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Abstract: The impacts of sex differences on the biology of various organ systems and the influences
of sex hormones on modulating health and disease have become increasingly relevant in clinical
and biomedical research. A growing body of evidence has recently suggested fundamental sex
differences in cardiovascular and cognitive function, including anatomy, pathophysiology, incidence
and age of disease onset, symptoms affecting disease diagnosis, disease severity, progression, and
treatment responses and outcomes. Atrial fibrillation (AF) is currently recognized as the most
prevalent sustained arrhythmia and might contribute to the pathogenesis and progression of vascular
cognitive impairment (VCI), including a range of cognitive deficits, from mild cognitive impairment
to dementia. In this review, we describe sex-based differences and sex hormone functions in the
physiology of the brain and vasculature and the pathophysiology of disorders therein, with special
emphasis on AF and VCI. Deciphering how sex hormones and their receptor signaling (estrogen
and androgen receptors) potentially impact on sex differences could help to reveal disease links
between AF and VCI and identify therapeutic targets that may lead to potentially novel therapeutic
interventions early in the disease course of AF and VCI.

Keywords: sex differences; sex hormones; atrial fibrillation; vascular cognitive impairment; androgen
receptor; estrogen receptor

1. Introduction

Sex hormones are steroid hormones that bind to sex hormone receptors; they are
also referred to as sex steroids, gonadocorticoids, and gonadal steroids. Androgens and
estrogens—the main sex hormones—act differently in males and females. Hormonal effects
are primarily mediated by rapid nongenomic actions through membrane-associated recep-
tor signaling cascades and by slow genomic actions via classical sex steroid receptors [1,2].

17β-Estradiol, also referred to as E2, is the most potent and prevalent form of estrogen;
it is synthesized mainly in granulosa cells of the female ovaries and male Sertoli cells.
Estrogen synthesis also occurs locally in the central nervous system from cholesterols or
is converted from aromatizing androgens in presynaptic terminals [2]. Testosterone is
converted to E2 via P450 aromatase in the hypothalamus of men, where mental/social
sex determination occurs [3]. E2 exerts its physiological effects by activating various
estrogen receptors (ERs), which have at least three forms: ERα, ERβ, and membrane-
bound G protein-coupled ER (GPR30/GPER1) [4]. ERα and ERβ are well-studied nuclear
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steroid receptors that are associated with the cytoplasm, plasma membrane, and nucleus
in vascular smooth muscle cells, cardiomyocytes, and vascular endothelial cells in the
mammalian cardiovascular system [5–7]. Both types of ER function as ligand-activated
transcription factors and therefore exert long-term genomic effects by modulating gene
expression through direct interaction with highly conserved DNA-binding domains of
nuclear ERs and estrogen response elements located near the promoter or enhancer re-
gions of estrogen-targeted genes [4]. GPR30/GPER1, which is highly expressed in the
hypothalamic–pituitary–adrenal axis, has been shown to act as a membrane ER mediating
the nongenomic effects of E2 [8]. GPR30/GPER1 signaling has been shown to improve
spatial memory, possibly via neurotransmitter release and generation of new spines on
hippocampal neurons [8]. Moreover, GPER1 activation leads to the phosphorylation of the
classical intracellular ERα, suggesting that crosstalk with ERα contributes to anxiety and
social behaviors, such as social memory and lordosis behavior, in mice [8].

Testosterone, the principle androgen, is mainly synthesized in male testicular Leydig
cells and female ovarian theca cells and secreted into the blood stream. It is converted into
a more potent androgen, dihydrotestosterone (DHT), by 5α-reductase in the testes and
prostate (in men), ovaries (in women), skin, and other parts of the body. Both androgens
serve as ligands for androgen receptor (AR), a ligand-dependent transcription factor and
a member of the nuclear receptor gene superfamily that mediates androgen signaling in
males and females [9]. Upon binding to testosterone or DHT, AR undergoes conforma-
tional changes to recruit several essential co-regulators, translocates into the nucleus, and
regulates the actions of genomic androgen by interacting with androgen response elements
(AREs) located near the promoter or enhancer regions of androgen-targeted genes [1]. Nu-
merous AR co-regulators play vital roles in AR stability and transcription, which influence
proteasome degradation and affect their ligand and DNA-binding capabilities [1]. AR is
expressed in several vascular cell types, such as smooth muscle cells, endothelial cells,
and blood cells including macrophages and platelets [10,11]. Several physiological regula-
tors of cardiovascular function, such as nitric oxide release, Ca2+ mobilization, vascular
apoptosis, hypertrophy, calcification, senescence, and reactive oxygen species generation,
are influenced by nongenomic androgen actions [11].

In the heart and brain of both males and females, sex hormones regulate the structure
and function of cardiovascular and neural systems to modulate behavior and disease
patterns at distinct molecular and cellular levels via the actions of sex hormone recep-
tors [12]. Sex differences have been observed in diseases such as atrial fibrillation (AF) and
vascular cognitive impairment (VCI). These sex differences and differential responses to
sex hormones in the diseases of heart and brain, which influence cardiovascular and cogni-
tive functions, were previously considered as separate events. Now, emerging evidences
indicate that hormonal communications between the heart and brain occurs partly through
the cerebral vasculature, where sex hormone signaling may act differently in male and
female via the genomic and nongenomic actions of sex hormone receptor.

2. Sex Differences in AF
2.1. Sex Differences in the Epidemiology and Clinical Outcomes of AF

Evidence shows that the incidence of AF is higher in men than in women. Women with
AF are older and have a higher prevalence of hypertension, valvular heart disease, and
heart failure (HF) with preserved ejection fraction and lower prevalence of coronary
artery disease than men with AF [13,14]. Women with AF were found to be more often
symptomatic than men, with greater symptom severity [13,14]. In previous studies, women
with AF had significantly higher rates of life-threatening adverse events (e.g., acquired
long QT syndrome with class Ia or III antiarrhythmic drugs) [15,16] or sick sinus syndrome
requiring pacemaker implantation [17] following rhythm control with antiarrhythmic
drugs than men. Women with AF were less likely to undergo electrical cardioversion and
experience more delayed AF catheter ablation referral than men, possibly reflecting the
occurrence of AF later in life among women [14,18–20]. Although catheter ablation showed



Int. J. Mol. Sci. 2021, 22, 8776 3 of 20

better results than drug therapy for reducing the incidences of AF and stroke [21–23],
women may have less favorable outcomes [19,20], with higher rates of procedure-related
complications [19], than men. Women were more likely to undergo atrioventricular nodal
ablation for AF than men [24]. Previous studies also showed that women had increased
hospitalization rates due to AF recurrence after AF ablation but were less likely to undergo
repeat ablation or cardioversion [25,26].

2.2. Pathophysiology of Sex Differences in AF

The pathophysiology of AF development is associated with autonomic neural control
and electrical and structural remodeling [27]. The mechanisms of sex differences in AF may
involve structural, electrophysiological, and cardiac autonomic modulation and neuro-
humoral responses [28].

2.2.1. Structural Remodeling

Although healthy women have relatively smaller left atria than men, women referred
for AF ablation had larger left atria, possibly due to older age, longer AF duration, and more
comorbidities [29–31]. Cardiac fibrosis is critical for AF development, with the more
pronounced fibrosis in women possibly being associated with TGFβ/Smad3 pathway
upregulation and older age [32].

Epicardial fat has also been correlated with higher AF prevalence, progression to atrial fibro-
sis, permanent AF, and even higher recurrence rates after catheter ablation [33,34]. The menopause-
associated reduction in estrogen levels causes increased epicardial fat, upregulation of related
signaling pathways, and fibrotic remodeling [35]. Epicardial adipocytes can release proinflamma-
tory adipokines and activate chemotactic monocyte chemoattractant protein-1/C-C chemokine
receptor 2 pathways that promote inflammatory macrophage accumulation. The crosstalk be-
tween adipocytes and inflammatory cells depends on the release of cytokines interleukin (IL)-1,
IL-6, and tumor necrosis factor-α (TNF-α) by fat tissue macrophages [36]. Other proinflammatory
adipokines such as leptin and resistin are also associated with incident AF in women [37].

2.2.2. Electrical Remodeling

Mouse studies showed that male cardiomyocytes had greater late sodium current,
calcium transients, and sarcoplasmic reticulum calcium contents in the left atrial posterior
wall than female cardiomyocytes, possibly contributing to increased ectopic activity [38].
The pulmonary veins of male mice had faster spontaneous beating rates, greater burst firing,
and more delayed afterdepolarizations than those of female mice [39]. Cardiomyocyte
calcium and sodium channels are differentially regulated by sex hormones, which explains
the differences in the action potential period (APD) between male and female mice [40–49].
The shortened APD in male atria may be proarrhythmic by facilitating re-entry, whereas
the longer APD in female atria may exert antiarrhythmic effects against AF in contrast to
its proarrhythmic effects in the ventricles.

Biochemical and histological analyses of atrial tissue acquired during cardiac surgery
revealed that men and women with AF exhibited generally similar remodeling-induced
changes in connexins and collagen; however, women exhibited stronger AF-induced
increases in Cx40 expression [32]. mRNA expression analysis of genes encoding ion
channel subunits that are important in cardiac conduction and arrhythmogenesis of left
atria from explanted human hearts revealed differences in remodeling according to sex,
with lower expression levels of transcripts encoding K(v)4.3, KChIP2, K(v)1.5, and K(ir)3.1
in failing female left atria than in male left atria [50].

2.2.3. Autonomic Neural Control and Neuro-Humoral Modulation

The autonomic nervous system, composed of the sympathetic and parasympathetic
systems and the intrinsic neurohormone network, is critical for AF pathogenesis [51–53]
and is involved in the initiation and maintenance of AF. The parasympathetic system con-
tributes to AF principally by shortening APD and increasing the dispersion of refractoriness



Int. J. Mol. Sci. 2021, 22, 8776 4 of 20

in the atrial myocardium, facilitating the initiation and maintenance of AF [54]. Vagal acti-
vation exerts these effects mostly via acetylcholine-activated Kt channels [55]. Sympathetic
stimulation can also promote AF by increasing Ca2+ release and influencing the conductive
properties and refractoriness of cardiac tissue, causing afterdepolarization formation, in-
ducing AF [56]. Assessment of heart rate variability showed that compared with similarly
aged men, women appeared to be vagal activity-dominant [57]. However, low estrogen
and elevated progesterone levels lead to increased catecholamine levels, and sympathetic
activity is higher in the luteal phase of the menstrual cycle [58]. These sex differences in
autonomic neural control disappear with aging considering the decreased estrogen levels
in menopausal women [59].

3. Sex Differences in VCI
3.1. Sex Differences in the Epidemiology and Clinical Outcomes of VCI

Cerebrovascular disease (CVD), the second-most common cause of cognitive impairment
(CI) and dementia, frequently contributes to cognitive decline in neurodegenerative dementia.
VCI is associated with vascular disorders that may coexist with neurodegeneration [60–62] and
includes milder forms of CI and vascular dementia (VaD). Many patients with CVD develop
several cognitive disabilities. Some studies suggested that male sex is a risk factor for CI [63,64];
others found that female sex is predictive of the increased risk of CI [65,66]. Although dementia
disproportionally affects females, there are conflicting findings on the influence of sex on the
incidence and prevalence of VCI [67]. Sex-related differences in risk factors, cognitive profiles,
rates of deterioration, pathogenesis, and outcomes remain unknown. Evidence has revealed a
sex-specific pattern in the incidence of CVD, with women having lower incidence rates of both
ischemic stroke and intracerebral hemorrhage (ICH) than men [68]. Among 860 patients with
CVD, significantly more women than men had poor cognitive performance (approximately
15% difference) [67]. Despite the similar incidence of VCI between women and men [67],
women tend to experience more severe strokes [69], whereas men frequently experience their
first stroke earlier [69]. Risk factors for CVD such as AF, HF, myocardial infarction, high blood
pressure, hyperlipidemia, obesity, and diabetes mellitus (DM) are more common among
men [53,70,71]; however, the incidence rates of dementia associated with these risk factors
are conflicting [53,70]. Some studies reported no significant difference in the risk for VCI
between men and women [72–74], whereas others suggested that men had significantly higher
incidences of VCI [75–77]. Studies have found that women experience poorer functional and
cognitive decline after stroke than men [78–80]. Women had a greater risk for dementia among
individuals with DM [70]. In a meta-analysis, sex differences in the prevalence of VCI were
associated with age: VCI was more prevalent among men aged <79 but was more prevalent
among women aged >85 [81].

Sex differences in the efficacy of stroke treatment have also been reported. Aspirin was found
to be more effective in preventing stroke in women than in men [82], whereas warfarin was more
effective for AF in men than in women [83]. Considering that therapeutic efficacy against stroke
is implicated in the prognosis of VCI, the influence of sex differences is crucial in the clinical
outcome of VCI. Sex differences also influence the efficacy of nonpharmacological interventions
against VCI [84]. Thus, sex differences in the efficacy of stroke treatment should be determined.

As women tend to experience more severe stroke than men, they would have a higher
incidence of VCI than men [85]. Within the first 3 weeks, the most important predictor of
long-term functional outcome in patients with stroke is memory, which is associated with
the medial temporal lobe (MTL) volume [86]. As men reportedly have larger MTLs than
women [87], sex differences might affect the prognosis of VCI considering their influence on
brain morphology. However, executive function was found to be a predictor of functional
outcome and is associated with prefrontal volume [88]. The results regarding the influence
of cognitive sex differences on VCI prognosis are inconsistent. Thus, the modulating effect
of sex differences on the relationship between cortical volume and VCI prognosis remains
unclear. Patients with VCI exhibiting memory, visuospatial, and executive impairments
show significantly poorer global cognitive function, as assessed using the Mini-Mental
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State Examination (MMSE) [89]. Executive dysfunction, which can be measured using the
Trail-Making Test A, was demonstrated to be a predictor of the modified Barthel index in
patients with VCI [89].

Acetylcholinesterase inhibitors (AChEIs) can improve cognitive function in patients
with VCI [90]. Cholinergic augmentation led to significant improvements in MMSE scores
after 4 weeks in patients with post-stroke CI and VCI [90]. The neural system and choliner-
gic pathways, which comprise the basal forebrain, substantia innominata, striatum, cerebral
cortex, some brainstem nuclei, and spinal motor neurons [91], are vulnerable to vascular
damage, which can cause CI. It has been suggested that AChEIs modulate CI by compen-
sating for the lack of intracerebral cholinergic neurotransmitters by inhibiting acetylcholine
hydrolysis. This has been considered an effective treatment pathway in patients with
post-stroke CI and VaD [92]. Sex differences in pharmacological effects have been as-
sociated with higher sensitivity to the toxic effects of organophosphate cholinesterase
inhibitors in males [93]. Therefore, older males and females might respond differently
to AChEIs because of either sex-specific differences in the structure and function of the
cholinergic system, pharmacokinetics, memory function, or the effects of aging or AD on
such processes [93].

3.2. Pathophysiology of Sex Differences in VCI
3.2.1. Sex Differences in Brain Structure and Function among Individuals with VCI

To determine the influence of sex differences on VCI, the pathogenesis of stroke [69], cerebral
infarction [69], intracranial hemorrhage [69], efficacy of secondary prevention [82,83], and risk
factors for cerebral atherosclerosis should be considered [53,70,71], along with structural and
functional sex differences in the brain [94]. Regional sex differences in brain volume might be
implicated in sex-specific CI during VCI.

Sex differences have been demonstrated in several cognitive tasks. Men have been
reported to outperform women in spatial ability [95], whereas women outperform men
in verbal ability [96]. Cognitive sex differences have been associated with differences in
structural and functional brain organization.

While men have higher metabolism within the temporal-limbic areas, women have
higher metabolism in the cingulate areas [97]. Men experience increased functional connec-
tivity (FC) within and among parietal-occipital regions, as evaluated using resting-state
functional magnetic resonance imaging, whereas women experience increased FC within
and among frontotemporal regions [98,99]. Moreover, men have stronger inter-network
FC, whereas women have stronger intra-network FC [100].

Sex differences also contribute to variability in brain morphology. Men have signifi-
cantly larger frontal, temporal, left parietal, and insula areas than women [101]. Women ex-
hibit a higher gray matter (GM)/white matter (WM) ratio in the parietal cortex [102,103],
cingulate gyrus [87,104], and insula [104]. Men have increased GM volumes in the MTL
and entorhinal cortex, whereas women have increased GM volumes in the right inferior
frontal and cingulate gyri [87]. After correcting for whole-GM volume, women exhibited
greater GM percentages in the dorsolateral prefrontal cortex and superior temporal gyrus
than men [105], implying that women have better language-related abilities than men [105].
Regarding WM structures, women have significantly lower fractional anisotropy in the
right deep temporal regions [106].

3.2.2. Sex Differences in Risk Factors for VCI

Although risk factors for CVD such as DM, obesity, and hypertension are more com-
mon in men [53,70,71], they more adversely affect women [71]. However, hyperlipidemia,
MI, AF, and HF show higher influence in men [71]. While men are more likely to experi-
ence stroke than premenopausal women, similar incidences of stroke have been recorded
between men and postmenopausal women [69,107]. Sex differences according to the type
of stroke have also been reported: brain infarctions and ICHs are more common in men,
whereas subarachnoid hemorrhages are more common in women [69].
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Women are more prone to obesity and obesity-related DM, which increases the risk of
VCI [108,109]. Therefore, sex differences in the effects of type 2 DM on VCI suggest that
women are more adversely affected than men. More women are overweight or obese after
the age of 45 years, whereas more males are overweight at a younger age. Besides age,
the influence of sex differences on body mass index (BMI), body fat distribution, brown
adipose tissue, metabolic syndrome, and adipokines leads to an increased risk of DM and
DM-associated VCI in women [109].

Obesity is another important risk factor for VCI. The effect of BMI on VCI is more
pronounced in women than in men. Higher midlife BMI has been associated with increased
vascular risk factors, changes in adipokines (plasminogen activator inhibitor-1, IL-6, TNF-α,
angiotensinogen, adiponectin, and leptin), and brain structure alteration [110], whereas
lower BMI later in life has been associated with neurodegenerative processes [111].

Besides DM and obesity, sex differences also affect hyperlipidemia. Decreased high-
density lipoprotein (HDL) and increased triglyceride levels in men have been associated
with an increased risk for all-cause dementia [112]. In women, low HDL levels have been
associated with increased WM lesions and silent brain infarcts [113]. Large vessel strokes
(macroangiopathy and arteriosclerosis), small vessel disease (microangiopathy and arteri-
olosclerosis), and microhemorrhages are the main causes of VCI [114]. Therefore, the lower
HDL levels in women may explain their higher risk for VCI. Given that the genetic effects
of APOE4 are associated with lipoprotein metabolism, studies have found that higher
levels of APOE4 allele are associated with a higher risk of VCI [115,116].

4. The Interactive Relationship of Sex Hormones and Sex Differences between
AF and VCI

Current data show that patients with AF are prone to stroke, dementia, HF, and in-
creased mortality [117,118]. Epidemiologic studies reported that ischemic stroke was a
significant risk factor for dementia and that the characteristics of stroke, incident medi-
cal illnesses associated with cerebral hypoxia or ischemia, and older age also affect this
risk [119–121]. While cerebral hypoperfusion, vascular inflammation, cerebral small vessel
disease, and several risk factors have been associated with AF and VCI [122], nevertheless,
emerging evidence indicates potential mechanisms may uncover how sex differences, hor-
mone levels, and hormone receptor signaling influence the development and progression
of AF-related VCI, including changes in anatomy, pathophysiology, disease onset and
incidence, disease severity, disease outcome, and response to treatment (Figure 1).
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4.1. Effect of Sex Differences on Outcomes in Patients with AF-Related VCI

Our previous study showed that among patients with AF aged >55 years, women
had a greater risk of dementia than men [123]. However, the impact of female sex on the
risk of developing dementia in patients with AF can vary according to different dementia
types. Women have greater risk for Alzheimer’s disease than men among patients with
AF aged >55 years, whereas no sex differences were noted in their risk for developing
VaD [123]. Furthermore, a Korean research group reported that catheter ablation better
maintained and even improved the cognitive function of patients with AF compared with
drug therapy [124]. However, the effect of catheter ablation on the clinical outcomes,
especially dementia, between men and women remains unclear.

4.2. Pathophysiology of Sex Differences in AF and VCI

Previous studies showed that sex might be associated with atrial amyloidosis [125,126],
which is more common in women, particularly older women [126]. This may be associated
with increased atrial natriuretic peptide expression following ER stimulation in the presence
of E2. Accordingly, elevated atrial natriuretic peptide levels promote amyloid formation and
deposition and cause atrial fibrosis and AF, which may cause thrombosis and stroke [125,126].
Amyloidosis has been considered an important etiology of dementia [127]. A previous study
showed that female hormone supplementation increased the risk of stroke in patients with
AF [128]. Macrophage-produced cytokines, including IL-l, IL-6, IL-12, and TNF-α, were also
reported to be associated with atrial fibrosis and AF attacks [129]. Sex differences have been
shown to influence macrophage-related inflammatory processes [130]. The aforementioned
studies therefore suggest a strong correlation between sex differences, AF, stroke, and dementia.
However, no study has yet confirmed the exact causes and mechanisms.

5. Effect of Sex Hormone Deficiency/Excess on AF and VCI
5.1. Sex Hormone Deficiency/Excess and AF
5.1.1. AF and Androgen Signaling

Serum testosterone levels decline with age [131], and an estimated 39% of men aged
>45 years have hypogonadism [132]. Epidemiological data on the association between AF
and testosterone are conflicting. The Framingham study revealed an association between
the incidence of AF and reduced total testosterone levels in men aged ≥55 years [133].
Another smaller cross-sectional study demonstrated a similar association between reduced
testosterone levels and AF [134]. The FINRISK study indicated that low testosterone levels
were associated with an increased risk of future AF and/or ischemic stroke in men but
were protective in women [135]. In contrast, the Multi-Ethnic Study of Atherosclerosis
showed that higher levels of endogenous bioavailable testosterone appeared to contribute
to AF development [136]. The differences in these findings may be partially attributed
to methodological differences in testosterone measurement (total vs. bioavailable testos-
terone) and competing mechanisms of direct and indirect testosterone effects. Previous
studies showed that the acute effects of testosterone are beneficial and differ from the
chronic effects of testosterone exposure [137]. Cardiac L-type calcium channels are crucial
for maintaining intracellular calcium homeostasis and are therefore essential in inducing
arrhythmia [138]. Chronic exposure of rat cardiomyocytes to testosterone (24–30 h) in-
creased L-type calcium channels and the frequency of calcium sparks without increasing
sarcoplasmic reticulum calcium load. Conversely, acute treatment of cardiomyocytes with
testosterone led to a decrease in L-type calcium channels. These differences were attributed
to genomic androgen pathway activation mediated by nuclear AR in chronic treatments
and the direct blocking effects via nongenomic androgen signaling in acute testosterone
treatments [137,138]. Androgen levels have also been related to the incidence of AF in
patients with congenital or acquired diseases, which might cause chronic androgen excess
or deficiency. Klinefelter syndrome is the most common male sex chromosomal disorder
and is characterized by small testes, azoospermia, and increased luteinizing hormone and
follicle-stimulating hormone levels [139]. Data from Korean National Health Insurance
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Service indicated that patients with Klinefelter syndrome without a history of AF and
ischemic stroke had higher incidences of AF, but not stroke, than the control group [140].
The lack of androgen and decreased diastolic function in patients with Klinefelter syndrome
could explain the causal relationship between Klinefelter syndrome and AF. Androgen
deprivation therapy with abiraterone for metastatic prostate cancer was associated with
increased incidences of atrial tachycardia, HF, hypokalemia, hypertension, and edema
associated with abiraterone-induced hypermineralocorticism [141]. According to data
retrieved from the Danish Registry Cohort Study, women with polycystic ovary syndrome
(PCOS) had a twofold increased risk for AF than those without PCOS [142], potentially
due to insulin resistance and elevated BMI among those with PCOS.

5.1.2. AF and Estrogen Signaling

Although premenopausal women have lower incidences of AF than men, such inci-
dences are more frequent after menopause, particularly among women aged >50 years.
This phenomenon suggests that the protective effects of estrogen and/or the harmful
effects of prominent loss in estrogen during menopause on AF [143]. This representation
may be associated with the effects of AF-associated risk factors, such as hypertension,
dyslipidemia, and metabolic syndrome, which were also elevated after menopause and
increased the incidence of AF [144]. The prevalence of AF in pregnant women is 0.05%,
and it usually occurs in those with structural heart disease among whom AF incidences
were marginally higher (approximately 1.3%) [145,146]. Patients with preeclampsia also
presented with increased progesterone wave duration and dispersion and atrial electrome-
chanical coupling interval, as measured using tissue Doppler echocardiography [147].
These are well-known markers for increased AF incidence. The incidence of AF during
the peripartum period has been mainly associated with drug therapy, such as terbutaline
during tocolysis, or peripartum cardiomyopathy [148–150]. ERα and ERβ, the two main
types of nuclear ERs, are highly expressed in the heart [10], are abundant in cardiomyocyte
mitochondria, and regulate mitochondrial function [151]. The conduction properties of
cardiomyocytes are also directly affected by estrogen. Chronic estradiol treatment showed
a modulatory effect on coronary artery smooth muscle potassium channels and cardiac
calcium channels [152]. Estrogen is also critical for excitation and contraction coupling
considering that it regulates calcium homeostasis in the heart and membrane density and
L-type Ca2+ channel expression in cardiomyocytes [153–156]. E2 inhibits the occurrence
of early afterdepolarization and the ectopic trigger activity induced by depolarization,
potentially serving as an antiarrhythmic drug [156].

5.2. Sex Hormone Deficiency/Excess and VCI
5.2.1. VCI and Androgen Signaling

Clinical studies have shown that appropriate testosterone and DHT balance is im-
portant for improving the outcomes of stroke in men. Low testosterone and DHT levels
have been associated with increased risk and severity of stroke, mortality, increased infarct
size, and poor stroke outcomes in men [157,158]. Conversely, testosterone replacement
therapy in men aged >65 years was shown to increase the incidence of CVD events [159].
This could be attributed to the association between androgens and vasoconstriction, re-
duced vasodilatation, and increased vasoconstrictors [160–162]. Another mechanism for
the effects of testosterone administration could involve leptin levels. Increased testosterone
levels have been associated with lower leptin levels [163]. As increased leptin levels have
been associated with reduced infarct volume and neurological deficits in rodent models
of ischemic stroke, increased testosterone level in the elderly might be implicated in poor
stroke outcomes [164]. Considering that increased severity of neurological deficits with
stroke is an important predictor of VCI, androgen levels have been implicated in the risk
and prognosis of VCI [165]. Several studies showed that testosterone was beneficial for
brain function because it prevented neuronal cell death, balanced brain oxidative stress and
antioxidant activity, improved synaptic plasticity, and increased cognitive function [166].
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Promising associations have been found between the decline in cognitive function and low
testosterone levels [167].

Besides the effects of androgen levels, the androgen signaling pathway has been
associated with VCI pathogenesis after stroke. To facilitate neuroprotection, the androgen
signaling pathway suppresses the Toll-like receptor 4/nuclear factor kappa B signaling
pathway, subsequently alleviating microglia inflammatory responses [168]. Moreover,
the androgen signaling pathway can regulate amyloid precursor protein metabolism and
reduce β-amyloid production [169] and has been implicated in the CREB and MAPK/ERK
signaling pathways: the former pathway improves the hippocampal synaptic structure,
and the latter enhances neuroviability [170].

AR activation has been suggested to protect intact male mice from memory impair-
ments caused by aromatase inhibition [171]. While the aromatase inhibitor letrozole
blocked memory in only gonadectomized males, suggesting that circulating androgens
or hippocampal androgens increased due to aromatase inhibition may support memory
consolidation in intact males, males whose AR was blocked by the antagonist flutamide
showed impairment of memory consolidation [171]. Various lengths of CAG (glutamine)
repeat polymorphism in AR have been associated with cognition in older men [172]. Sev-
eral studies have demonstrated that although E2 is necessary for inducing long-term
potentiation, DHT is necessary for inducing long-term depression of synaptic transmission
in the hippocampus [171,172]. This contribution was proven by administering sex hor-
mones in rodent models and using agents that block their synthesis or specific receptors.
The general opposite role of sex hormones in synaptic plasticity is apparently dependent
on their local availability in response to low or high frequencies of synaptic stimulation,
thereby inducing bidirectional synaptic plasticity. Investigation of the effects of AR ex-
pression on brain function and cerebrovasculature will provide additional insight into the
potential mechanisms of novel therapeutic approaches for VCI.

5.2.2. VCI and Estrogen Signaling

Although men are more likely to experience stroke than premenopausal women,
this disparity subsides after menopause. This may be explained by loss of E2 during
menopause. The relationship between ovarian sex hormone levels and stroke outcomes are
supported by findings of altered outcomes over the estrous cycle, with smaller infarct size
noted during proestrus (high E2) [173]. Other studies found that in women, both aging
and ovariectomy exacerbate ischemia-/stroke-related outcomes [174,175]. The protective
effects of E2 in experimental stroke models were reported in young male and female ani-
mals [176,177]. Studies have suggested that E2 has dose-dependent effects, such that E2
administration at physiological levels attenuates damage from experimentally induced
stroke [178,179], whereas supraphysiological doses may be detrimental, given that they in-
crease infarct size and aggravate oxidative stress, inflammation, and excitotoxicity [180,181].
While physiological levels attenuate injury from stroke [174,175], supraphysiological levels
of E2 can be harmful; studies have reported increased infarct size, inflammation, excitotox-
icity, and oxidative stress [180–182]. Age also interacts with the effects of E2: protective
effects in young [179] but detrimental effects in old animals have been observed [179,183].
Because the increased severity of neurological deficits of stroke is an important predictor
of VCI, E2 levels have been implicated in the risk and prognosis of VCI [165].

The effect of estrogen signaling on the brain is critical for the protective effects of
E2 against excitotoxicity, inflammation, oxidative stress, and apoptosis [184–188]. The E2
signaling pathway can inhibit oxidative stress-induced and PARP1-dependent cell death
via binding its alpha-type receptor [184]. It also promotes neurogenesis in rats by increas-
ing hypoxia-inducible factor 1α and vascular endothelial growth factor expression [188].
Moreover, it suppresses inflammation by inducing a specific type of NMDA receptor by
enhancing GRIA2 and NR2B expression [185]. As it maintains Bcl-2 expression, the E2
signaling pathway has been associated with the attenuation of ischemic injury-related
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CI [187]. Furthermore, E2 signaling influences Nrf2-ARE pathways in the hippocampus
CA1 regions, thereby modulating CI relevant to cerebral ischemic changes [186].

Several ER subtypes have been identified, including ERα and ERβ [189]. In a study
including 2625 women aged ≥65 years, Yaffe et al. obtained results that supported the
association between ERα polymorphisms and the risk of CI [190]. ERβ gene polymorphisms
(ESR2 rs4986938) were also associated with an increased risk for VaD in elderly Jewish
women [191]. A specific ER subtype is also involved in VCI treatment and prevention [6].
An animal study showed that E2 enhances capillary density in the brain and primes tissue
survival after experimental focal ischemia through ERα [192]. Further insight into the
potential mechanisms of novel therapeutic approaches for VCI can be obtained by studying
the effects of the expression of various ER subtypes on VCI/VaD-related brain regions
and cerebrovasculature of young and aging females (e.g., those who are postmenopausal,
ovariectomized, received hormone replacement, and reproductively senescent).

6. Effects of Sex Hormone Therapy on AF and VCI
6.1. Effects of Sex Hormone Therapy on AF

Studies suggest that antiestrogen treatment increases the incidence of AF, whereas
estrogen-based hormone replacement therapy (HRT) decreases the risk of AF (Figure 2, left
panel). However, the data from different studies are controversial [193–195]. While estra-
diol was shown to reduce the risk of AF, conjugated estrogens alone had been reported
to increase the risk of AF [194,195]. Combined estrogen–progesterone-based HRT had no
effect or decreased the incidence of AF [193,195]. These findings suggest that hormonal
preparations and their ER specificity have complex interactions and effects. In addition,
acute administration of E2 in postmenopausal women will prolong the conduction time
in the right atrium and atrioventricular nodes, as well as the effective refractory period of
the right atrium [196]. This result has been reproduced in a female mouse ovariectomized
model, which leads to a shortened PR interval and the conduction time from the right
atrium to the atrioventricular node, while estrogen replacement has the opposite effect [197].
A large cohort study involving 76,639 patients with low testosterone levels showed that
those whose testosterone levels were normalized with testosterone replacement therapy
had lower incidences of AF than those with low levels of testosterone and those who did
not receive replacement therapy [198]. Moreover, participants who failed to attain normal
total testosterone levels after testosterone replacement therapy had higher incidences of
AF than those whose total testosterone levels were normalized following testosterone
replacement therapy.
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Data on the effects of testosterone replacement therapy are not consistent on different
animal models of AF. An orchiectomized male Sprague Dawley rat model study confirmed
the relationship between testosterone deficiency and AF [199]. The study suggested that the
resolved electrically stimulated repetitive atrial responses after testosterone therapy were
associated with decreased calcium leakage from the sarcoendoplasmic reticulum resulting
from the normalization of the binding between FK506-binding protein and ryanodine
receptor type 2. However, another study on aged rabbits showed the opposite effects, with
testosterone replacement enhancing arrhythmogenesis in pulmonary veins and the left
atrium, probably by enhancing adrenergic activity [200].

6.2. Effects of Sex Hormone Therapy on VCI

HRT generally has beneficial effects when initiated immediately after menopause and
has detrimental effects when administrated later in life [201,202]. However, the effects of
hormone receptor signaling on VCI are complex (Figure 2, right panel). Based on clinical
studies on breast and prostate cancers, hormone therapy that blocks sex hormone produc-
tion or suppresses hormone receptors to reduce or inhibit tumor growth in the breast and
prostate was implicated with CI [203]. Considering that E2 and androgen are critical in
regulating healthy brain and cognitive function [204], hormone therapy that blocks E2 and
AR activity may be potentially harmful to patients with VCI. E2 and AR are both widely dis-
tributed throughout cerebral regions, particularly the hippocampus and prefrontal cortices,
which are important for cognitive functions [205,206]. In postmenopausal women, HRT
has been shown to attenuate CI in subjects with mild CI [207]. Data from animal studies
demonstrate that HRT during the critical period is involved with neuroprotection [208].
In ovariectomized rats, HRT reduced the level of inflammatory and modulated neuroprotec-
tion process [209]. Animal studies showed that E2 has neuroprotective effects and regulates
synaptic plasticity in the brain regardless of sex [4]. In males, testosterone is converted to
E2 locally by aromatase. Therefore, testosterone may possibly exert neuroprotective effects
and regulate synaptic plasticity in the male brain via E2, although whether testosterone
has its own direct effect through AR remains unclear [210]. Because cognitive function
does not rely on a specific brain region, it is determined by neuronal network interactions.
Thus, understanding the neural mechanisms behind cognitive functions affected by sex
hormones is valuable and warranted. It suggests that in postmenopausal subjects, HRT
may be beneficial for decreased risk of VCI, but HRT administration during the critical
timing is essential for attenuating progression of VCI.

7. Conclusions and Future Perspectives

With the current aging of the population, the prevalence of AF with VCI, including
dementia, can be expected to reach epidemic proportions worldwide. Emerging evidence
has showed that AF increases the risk of VCI via various mechanisms, albeit mainly through
cerebral hypoperfusion and thromboembolism, which could cause silent cerebral ischemia.
These direct consequences of AF on the brain might be consistent with other pathological
factors such as tauopathies and plaque formation. These pathological factors are common
among the elderly and reduce cognitive reserves and facilitate the development of dementia.
Circulating sex hormone levels and proinflammatory biomarkers, particularly those related
to endothelial dysfunction, might be involved in possible pathophysiological mechanisms
for relationship between sex differences and atrial fibrillation, or between sex differences
and VCI. The development of tools and instruments for the assessment of both conditions
is an important issue. Further studies are warranted to understand the sex-specific effects
of dementia risk factors on the incidence of AF and examine the underlying mechanisms of
sex differences. The roles of sex hormone receptor pathways in patients with AF and VCI
should be comprehensively investigated in longer, larger-scale prospective cohort studies
with more accurate neuropsychological and cognitive function assessments. Additional
clinical trials are needed to identify the best therapeutic approaches for preventing VCI
progression in patients with AF. Moreover, deliberate stratification according to sex should
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be considered. An adequate sample size is needed to determine the therapeutic efficacy
in men and women separately. The information presented herein may help establish new
strategies for the development of individualized therapeutics and preventive medications
for AF with VCI.
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