 − µ, y2 − µ, . . . , yN − µ]T ,

H = diag {1/σ, . . . , 1/σ}︸ ︷︷ ︸
N

,

D =


g1
dα

11

g1
dα

12
. . . g1

dα
1Kg2

dα
21

g2
dα

22
. . . g2

dα
2K

...
...

. . .
...

gN
dα

N1

gN
dα

N2
. . . gN

dα
NK

 ,

S = [S1, S2, . . . , SK]
T ,

ε = [ε1, ε2, . . . , εN ]
T ,

where εi = (wi − µ)/σ ∼ N(0, 1), i = 1, 2, . . . , N, are independent Gaussian random variables.
T means the transpose of a matrix.

Using these matrices, Equation (31) can be rewritten as:

HY = HDS + ε. (32)

In addition, we denote:

R = DS = [
K

∑
k=1

R1k,
K

∑
k=1

R2k, . . . ,
K

∑
k=1

RNk]
T ∈ RN×1, (33)

where Rik = gi
Sk
dα

ik
, i = 1, . . . , N.

Then, the joint probability density function of Y can be expressed as:

f (Y|θ) = (2π)−N/2exp(−1
2
(HY−HR)T(HY−HR)), (34)

where:
θ = [rT

s1, rT
s2, . . . , rT

sK; S1, S2, . . . , SK; α]T ,

and α is the decay factor.
The negative log-likelihood function is proportional to the quadratic form:

`(Y|θ) = (HY−HR)T(HY−HR), (35)

which can be expressed as:
`(Y|θ) = (Y−R)TJ−1(Y−R), (36)

where J−1 = HTH and J = diag {σ2, . . . , σ2}︸ ︷︷ ︸
N

.

4.1. Multiresolution Search Method

A straightforward method to find a solution that maximizes the likelihood function is exhaustive
search. However, the computation cost is extremely high, especially when there are multiple sources.
For example, let there be K sources and q grid points to be searched in each dimension. Then the
total number of search points with a two-dimensional sensor field will be equal to q2K. While the
computation complexity may be feasible for a desktop computer, it is likely to be excessive for low
power sensor nodes with limited computing capabilities.
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In [7], a multiresolution (MR) search method is proposed to mitigate the exponentially-growing
computation complexity. Among several choices, a logarithmic MR search strategy will examine only
w points in each dimension per iteration, where q = wm, with m being the number of iteration. In each
iteration, only w2K grid points needs to be searched. Then, another iteration of the search will be
confined in the neighborhood of the current best solution by subdividing the coarser mesh around the
current solution into w subdivisions and performing the search. After m iterations, the MR method
will search at a grid size equal to that of the exhaustive search. However, the total search points will be
m× w2K rather than q2K = w2mK.

Obviously, due to the coarser search grid at the earlier iterations, the MR method may be trapped
in a local minimum and yields an inferior solution.

4.2. Expectation-Maximization Algorithm

In order to further reduce the computational complexity and improve the localization performance,
an efficient expectation-maximization (EM) algorithm for multiple source localization is proposed
in [11].

Basic idea: For the EM algorithm, the basic idea is to decompose the aggregative energy signal
into individual components and then estimate the corresponding location parameters separately
for each source. The algorithm starts with the initialization based on a sequential dominant-source
(SDS) scheme described in the next subsection. Each iteration consists of an E-step, an M-step and
a decay factor parameter update step. In the E-step, we decompose the received energy of sensors
to get the hidden data, which represent the signal energy received by the sensors from a source.
In the M-step, a search method will be used to get the optimal source location estimate. In this work,
an incremental parameterized search refinement scheme, i.e., the β-parameterized search method,
is used. After getting the source location estimates, source energy can be computed accordingly.
Then, using the estimated source energy information and location information, the decay factor can be
obtained by using the normalized incremental gradient method. The details of the implementation of
the algorithm can be found in [11].

4.3. Summary for Multiple Source Localization

According to our knowledge, there is not much work done in the energy-based multiple source
localization problem as summarized in Table 1. The main reason is that the problem formulated is
hard to solve, especially in an optimal way. The MR search-based method can be seen as a direct way
to solve the problem. In this method, exhaustive search in a multiresolution manner is adopted to find
solutions to minimize the log-likelihood function in Equation (36). Clearly, this kind of search method
has a high computational complexity.

Instead, the improved EM algorithm proposed in [11] first decomposes the received energy from
multiple sources by the sensors. Then, the incremental search method is applied for single source
estimation. Since, in the search phase, the effort is only made for a single source, the computing
resources are greatly saved.

Table 1. Multiple source localization problem. MR, multiresolution.

Algorithms Representing Works Localization Accuracy Computational Complexity

MR search [7] Achieving CRB Exponential with the number of sources
Improved EM algorithm [11] Achieving CRB Linear with the number of sources

5. Conclusions and Potential Research Directions

In this paper, a comprehensive review of energy-based single and multiple source localization
algorithms was given. Firstly, we gave a brief introduction about the existing work on centralized,
sequential and fully-distributed algorithms for the single source localization problem. Generally
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speaking, most of the existing algorithms are approximated ML estimation methods; for example, the
SDP methods, POCS, WLS, etc. Simulation results were provided to compare these existing methods
under different view points, such as computational complexity, communication issues, implementation
issues, etc. For the multiple-source localization problem, the MR search method and EM algorithm are
introduced briefly. Intuitively, the MR search method can work, but its computational complexity is
high. The EM algorithm performs well if the initialization is good enough.

5.1. Discussion on Field Experiments

For field experiments for energy-based approaches, actually in the literature, not much work has
been done. In [57], by using real corrupted or noisy signals collected from acoustic sources, such as a
car, a helicopter and speech, source energy is then calculated. Simulation experiments are conducted
by using ML-based methods.

Measurement noise and the real communication channel will be different from our assumption
in this paper. To improve the localization accuracy in real field implementations, the noise model
and energy decay factor need to be considered carefully. Model uncertainty, data uncertainty and
environment uncertainty are three key issues to be incorporated in the problem formulation for
real implementations. Perhaps the EM algorithm can be used to estimate the unknown parameters,
especially for the energy decay factor [58].

Time synchronization and synchronization errors caused may be a big challenge compared to
signal-based approaches; since for the energy-based approaches, the time duration for averaging has to
be consistent among the sensors. Processing speeds for the sensor computing processors are different.
This will also be challenging to localize and track sources with higher moving speeds.

5.2. Future Research Directions

For the future research directions, the following points are worth noting:

• Although much work has been done on the source localization of wireless sensor networks
using static sensors, mobility is still one of the lesser explored aspects of this field. If sensors are
mobile, few papers have dealt with the issue. A possible research direction is to share mobility
information among sensors. Furthermore, if sensors can measure relative velocity to the source,
this information can also be used to improve the localization accuracy.

• For the multiple-source localization problem, the researchers may consider combining two or
more different types of sensor measurements. In addition, one interesting research direction is to
simultaneously localize several different types of acoustic sources, i.e., several different animals,
cars, etc.

• For energy-based acoustic source localization, it is interesting to mount the acoustic sensors
to certain useful platforms to demonstrate the algorithms in real environments; for example,
miniature quadrotors, warships, etc.
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