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The NLRP3 inflammasome is a multiprotein complex that plays a pivotal role in regulating
the innate immune system and inflammatory signaling. Upon activation by PAMPs and
DAMPs, NLRP3 oligomerizes and activates caspase-1 which initiates the processing and
release of pro-inflammatory cytokines IL-1β and IL-18. NLRP3 is the most extensively
studied inflammasome to date due to its array of activators and aberrant activation in
several inflammatory diseases. Studies using small molecules and biologics targeting
the NLRP3 inflammasome pathway have shown positive outcomes in treating various
disease pathologies by blocking chronic inflammation. In this review, we discuss the
recent advances in understanding the NLRP3 mechanism, its role in disease pathology,
and provide a broad review of therapeutics discovered to target the NLRP3 pathway and
their challenges.
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INTRODUCTION

Inflammation is a defense mechanism characterized by a cascade of signaling that activates the
innate immune system in response to pathogens, dead cells, traumas, or chemically induced
damage. The innate immune system involves immune cells that are derived from multipotent
hematopoietic stem cells (i.e., hemocytoblasts) which are found in the peripheral blood and bone
marrow and undergo hematopoiesis to give rise to myeloid and lymphoid progenitors (Kim S. et al.,
2019). Myeloid progenitors differentiate into eosinophils, neutrophils, basophils, monocytes, and
macrophages; whereas lymphoid progenitors give rise to cells of the lymphatic system such as
natural killer (NK) cells, T-cells, and B-cells (Kim S. et al., 2019). While all immune cells play some
role in inflammatory responses, the leading players are macrophages, neutrophils, NK, and T-cells
during infections and injury. Immune cells, including neutrophils and monocytes, are recruited to
the site of injury by chemotaxis (Kolaczkowska and Kubes, 2013; Chen L. et al., 2018). Neutrophils
respond quickly and play important roles in the early stages of inflammation by eliminating
pathogens through various mechanisms which subsequently leads them to become apoptotic and
die. Once inflammation takes place, monocytes differentiate into macrophages and phagocytose
the apoptotic neutrophils (Kolaczkowska and Kubes, 2013; Ortega-Gómez et al., 2013; Epelman
et al., 2014). This process is tightly regulated, as an inadequate inflammatory response can result
in a persistent infection of pathogens and an excessive inflammatory response may lead to chronic
inflammation.
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The recognition of pro-inflammatory stimuli by the
germline-encoded pattern recognition receptors (PRRs) plays
a pivotal role in initiating the innate immune response. PRRs
can be classified as transmembrane or cytosolic receptors.
Transmembrane proteins include Toll-like receptors (TLRs) and
the C-type lectin receptors (CLRs) while cytosolic proteins
include the nucleotide-binding oligomerization domain
(NOD)- Leucine Rich Repeats (LRR)-containing receptors
(NLRs), the Retinoic Acid-Inducible Gene 1 (RIG-1)-like
receptors (RLRs), and Absence in Melanoma 2 (AIM2)-like
receptors (ALRs) (Unterholzner et al., 2010; Lamkanfi and
Dixit, 2014; Amarante-Mendes et al., 2018). These sensing
receptors can recognize pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) (Chen and Nuñez, 2010). PAMPs represent the
conserved structural moieties that are commonly found in
microorganisms such as lipopolysaccharide (LPS) found
on the membranes of Gram-negative bacteria, bacterial
or viral nucleic acids, bacterial peptides such as flagellin,
and polysaccharides such as β-glucans (Mahla et al., 2013).
DAMPs are endogenous molecules which are released under
cellular stress or damage such as chromatin-associated
proteins, heat shock proteins, uric acid, and extracellular
matrix fragments (Chen and Nuñez, 2010; Lamkanfi and
Dixit, 2014). The activation of PRRs by PAMPs or DAMPs
triggers a signaling cascade that causes cytosolic PRRs such
as NLRs, ALRs, and tripartite motif-containing proteins
such as pyrin to form the multimeric protein complex
termed ‘‘the inflammasome’’ (Lamkanfi and Dixit, 2014).
The inflammasomes play an intricate and vital role in the
activation and release of pro-inflammatory cytokines. In the
past two decades, the molecular components and mechanism
of activation of different inflammasomes have been widely
studied; however, the NLRP3 inflammasome is the most studied
and characterized at present due to its ability to be activated
by a diverse array of stimuli and its implication in several
inflammatory diseases.

NLRP3 INFLAMMASOME ASSEMBLY AND
ACTIVATION

Assembly
NLRP3 is a 118 kDa cytosolic PRR protein expressed by a
variety of cells including neutrophils, macrophages, microglia,
lymphocytes, epithelial cells, osteoblasts, neurons, and dendritic
cells (Rada et al., 2014; Zahid et al., 2019). The NLRP3 protein
contains a C-terminal leucine-rich repeat (LRR) domain, a
central ATPase-containing NACHT (present in NAIP, CIITA,
HET-E, and TP1) domain that mediates oligomerization, and
an N-terminal pyrin (PYD) domain which recruits proteins
for inflammasome complex formation (Kelley et al., 2019).
Like other inflammasomes, the NLRP3 inflammasome complex
consists of a sensor (NLRP3 protein), an adaptor (apoptosis-
associated speck-like protein, ASC), and an effector (caspase-1)
(de Zoete et al., 2014; Mamantopoulos et al., 2017). Formation
of the NLRP3 inflammasome occurs in two stages: priming
and activation. Priming is responsible for the transcriptional

upregulation of NLRP3 and pro-inflammatory cytokines,
pro-interleukin (IL)-1β and pro-IL-18, through TLR, NOD2, IL-
1R, or tumor necrosis factor receptor (TNFR) ligand-mediated
signaling upon stimulation with PAMPs and DAMPs such
as LPS or cytokines such as tumor necrosis factor (TNF) and
IL-1β. The detection of PAMPs and DAMPs results in the
activation of proteins and nuclear factors such as myeloid
differentiation primary response protein (MyD88), nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB),
and the activator protein 1 (AP-1) to upregulate NLRP3 and
pro-inflammatory cytokines (Liu et al., 2017). The effect of
priming on transcriptional factors and protein expression has
been widely accepted; however, recent studies have suggested
that there is also a non-transcriptional role for priming (Lin et al.,
2014). Priming also controls the post-translational modifications
of NLRP3 such as ubiquitination and phosphorylation, which
plays a major role in regulating the activation of NLRP3 (Yang
et al., 2017). In its inactive form, ADP-bound NLRP3 can
exist as a monomer or oligomer. Monomeric NLRP3 localizes
to membranes which act as a scaffold to form an oligomeric,
double-ring structure with 5–8 sets of dimers interlocking LRR
domains and arranged back-to-back forming a circular cage
(Andreeva et al., 2021; Hochheiser et al., 2021). Cryo-EM studies
suggest the PYD domain sits inside the cage to protect it from
aberrant activation (Andreeva et al., 2021).

A secondary stimulus initiates the activation step to form the
active inflammasome complex. Contrary to most PRRs, NLRP3 is
activated by a plethora of stimuli such as particulate matter (e.g.,
uric acid crystals, silica, asbestos), extracellular ATP, and toxins
as well as viral, bacterial, fungal, and protozoan pathogens (Latz
et al., 2013; Jo et al., 2016). Although it is unclear how NLRP3 can
recognize such diverse signals, it’s suggested that NLRP3 senses a
common cellular event caused by all stimuli rather than directly
binding to them (Kelley et al., 2019). Chen and Chen (2018)
found that disassembly of the trans-Golgi network (TGN) by
multiple NLRP3 stimuli can recruit and activate NLRP3 and
is now one of the proposed mechanisms for the detection of
various diverse stimuli. Upon activation, NIMA-related kinase
7 (NEK7), an essential modulator of NLRP3 inflammasome
activation and assembly, binds to NLRP3 (He et al., 2016).
Recent studies suggest disassembly of the TGN causes the
NLRP3 cage to localize on the dispersed TGN vesicle membranes
which are then transported to the microtubule-organizing center
where NEK7 resides (Magupalli et al., 2020; Andreeva et al.,
2021). It is further hypothesized that the binding of NEK7 to
NLRP3 disrupts the NLRP3 double-ring structure and causes
structural rearrangement, exposing PYD domains, and allowing
for NACHT domain oligomerization (Andreeva et al., 2021).
Previous studies have placed the NEK7 binding site at NLRP3’s
LRR domain; however, recent studies have shown that the
LRR domain is dispensable for NLRP3 inflammasome activation
and that NEK7 may have at least one additional binding site
(Hafner-Bratkovǐc et al., 2018; He et al., 2018). Upon NACHT
domain activation by ATP-exchange and NEK7 binding, the
PYD domain then recruits the adaptor molecule ASC forming
a filamentous complex referred to as ASC pyroptosome or
‘‘speck’’ clustering through PYD-PYD domain interactions. The
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caspase recruitment domain (CARD) of ASC binds to pro-
caspase-1 which also contains a CARD domain (CARD-CARD
interaction) and pro-caspase-1 is then converted into active
caspase-1 by proximity-induced autoproteolysis (Lu et al., 2014;
Lu and Wu, 2015; Malik and Kanneganti, 2017). Activated
caspase-1 processes the biologically inactive peptides pro-IL-
1β and pro-IL-18 into their active forms, IL-1β and IL-
18, respectively. It also cleaves and activates the membrane
pore-forming gasdermin D (GSDMD), a protein involved in the
programmed cell death known as pyroptosis (Shi et al., 2015;
Malik and Kanneganti, 2017). GSDMDs N-terminal domain
(GSDMD-NT) shows high affinity to plasma membrane lipids
cardiolipin and phosphoinositides. Upon cleavage, GSDMD-NT
oligomerizes to form pores in the cell membrane. The subsequent
disruption of the cell’s osmotic potential leads to pyroptosis
and the release of intracellular contents, including inflammatory
cytokines IL-1β and IL-18 (Ding et al., 2016; Evavold et al.,
2018).

Activation of the NLRP3 inflammasome through canonical
and non-canonical pathways has the same consequences,
however, through different mechanisms. The non-canonical
pathway results in inflammasome formation mediated by human
caspase-4, caspase-5, and mouse caspase-11 (also called caspase-
4/11) as a result of Gram-negative bacterial infection (Kayagaki
et al., 2015). Extracellular LPS found on the membrane of
Gram-negative bacteria is detected by TLR4 in conjunction
with the adaptor protein TRIF (Rathinam et al., 2012). Similar
to the canonical pathway, TLR4-MyD88 begins a downstream
signaling cascade that results in the translocation of NF-
κB into the nucleus to upregulate the expression of NLRP3,
pro-IL-1β, pro-IL-18, and other inflammatory mediators (Liu
et al., 2017). TRIF induces interferon regulatory factors (IRF)
which then upregulates the expression of interferon (IFN)-
α/β. IFN-α/β binds to IFN-α/β receptors which elicit caspase-
4/11 expression through JAK/STAT signaling (Gurung et al.,
2012; Rathinam et al., 2012). Another study reported that
the protease Carboxypeptidase B1 is critical for caspase-11
expression and amplifies p38 MAPK signaling downstream of
TLR4 and type I IFN signaling (Napier et al., 2016). Detection of
extracellular LPS through TLR4 is not required for non-canonical
inflammasome activation, however (Kayagaki et al., 2013).
Type I IFN signaling also induces the expression of critical
guanylate binding proteins (GBPs) which lyse intracellular
bacteria and release LPS into the cytosol (Meunier et al., 2014).
Intracellular LPS can be detected by caspase-4/11 which causes
oligomerization and autoproteolytic cleavage to activate caspase-
4/11 (Shi et al., 2014; Lee B. L. et al., 2018). Activated caspase-
4/11 then facilitates pyroptosis through the cleavage of proteins
such as GSDMD and regulating the release of IL-1α (Kayagaki
et al., 2015; Shi et al., 2015; Wiggins et al., 2019); however,
many of caspase-4/11 substrates have yet to be elucidated.
Previous studies suggest caspase-4/11 may not have the ability
to cleave pro-IL-1β and pro-IL-18 into their biologically
active forms, unlike caspase-1, but still promotes NLRP3-
induced caspase-1 activation and cytokine release through
alternative pathways (Kayagaki et al., 2011; Py et al., 2014;
Agnew et al., 2021).

Activators
Ion Fluxes
Ion fluxes (K+, Ca2+, Cl-, and Na+) are suggested as one
of the major mechanisms that trigger the activation of
the NLRP3 inflammasome. Inflammasome activators such
as extracellular ATP (via the non-selective cation channel
receptor P2X7), particulate matter (aluminum hydroxide,
silica, and calcium pyrophosphate crystals), and nigericin
(ionophore) can induce K+ efflux, a necessary signal for
NLRP3 activation (Muñoz-Planillo et al., 2013; Katsnelson
et al., 2015). Monosodium urate (MSU) crystals cause cellular
swelling from water influx resulting in an intracellular decrease
of K+, leading to NLRP3 inflammasome activation (Schorn
et al., 2011). Quinine, an inhibitor of two-pore domain K+

channels can prevent caspase-1 activity in a dose-dependent
manner, highlighting the role of this family of ionic channels
in inflammasome activation (Di et al., 2018). Conversely,
K+ channel inhibitors Ba2+ (inhibitor of inward-rectifier K+

channels), tetraethylammonium (inhibitor of voltage-gated K+

channels), and iberiotoxin (inhibitor of large-conductance
calcium-activated K+ channels) fail to prevent caspase-1
activation in macrophages primed with LPS (Di et al., 2018).
Combined, these results leave questions and uncertainty about
the role that potassium may have on inflammasome activation.
The second messenger inositol 1,4,5-triphosphate (IP3) appeared
to promote inflammasome activation by inducing efflux of Ca2+

from the endoplasmic reticulum (ER) through a ligand-gated
ion channel, subsequently increasing intracellular concentrations
(Murakami et al., 2012). The same study found that either
depletion of ER Ca2+ by incubation with an inhibitor of
sarcoplasmic/ER Ca2+-ATPase pump or incubation with Ca2+

free media to prevent extracellular Ca2+ entry attenuated
NLRP3 inflammasome activation in response to ATP, suggesting
mobilization of both extracellular and ER Ca2+ is required
for inflammasome activation. Moreover, blockers of volume-
activated Cl- channels that are inactive against K+ channels
are able to inhibit inflammasome activation, demonstrating the
role of Cl- efflux in NLRP3 inflammasome assembly (Compan
et al., 2012; Daniels et al., 2016). It’s suggested that Na+

influx also plays a regulatory role in NLRP3 inflammasome
activation in conjunction with K+ efflux induced by different
stimuli. Na+ influx caused by ionophores cannot activate the
NLRP3 inflammasome, however, lysosomal delivery of MSU
crystals causes an increase in intracellular Na+ and water
influx, subsequently lowering intracellular K+ concentration
and activating the NLRP3 inflammasome (Muñoz-Planillo
et al., 2013). More recently, the use of amiloride, a common
epithelial Na+ channel blocker, can reduce cytokine secretion and
caspase-1 activity in primary monocytes (Scambler et al., 2019).

Reactive Oxygen Species and Mitochondrial
Dysfunction
Mitochondrial reactive oxygen species (mtROS) is one of
the first discovered activators of the NLRP3 inflammasome
and is produced during mitochondrial damage, stress, or
dysfunction. Early studies suggested the role of mtROS in
NLRP3 inflammasome activation when they noted the inhibition
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of NADPH oxidase-dependent mtROS prevents ATP-induced
caspase-1 activation and IL-1β production in macrophages
(Cruz et al., 2007). In addition, downregulation of voltage-
dependent anion channels (VDAC), which are responsible for
regulating mtROS homeostasis, results in decreased mtROS,
caspase-1 activation, and IL-1β release in THP-1 cells (Zhou
et al., 2011). Palmitate, a fatty acid commonly found in palm
oil, is shown to lead to NLRP3 inflammasome activation in
a ROS-dependent manner since the use of the ROS inhibitor
APDC blocks palmitate-dependent IL-1β production (Wen et al.,
2011). The complete mechanism by which NLRP3 senses mtROS
is not well understood. Some studies suggest NEK7 may detect
mtROS since it is an NLRP3 modulator (Shi et al., 2016).
Supporting this idea, imiquimod, a TLR7 agonist, can activate the
NLRP3 pathway and induce IL-1β release in a ROS-dependent
manner, but fails to induce IL-1β production in cells deficient in
NEK7 (Groß et al., 2016). Other studies have suggested mtROS’s
involvement in the priming step, not activation, since some ROS
inhibitors are able to block NLRP3 expression (Bauernfeind et al.,
2011). Furthermore, mtROS is also implicated to be involved
in the deubiquitination of NLRP3, subsequently promoting its
activation (Juliana et al., 2012).

After the discovery of mtROS and its potential involvement
in the inflammasome pathway, mitochondria in general have
shown to play an intricate and important role in the activation
of inflammasomes through various mechanisms. Mitophagy,
the clearance of damaged mitochondria, is negatively correlated
with NLRP3 activation, and deficiency causes the accumulation
of dysfunctional mitochondria and the release of mtROS and
mitochondrial DNA (mtDNA), both known activators of NLRP3
(Nakahira et al., 2011; Zhou et al., 2011). Further investigation
revealed that other NLRP3 inflammasome activators, such as
alum and nigericin, cause mitochondrial dysfunction and that
oxidized mtDNA directly binds to NLRP3 (Shimada et al., 2012).
Mitochondrial fission is also implicated in NLRP3 activation
through LPS signaling; although the mechanism remains unclear,
it’s suspected that fission facilitates NLRP3 localization and
complex assembly (Park et al., 2015). The mitochondrial-specific
lipid cardiolipin also plays a direct role in NLRP3 activation by
binding to NLRP3 in a ROS-dependent and independent manner
(Iyer et al., 2013). In addition, hexokinase, the first enzyme in
glycolysis, dissociates from the mitochondrial membrane upon
inhibition with bacterial peptidoglycans from Gram-positive
bacterial cell walls and consequently activates NLRP3 (Wolf et al.,
2016). Mitochondrial dysfunction and stress play a significant
role in inflammation in vitro and in vivo (Gong et al., 2018;
Mahalanobish et al., 2020; Ko et al., 2021); however, some studies
dispute the requirement of mitochondrial dysfunction and the
mtROS in NLRP3 activation (Muñoz-Planillo et al., 2013; Allam
et al., 2014; Lawlor and Vince, 2014).

Lysosomal Damage
Lysosomes are responsible for degrading extracellular material
by endocytosis or phagocytosis and degrading or recycling
intracellular material via autophagy. Lysosomal damage is
considered to play a significant role in NLRP3 activation, and
direct evidence of this is shown when the lysosomal damage-

inducing dipeptide, L-leucyl-L-leucine methyl ester (Leu-Leu-
OMe), is able to activate the NLRP3 inflammasome (Hornung
et al., 2008). In addition, NLRP3 activators such as particulate
matter (e.g., cholesterol crystals, silica, aluminum salts, uric acid
crystals, and asbestos) and misfolded proteins (e.g., amyloid-
β) can induce lysosomal damage, indicating an interesting
mechanism of NLRP3 activation (Emmerson et al., 1990;
Martinon et al., 2006; Halle et al., 2008; Hornung et al., 2008;
Duewell et al., 2010; Ito et al., 2020). There are several theories for
how lysosomal damage activates NLRP3, one of the most popular
being the release of cathepsin proteases, the proteins that mediate
lysosomal degradation, into the cytosol where they can have
apoptotic or apoptotic-like consequences (Wang F. et al., 2018)
In support, genetic and pharmacological inhibition of cathepsin
B impairs caspase-1 activation and IL-1β release in response
to amyloid-β, Leu-Leu-OMe, and palmitate (Halle et al., 2008;
Hornung et al., 2008; Weber and Schilling, 2014). However, no
difference in caspase-1 cleavage or IL-1β secretion is observed
with genetic or pharmacological inhibition of cathepsin B in
response to MSU, hemozoin, alum, or ATP, suggesting a distinct
mechanism for activators or cathepsin B (Halle et al., 2008;
Dostert et al., 2009). In addition to this, cathepsins L, C, S, and
X are also implicated to play a role in inflammasome activation
(Orlowski et al., 2015). Other theories on how lysosomal damage
induces NLRP3 activation include lysosomal acidification and
influencing ion fluxes. Blocking the vacuolar H+-ATPase, a
proton pump responsible for lysosomal acidification, prevents
IL-1β release in response to silica, suggesting acidification
is required (Hornung et al., 2008). In addition, lysosomal
damage induced by Leu-Leu-OMe can affect K+ efflux and Ca2+

mobilization, subsequently activating the NLRP3 inflammasome
(Murakami et al., 2012; Katsnelson et al., 2016). This also
highlights the capability of NLRP3 activation pathways to work
in conjunction.

NLRP3 INFLAMMASOME
DYSREGULATION IN DISEASES

The pivotal defensive role of inflammasomes in response to
pathogens and other danger signals also suggests inflammasome
dysregulation in inflammation-mediated human diseases
(Schroder and Tschopp, 2010; Liu and Chan, 2014; Moossavi
et al., 2018; Boxberger et al., 2019; Eren and Özören, 2019).
Aberrant NLRP3 activation has been shown to exacerbate
disease pathology in several inflammation-driven diseases,
and ongoing research is investigating the distinct role that
NLRP3 may play in different disease states.

Cryopyrin-Associated Periodic Syndromes
Cryopyrin-associated periodic syndromes (CAPS) are a group
of diseases that are caused by a gain-of-function mutation(s)
in the nlrp3 gene and was the first autoinflammatory disorder
to be directly linked to NLRP3 inflammasome dysregulation
(Hoffman et al., 2001). Aberrant activation of NLRP3 causes
recurrent episodes of fever, hive-like rashes, inflamed eyes,
joint pain, swelling, headaches, and, if left untreated, deafness
and amyloidosis (Kuemmerle-Deschner et al., 2017). CAPS
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include familial cold autoinflammatory syndrome (FCAS),
Muckle–Wells syndrome (MWS), and neonatal onset multi-
systemic inflammatory disease (NOMID) with symptoms and
severity increasing respectively. Mortimer and colleagues found
Ser295 in human NLRP3 is essential for negatively regulating
NLRP3 activation via phosphorylation by protein kinase A,
and mutations in adjacent residues interfere with regulation,
rendering NLRP3 aberrantly active (Mortimer et al., 2016). A
recent study showed that treatment of a knock-in mouse model
expressing the N475K mutation of NLRP3 (in correspondence
with the human N477K mutation) with the proton-pump
inhibitor (PPI) esomeprazole is able to inhibit IL-1β secretion,
reduce amyloid deposition, increase IL-1 receptor antagonist
(IL-1Ra) production and survival rates (Bertoni et al., 2020).
CAPS are incredibly rare genetic diseases and therefore have
limited treatment options. Current treatment options consist
of IL-1 inhibitors, however, the development of inhibitors that
target the NLRP3 inflammasome is of great interest for these
diseases.

Diseases of the CNS
Alzheimer’s disease (AD) is characterized by the accumulation
of amyloid-β (Aβ) and hyperphosphorylated tau tangles.
Inflammation has been implicated to encourage the progression
of AD, and activated inflammatory mediators and high levels
of IL-1β are found in the serum, cerebrospinal fluid, and
brain of patients with AD where it exerts neurotoxic effects
against microglia and astrocytes (Rubio-Perez and Morillas-
Ruiz, 2012; Parajuli et al., 2013; Saresella et al., 2016; Italiani
et al., 2018; Ng et al., 2018). The accumulation of the Aβ

peptide in lysosomes after phagocytosis by microglial cells leads
to lysosomal swelling and destabilization causing the release
of lysosomal contents, including cathepsin B, and activation of
NLRP3 (Halle et al., 2008). The link between NLRP3 and AD
pathology has been demonstrated in other studies as well, where
genetic deficiency and pharmacological inhibition of NLRP3 in
mice over-expressing human amyloid precursor protein (APP)
and presenilin 1 (PS1) reduces Aβ deposition and improves
cognitive functions (Heneka et al., 2013; Dempsey et al., 2017;
Yin J. et al., 2018). Furthermore, microglia treated with Aβ causes
ASC specks, a critical component of the NLRP3 inflammasome,
but Aβ treatment failed to produce specks in cells with
mutations in the PYD domain of ASC (Venegas et al., 2017).
In addition, activation of NLRP3 causes hyperphosphorylation
of tau in an IL-1β-dependent manner in Tau22 mice, suggesting
NLRP3 works upstream (Ising et al., 2019). Clinical trials with
drugs targeting Aβ and tau tangles have been unsuccessful, but
NLRP3 has accumulated significant interest as a new target
for AD.

NLRP3 inflammasome has also been suggested to play an
important role in Parkinson’s disease (PD), a neurodegenerative
disease characterized by the loss of dopaminergic neurons
in the substantia nigra pars compacta, where high levels
of IL-1β have been detected in patients suffering from PD
(Mogi et al., 1994; Antony et al., 2013; Tan et al., 2020).
The disturbed proteostasis and intraneuronal aggregation of
fibrillar α-synuclein, known as Lewy bodies, interferes with

neurotransmitter release and is a common hallmark of PD.
These entities are able to activate the NLRP3 inflammasome
through TLR2 and mitochondrial damage (Wang et al., 2020;
Trudler et al., 2021). In addition, monocytes and microglia
are able to clear α-synuclein which causes a robust release
of pro-inflammatory cytokines, including IFN-γ, TNF, and
IL-1β which results in neurodegeneration (Tan et al., 2020).
Several studies have supported the link between NLRP3 and
PD pathology. NLRP3 deficient mice are resistant to the loss of
dopaminergic neurons in the substantia nigra after treatment
with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a
neurotoxin that induces a PD-like phenotype (Yan et al., 2015;
Lee E. et al., 2019). In conjunction with this, pharmacological
inhibition of NLRP3 improved PD pathology (Gordon et al.,
2018). Prolonged exposure of IL-1Ra knockout mice to cytokines
IL-1β/IL-1α results in PD-like outcomes, including impaired
motor skills (Stojakovic et al., 2017). Together, this highlights the
role of NLRP3 and cytokines in PD.

Multiple sclerosis (MS) is an autoimmune neurodegenerative
disorder caused by the demyelination of neurons presumably
by reactive T-cells that infiltrate the CNS upon weakening of
the blood-brain barrier (BBB). NLRP3 and IL-1β have long
been implicated to play a role in MS through encouraging
immune cell infiltration and promoting excessive inflammation.
Caspase-1 and IL-1β are found in MS plaques and are
upregulated in peripheral blood mononuclear cells of MS
patients (Ming et al., 2002; Cao et al., 2015). In experimental
autoimmune encephalomyelitis (EAE), an animal model for
MS, NLRP3 inflammasome expressing antigen-presenting cells
assist in T-cell migration to the CNS through upregulation of
chemotaxis-related proteins (Inoue et al., 2012). In addition,
NLRP3 expression is upregulated in the spinal cords of mice with
EAE, and NLRP3 and ASC knockout mice are resistant to EAE,
highlighting their potential roles in MS (Gris et al., 2010; Inoue
et al., 2012). IFNβ, one of the few therapeutic options for MS,
can suppress NLRP3 activation and in NLRP3-dependent EAE
(Inoue et al., 2016).

Neuroinflammation is the standard response to traumatic
brain injury (TBI), and several studies have supported the
upregulation of inflammatory mediators, including NLRP3, in
the brain hours to days after a TBI (Liu et al., 2013; Wallisch
et al., 2017). Cytokines IL-1β and IL-1α’s RNA are elevated as
soon as 3 h after TBI in rats, and inhibiting the two cytokines
with antibodies prior to TBI significantly reduces the loss
of hippocampal neurons (Lu et al., 2005). NLRP3 and other
inflammatory mediators are also upregulated in the brain of
patients after suffering severe TBI, and recent studies reveal
pharmacological inhibition of NLRP3 decreases cell death and
prevents neurological deficits in TBI mouse models, highlighting
the druggable potential of NLRP3 (Chen et al., 2019; Kuwar
et al., 2019; Yan et al., 2020). TBI’s link to AD and PD is well
established, and other studies support that patients with a history
of TBI are at increased risk for neurodegenerative diseases in
general (Gardner and Yaffe, 2015; Hayes et al., 2017; Ramos-
Cejudo et al., 2018; Delic et al., 2020). These increased risks are
likely contributed to neuroinflammation, as neuroinflammation
after TBI shows increased hyperphosphorylation of tau protein
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and Aβ plaques, two hallmarks of AD (Johnson et al., 2010;
Edwards et al., 2020).

Peripheral Inflammatory Diseases
Dysregulation of NLRP3 inflammasome has also been suggested
in the pathogenesis of rheumatoid arthritis (RA), a chronic
autoimmune disease characterized by persistent synovial
inflammation in small diarthrodial joints, progressive cartilage,
bone destruction, and autoantibody production (McInnes and
Schett, 2011). Numerous studies support the involvement of
NLRP3 in the development of RA, however, the mechanism is
somewhat elusive. One study suggests pentaxin 3, a biomarker
of RA, and its ligand C1q can activate NLRP3 (Wu et al.,
2020). Significant NLRP3 expression is observed in the synovial
proliferation and subchondral vasculitis areas in the paws of
collagen-induced arthritis (CIA) mice compared to healthy mice
(Zhang et al., 2016). Similarly, pharmacological inhibition of
the NLRP3 inflammasome with different inhibitors reduces RA
pathology and secretion of IL-1β and TNF-α, supporting the
involvement of NLRP3 in RA (Yan et al., 2012; Voon et al., 2017;
Guo et al., 2018; Marchetti et al., 2018b).

Gout has many of the same symptoms as RA, however,
the pathology of these two diseases is different. While
RA is an autoimmune disease, gout is caused by elevated
levels of uric acid in the bloodstream. Eventually, these
uric acid crystals accumulate in the joints where they are
phagocytosed by synoviocytes (Richette and Bardin, 2010). Upon
phagocytosis, uric acid crystals cause lysosomal destabilization
which subsequently activates NLRP3, cytokine release and causes
inflammation and pain (Martinon et al., 2006). In addition,
soluble uric acid was able to activate NLRP3 in a ROS-dependent
manner, suggesting inflammation is initiated before crystal
formation (Braga et al., 2017). Several NLRP3 inhibitors have
been shown to inhibit inflammation caused by gouty arthritis,
emphasizing the importance of NLRP3 as a target in treatments
for gout (Lee H. G. et al., 2016; Ruiz-Miyazawa et al., 2017;
Huang et al., 2018; Marchetti et al., 2018b; Lee H. E. et al., 2019;
Deng et al., 2020).

Diabetes mellitus is another disease in which
NLRP3 dysregulation has been suggested to play a pathological
role (Chausmer, 1998; Tang et al., 2019). High levels of IL-1β

have been detected in patients with diabetes and other studies
show IL-1β can affect insulin sensitivity through the TNF
pathway (Dinarello et al., 2010; Wen et al., 2011). Transgenic
mice lacking NLRP3 fed with a high-fat diet, which has
previously been shown to activate NLRP3, have lower IL-1β

and are protected from high-fat diet-induced insulin resistance,
further supporting inflammatory mediators’ involvement in
metabolic inflammation and insulin resistance (Vandanmagsar
et al., 2011; Wen et al., 2011). Recently, it was reported
that NLRP3 inflammasome inhibition could be one of the
mechanisms underlying metformin’s effects to inhibit diabetes-
accelerated atherosclerosis (Tang et al., 2019). Consistent with
this observation, the blockade of IL-1 receptor using anakinra, a
drug used for RA, leads to significant improvements in diabetic
patients (Larsen et al., 2009).

At least 20% of all cancers arise from infection or
chronic inflammation (Grivennikov and Karin, 2011). Chronic
inflammation is led by the release of pro-inflammatory
cytokines; however, while NLRP3 is an important mediator
in inflammation, reports show that NLRP3 can have both a
destructive and protective role in different types of cancer,
making NLRP3’s role in cancer complex (Hamarsheh and
Zeiser, 2020). Several studies have shown that NLRP3 and
components of the NLRP3 inflammasome pathway can play
a destructive role through upregulation, overactivation, and
polymorphisms (Hamarsheh and Zeiser, 2020). One example
of this is IL-1 and TNF’s ability to recruit neutrophils,
encouraging ROS production and subsequent inflammation as
well as inducing adhesion molecules and metalloproteases which
encourage tumor invasion (Dinarello, 2006). Polymorphisms
and mutations in the NLRP3 gene are also implicated in cancer.
Poor survival rate is correlated with invasive colorectal cancer
patients that have the Q705K NLRP3 mutation, a mutation
that is also prominent in pancreatic cancer patients (Ungerbäck
et al., 2012; Miskiewicz et al., 2015). Conversely, NLRP3 is
also demonstrated to have anti-tumorigenic effects in colorectal
cancer. One study found that mice deficient in NLRP3 or
caspase-1 exhibit high sensitivity to azoxymethane (AOM)
dextran sodium sulfate (DSS)-induced inflammation and suffer
tumor burdens as a result of decreased IL-18 and lack of tumor
suppressing cytokines, IFN-γ and single transducer and activator
of transcription-1 (STAT-1) (Zaki et al., 2010b). Along those
same lines, inflammasome component deficiency also correlates
with a worse disease state in colitis-associated cancer (CAC) as
a result of decreased IL-18 (Zaki et al., 2010a). The exact role of
NLRP3 in different types of cancer is multiplex, but therapies that
target inflammation may be of value to some diagnoses.

NLRP3 Inflammasome Pathway Inhibitors
The link between NLRP3 inflammasome dysregulation
and a variety of human diseases has suggested the value
of NLRP3 inhibitors for therapeutic interventions. Several
NLRP3 inflammasome inhibitors have recently emerged
and been investigated in a variety of disease states; some
of which have entered clinical trials. Herein, we summarize
the mechanisms of inhibition and relevant SAR studies that
have been conducted for direct and indirect inhibitors of the
NLRP3 inflammasome (Figure 1).

Sulfonylurea and Sulfonamide Analogs
Inflammasome inhibitors containing the sulfonylurea and
sulfonamide moieties have been developed and studied to
improve potency, selectivity, and solubility (Figure 2).

Glyburider

Glyburide is an FDA-approved, anti-diabetic drug that falls
into the sulfonylurea class of medications. Glyburide treats
diabetes by blocking ATP sensitive potassium (KATP) channels
in pancreatic β cells (Ashcroft, 2005). Studies have shown
that glyburide inhibits NLRP3 activation and IL-1β secretion
induced by LPS/ATP in bone marrow-derived macrophages
(BMDMs) with an IC50 of 10–20 µM (Lamkanfi et al., 2009; Hill
et al., 2017). Lamkanfi et al. (2009) demonstrated that glyburide
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FIGURE 1 | The NLRP3 inflammasome pathway and its inhibitors.

inhibits caspase-1 activation and IL-1β secretion independently
of KATP channels and later concluded that glyburide likely
targets downstream of the purinergic 2X7 receptor (P2X7R) and
upstream of inflammasome formation. Pilot structure-function
studies revealed that the cyclohexylurea group is responsible for
insulin secretion, whereas the benzamide and sulfonyl moiety
are critical for NLRP3 inflammasome inhibition (Hill et al.,
2017). Unfortunately, the concentration that glyburide is able to
elicit its anti-inflammatory properties can induce hypoglycemia
which limits its further development as an NLRP3 inflammasome
inhibitor (Coll et al., 2015).

MCC950
MCC950 is a sulfonylurea compound initially discovered in
2001 under the name CP-424, 174 (Perregaux et al., 2001). The
term CRID3 is also used synonymously with MCC950. Recent
studies have demonstrated that MCC950 is a potent and selective
NLRP3 inflammasome inhibitor that can inhibit IL-1β release in

BMDM cells with an IC50 of 7.5 nM (Coll et al., 2015; O’Neill
et al., 2016). However, it should be noted that in a 2011 article by
Coll et al. (2011), a different compound was incorrectly termed
CRID3 and was described to be nonselective and inhibiting
both NLRP3 and AIM2 inflammasomes. Mechanistic studies
revealed that MCC950 is a direct NLRP3 inhibitor that binds
to the Walker B motif of the ATPase binding pocket in the
central NACHT domain subsequently inhibiting ATPase activity,
a critical step in inflammasome activation (Coll et al., 2019).
Further docking studies supported this binding site (Tapia-
Abellan et al., 2019; Andreeva et al., 2021; Hochheiser et al.,
2021). MCC950 fails to stimulate insulin secretion in vitro;
however, a later study found it’s able to increase insulin
sensitivity in an in vivo diabetic mouse model, although this
was attributed to MCC950’s effects at NLRP3 (Hill et al., 2017;
Zhai et al., 2018). In 2017, Hill et al. (2017) synthesized a
series of MCC950, sulfonylurea derivatives that can inhibit
NLRP3 inflammasome with nanomolar potencies and also
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FIGURE 2 | Sulfonamide-based NLRP3 inhibitors structures.

inhibit insulin secretion. Since the discovery of MCC950 as
an NLRP3 inhibitor, it’s been employed as a chemical tool to
understand the pathological roles of the NLRP3 inflammasome
in a variety of disease models including AD, atherosclerosis,
asthma, allergic airway inflammation, inflammatory bowel
disease (IBD), and many more (Dempsey et al., 2017; van der
Heijden et al., 2017; van Hout et al., 2017; Ismael et al., 2018;
Perera et al., 2018; Robinson et al., 2018; Xu et al., 2018; Zhai
et al., 2018; Theofani et al., 2019; Fu et al., 2020; Ren et al.,
2020). The commonly used dose in these studies was 10 mg/kg,
relatively high compared to its low nanomolar potency. Recent
studies of radio-labeled MCC950 PET tracer demonstrate its low
CNS penetration, which may limit its development and use as a
CNS agent (Hill et al., 2020).

JC121, JC124, and YQ128
Formerly known as 16673-34-0, JC121 was developed as a
sulfonamide derivative of glyburide. JC121 is able to inhibit
ASC aggregation, caspase-1 activity, IL-1β secretion, and
inflammatory cell death in cardiomyocytes in response to
ATP and nigericin (Marchetti et al., 2014). Furthermore,
JC121 inhibits the activity of constitutively active NLRP3 in
BMDMs from genetically modified mice, suggesting that
this compound inhibits downstream inflammasome activation
rather than upstream targets (Marchetti et al., 2015). Notably,
JC121 does not show hypoglycemia effects in vivo, a concern
for its scaffold predecessor glyburide, even at doses as high
as 500 mg/kg. This compound exhibits in vivo protective

activity in mouse acute myocardial infarction models and
preserves cardiac function after ischemic injury (Marchetti
et al., 2014, 2015). To overcome the observed solubility
issues of JC121, another analog, JC124, was designed that
incorporates a methylated sulfonamide into the structure.
The results demonstrated that, like JC121, JC124 is also a
selective inhibitor of the NLRP3 inflammasome that inhibits
IL-1β release with an IC50 of 3.25 µM without significant
inhibition on NLRC4 or AIM2 inflammasomes (Fulp et al.,
2018). Mechanistic studies employing a photo-affinity probe
suggested that JC124 directly interacts with the NLRP3 protein;
however, unlike MCC950, JC124 can bind to NLRP3 without
affecting the ATPase activity, suggesting a distinct mode of
binding for these sulfonamide derivatives (Kuwar et al., 2019).
In vivo, JC124 can actively reduce disease pathology and improve
functional performance in animal models of TBI, AD, and acute
myocardial infarction by engaging the NLRP3 inflammasome
(Fulp et al., 2018; Yin J. et al., 2018; Kuwar et al., 2019). Structure-
activity relationship (SAR) studies of JC124 revealed that the
sulfonamide moiety can be modified to improve inhibitory
potency.

To increase the space for structural optimization, a new
chemical scaffold was created based on the structure of JC124 and
further medicinal chemistry campaign led to the design of YQ-
II-128 (YQ128) as a novel NLRP3 inhibitor (Jiang et al., 2019).
YQ128 significantly inhibits NLRP3 mediated IL-1β production
in vitro with an IC50 of 0.30 µM in mouse macrophages. Further
in vitro studies demonstrated YQ128 as a selective inhibitor of the
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NLRP3 inflammasome, since it did not inhibit IL-1β production
mediated by NLRC4 or AIM2 inflammasomes. In vivo studies
also confirmed its selective inhibition on IL-1β production upon
LPS challenge in mice. A YQ128 PET tracer showed rapid BBB
penetrance with moderate brain uptake; however, preliminary
pharmacokinetic studies revealed that YQ128 displays poor oral
bioavailability (Jiang et al., 2019; Xu et al., 2021). Ongoing SAR
studies are currently underway to improve the potency and
pharmacokinetics of these compounds.

Natural Products
Numerous natural products possess anti-inflammatory activity
with mechanisms and targets that go far beyond the breadth
of this review. However, there are several natural products that
have received considerable attention for their anti-inflammatory
activity being attributed to the interference of inflammasomes
and their pathways (Figure 3).

Flavonoids
Flavonoids are a group of phytonutrients found in a variety
of fruits, vegetables, grains, and plants and are well recognized
for their neuroprotective, anti-inflammatory, antimutagenic, and
antioxidant properties.

Apigenin
Apigenin is a flavone that inhibits NLRP3-mediated
inflammation through a variety of different mechanisms (Zhang
et al., 2014). The expression of pro-inflammatory cytokines
IL-6, IL-1β, and TNF-α are reduced by apigenin in LPS-primed
THP-1 derived macrophages and J774A.1 mouse macrophages.
Apigenin shows inhibitory activity on the ERK1/2 and NF-κB
pathways. Despite apigenin inhibiting NF-κB activation, it does
not affect NLRP3 mRNA or protein levels or ASC protein
levels in response to LPS; however, apigenin inhibits ASC speck
formation and further studies suggested this happens through
specifically targeting ASC (Zhang et al., 2014). A recent study
demonstrated that apigenin can inhibit the phosphorylation
of spleen tyrosine kinase (Syk) and protein tyrosine kinase
2 (Pyk2), two tyrosine kinases that are key players in the
phosphorylation of ASC (Lim et al., 2018). The same study
found apigenin can inhibit AIM2-mediated IL-1β production,
but not NLRC4-mediated, in THP-1 cells, making apigenin
a non-selective inflammasome inhibitor. Apigenin presents
therapeutic potential in several disease states, but more research
is needed (Salehi et al., 2019).

Cardamonin
Cardamonin is a natural chalcone found in the plant Alpinia
katsumadai Hayata. Cardamonin can inhibit the NF-κB pathway
through suppression of nitric oxide (NO) and prostaglandin-
E2 in IFN-γ- and LPS-induced RAW 264.7 cells (Israf
et al., 2007). This results in decreased phosphorylation and
degradation of Iκ-Bα and subsequent activation of NF-κB.
Other potential mechanisms of cardamonin include upregulating
AhR/Nrf2/NQO1 signaling, which is known to negatively
regulate NLRP3 (Wang K. et al., 2018). So far, cardamonin has
mainly been investigated in cancer, but it has also been studied in

IBD, RA, and more (Voon et al., 2017; Wang K. et al., 2018; Jin
et al., 2019; Liao et al., 2019).

Isoliquiritigenin and Glycyrrhizin
Isoliquiritigenin (ILG) and Glycyrrhizin (GL) are both extracts
from the plant Glycyrrhiza uralensis (licorice) which have
been used throughout time to treat a variety of disorders
mainly due to their abundance in flavonoids, chalcones, and
other phytonutrients. ILG is a flavonoid that resembles a
chalcone, while GL is a triterpene saponin. Both ILG and
GL inhibit the NF-κB and MAPK activation by suppressing
TLR4/MD-2 complex (Honda et al., 2012). ILG has also been
recognized to promote the Nrf2 pathway and suppress ROS
(Zeng et al., 2017). Further studies show that GL and ILG
inhibit NLRP3 inflammasome formation, activation of caspase-
1, and production of IL-1β when added during the activation
step (Honda et al., 2014). Collectively, the results suggest that
ILG and GL can inhibit both the priming and activation steps
of the inflammasome pathway. Furthermore, ILG is a selective
inhibitor of the NLRP3 inflammasome, as it did not inhibit
AIM2 inflammasome formation or IL-1β production in response
to poly (dA:dT). Contrarily, GL shows inhibitory activity to both
NLRP3 and AIM2 inflammasome mediated IL-1β production
(Honda et al., 2014). Because ILG has selectivity for NLRP3, and
ASC oligomerization is a shared mechanism between NLRP3 and
AIM2, ILG may target NLRP3 directly or somewhere upstream to
inhibit inflammation. Because GL is not selective, GL may target
ASC or somewhere upstream.

Luteolin
Luteolin is a flavone that can be identified in plants including
pepper, broccoli, thyme, and celery (Imran et al., 2019).
Mechanistically, luteolin can reduce ROS and expression of
NLRP3 and other inflammatory mediators through the NF-κB
pathway; however, it is a nonspecific inflammasome modulator
as it also affects the expression of AIM2 (Chen et al., 2007;
Zhang et al., 2018; Yu et al., 2019). One of these studies
showed that luteolin potently inhibits NLRP3 expression as low
as 2 µM in RAW267.4 cells and attributed this effect to its
ability to enhance M2 macrophage polarization which is known
to stimulate immunoregulation (Zhang et al., 2018). Further
research suggested the potential involvement of transcription
factor Nrf2 in the observed inhibition of inflammasome
activation (Hennig et al., 2018). Luteolin and some derivatives
have been considered as a treatment for several diseases including
ulcerative colitis (inflammatory bowel disease), several types of
cancer, and myocardial injury (Ning et al., 2017; Imran et al.,
2019; Li B. et al., 2021).

Quercetin
Quercetin is a flavonol that is found in many fruits,
vegetables, leaves, grains, and more (Bentz, 2009).
Quercetin is a non-selective inflammasome inhibitor
that inhibits IL-1β secretion during NLRP3 and
AIM2 challenging (Domiciano et al., 2017). During the
priming step, quercetin can inhibit NF-κB and MAPK
as well as JAK/STAT pathways under AIM2 challenging
(Hämäläinen et al., 2007; Lee K. M. et al., 2018). Other studies
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FIGURE 3 | Natural product NLRP3 inhibitors structures.

have indicated that quercetin inhibits the activation step of
the NLRP3 inflammasome by interfering with ASC-speck
oligomerization, which may explain why it cannot inhibit
NLRC4 since ASC is dispensable for NLRC4 activation

(Domiciano et al., 2017). Quercetin has been investigated
in neurodegenerative disorders, cancer, diabetes, and more
(Chen et al., 2016; Amanzadeh et al., 2019; Reyes-Farias and
Carrasco-Pozo, 2019; Zaplatic et al., 2019).
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Phenols
Artemisia
The genus Artemisia contains a variety of species, some
of which have been used in traditional Asian medicines
for their anti-inflammatory properties. Extract of Artemisia
princeps (APO) contains several phenolic compounds such as
caffeoylquinic acids, chlorogenic acid, and neochlorogenic acid;
however, the anti-inflammatory properties are mainly attributed
to chlorogenic acid which is one of the major constituents in
the APO extract. APO can inhibit ASC speck formation upon
activation of the NLRP3 or AIM2 inflammasomes, but not
NLRC4, in BMDM cells (Kwak et al., 2018). The same study
demonstrated that APO interferes with the phosphorylation of
a tyrosine residue (Y144) of ASC, which is critical for speck
formation. This is consistent with its dual inhibition on the
NLRP3 and AIM2 inflammasomes since ASC is not required
for the assembly and activation of the NLRC4 inflammasome
(Kwak et al., 2018). Artemisia and their extracts have become
an attractive area of natural product medicine and several
other species have been investigated for their anti-inflammatory
properties and suspected roles in the inflammasome pathways
(Chen et al., 2021; Manayi et al., 2021; Wang Q. et al., 2021).

Caffeic Acid Phenethyl Ester
Caffeic acid phenethyl ester (CAPE) is a phenolic compound
found in propolis from honeybee hives. Similar to the other
phenolic compounds, CAPE can suppress the activation of
transcription factors, specifically NF-κB, that leads to a decrease
in the production of pro-inflammatory mediators (Natarajan
et al., 1996; Juman et al., 2012). CAPE has recently been shown
to inhibit the activation of NLRP3 and AIM2 inflammasomes
by binding to ASC and blocking NLRP3-ASC interactions
(Lee H. E. et al., 2016). It was later revealed that CAPE
binds to the ASC-PYD domain, but not to the ASC-CARD or
NLRP3-PYD domain. Because NLRP3 and AIM2 both require
ASC, CAPE likely has a similar mechanism toward AIM2. CAPE
has been investigated in gout, cancer, Lou Gehrig’s disease,
neuroprotection in status epilepticus, and diabetes (Fontanilla
et al., 2012; Yis et al., 2013; Fraser et al., 2016; Lee H. E. et al.,
2016; Nie J. et al., 2017).

Curcumin
Curcumin is a widely used polyphenol compound known for
its anti-inflammatory and antioxidant effects. A 2016 study
found that treatment with curcumin decreases the expression of
NLRP3, activation of caspase-1, and cleavage and secretion of
IL-1β in PMA-induced macrophages (Kong et al., 2016). The
reduced expression of NLRP3 is likely due to its inhibition of
IKK phosphorylation, which is required for NF-κB activation;
however, the expression of several other pro-inflammatory
mediators was also reduced such as TLR4 and MyD88,
suggesting multiple targets which is consistent with the
promiscuous nature of this compound. Curcumin is also able
to reverse P2X7R activation in PMA-induced macrophages,
subsequently decreasing the expression of NLRP3 (Kong
et al., 2016). Later studies found that curcumin is selective
to the NLRP3 pathway, as it does not inhibit NLRC4- or
AIM2-mediated caspase-1 activation in LPS-primed BMDMs

(Yin H. et al., 2018). Other than priming, curcumin also
suppresses ASC speck formation, caspase-1 activation, and IL-
1β secretion in LPS-primed BMDMs, suggesting it affects both
the priming and activation steps. This study also found that
curcumin can inhibit potassium efflux in macrophages and
inflammasome NLRP3 complex formation. Despite ROS being
one of the activators of NLRP3, curcumin’s antioxidant effects
are not the primary mechanism responsible for its inhibitory
effect on the NLRP3 inflammasome pathway, however, it is
recognized to upregulate the Nrf2 pathway (Yin H. et al., 2018;
Rahban et al., 2020). Curcumin itself has been investigated in a
variety of different diseases including, but not limited to, AD,
osteoarthritis, depression and anxiety, cancer, and many more
(Lopresti and Drummond, 2017; Sun et al., 2017; Reddy et al.,
2018; Giordano and Tommonaro, 2019).

Obovatol
Obovatol is phenol isolated from the bark of Magnolia
obovata. Like other natural biphenolic compounds, obovatol
is traditionally used for its anti-inflammatory, anxiolytic, and
nootropic characteristics. Obovatol can inhibit NF-κB, JNK, and
ERK pathways, resulting in the suppression of inflammatory
mediators (Ock et al., 2010). In addition, obovatol can also
block the production of mitochondrial ROS and the formation
of ASC inflammasome in response to nigericin and dsDNA,
suggesting it inhibits both NLRP3 and AIM2 inflammasome
activation (Kim J. et al., 2019). Further studies are required to
understand the mechanism of action and binding. Obovatol has
been investigated for use in AD and cancer (Choi et al., 2012;
Duan et al., 2018).

Terpenes
Andrographolide
Andrographolide is a diterpenoid extracted from Andrographis
paniculate and is commonly prescribed as a treatment for RA,
asthma, laryngitis, and other upper respiratory tract infections
(Tan et al., 2017). It is known to suppress the NF-κB and
MAPK pathways and may also act as a ROS scavenger in
ovalbumin-induced lung injury (Peng et al., 2016; Nie X. et al.,
2017). Andrographolide can also inhibit NLRP3 activation by
stimulating mitophagy, a process that is negatively correlated
with the inflammasome, in colitis-associated cancer (Guo et al.,
2014). Recently, andrographolide has been shown to also
inhibit the AIM2 inflammasome by preventing AIM2 from
translocating into the nucleus to sense DNA damage during the
development of radiation fibrosis in BMDM cells (Gao et al.,
2019). Andrographolide has been investigated in several diseases,
however, due to its effects on AIM2 it is been closely investigated
for its antiviral properties (Gupta et al., 2017; Reshi and Chi-
Yong, 2020; Shi et al., 2020).

Oridonin
Oridonin (Ori) is a natural diterpenoid from the plant Rabdosia
rubescens that is commonly used in East Asia as a natural
supplement for its anti-inflammatory, anti-tumor, antimicrobial,
and neuroprotective effects (Xu et al., 2018). Studies have shown
that Ori can suppress the level of several pro-inflammatory
mediators by inhibiting NF-κB signaling, nuclear translocation,
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and DNA binding (Wang et al., 2014; Cummins et al., 2018).
Contrarily, increased expression of pro-TNF-α and increased
phosphorylation of IκB in L929 cells have also been observed
by Ori treatment, which may contribute to pro-inflammatory
effects (Huang et al., 2005). Recent studies showed that Ori
is a direct, irreversible, and selective inhibitor of NLRP3 and
inhibits IL-1β production with an IC50 of ∼0.5 µM (He et al.,
2018). Mechanistically, Ori is able to disrupt NLRP3-NEK7
interactions, a crucial interaction for NLRP3 activation and
inflammasome assembly, by covalently modifying the cysteine
residue C279 in the NACHT domain of NLRP3 protein
by Michael addition. Further studies showed that Ori failed
to inhibit NEK7-NEK9 interactions, suggesting Ori inhibits
the NLRP3-NEK7 interaction by binding to NLRP3. Ori
shows no effect on the ATPase activity of NLRP3, NLRP3-
NLRP3 interactions, or recruitment of ASC (He et al., 2018).
Ori has demonstrated in vitro and in vivo success and has
been investigated in a number of disease models including TBI,
AD, cardiac hypertrophy, methicillin-resistant Staphylococcus
aureus (MRSA), pulmonary fibrosis, cancer, and more (Wang
et al., 2016; Fu et al., 2018; Xu et al., 2019; Yuan et al.,
2019; Zhang et al., 2019; Yan et al., 2020). Despite the
observed in vivo activities of Ori from preclinical studies, there
is concern about the toxicity and adverse pharmacological
effects of Ori (Li X. et al., 2021). More research on Ori
analogs is required to improve pharmacological activity and
bioavailability.

Parthenolide
Parthenolide is a natural product found in Tanacetum
parthenium and has commonly been used as a preventative
for migraine headaches. Its anti-inflammatory activity has
been attributed to its ability to inhibit the NF-κB pathway,
however, it also shows anti-inflammatory effects independent
of the NF-κB mechanism (Saadane et al., 2007). One study has
demonstrated that parthenolide inhibits multiple inflammasome
pathways including NLRP3, NLRP1, and NLRC4 and directly
inhibits caspase-1, but does not inhibit the AIM2 pathway
(Juliana et al., 2010; Coll et al., 2011). Conversely, one study
demonstrated that parthenolide does not inhibit NLRC4
(Coll et al., 2015). Mass spectrometry results show that
parthenolide irreversibly inhibits caspase-1 by alkylating
C285 of the p20 subunit, blocking activity and cleavage of
downstream events. It is suspected that parthenolide block
NLRP3 in a similar manner due to its ability to inhibit
ATPase activity in a dose-dependent manner (Juliana et al.,
2010). Parthenolide can inhibit IL-1β secretion with an
IC50 of ∼5 µM in response to NLRP3 challenging and
5–10 µM in response to AIM2 and NLRC4 challenging
in BMDM cells (Jiang H. et al., 2017). Naturally occurring
parthenolide’s poor aqueous solubility and bioavailability
limits its further clinical development, but due to its reactive
species it is still being investigated in different disease, states
including, cancer and analogs continue to be made in an
effort to improve pharmacological properties (Guzman et al.,
2007; Alwaseem et al., 2018; Li et al., 2020; Liu et al., 2020;
Hotta et al., 2021).

Other
Shikonin
Shikonin is a naphthoquinone compound isolated from the
roots of Lithospermum erythrorhizon and is used in traditional
Chinese herbal medicine for its variety of medicinal properties.
Shikonin inhibits the secretion and cleavage of pro-caspase-
1 through suppression of NF-κB as well as directly inhibits
caspase-1 itself, likely by targeting a cysteine residue in the active
site (Zorman et al., 2016). Furthermore, shikonin was able to
inhibit NLRP3-mediated IL-1β secretion with an IC50 of 1.4–2
µM in LPS primed iBMDMs. Another study demonstrated that
shikonin prevents ASC pyroptosome formation and NLRP3-
and AIM2-mediated IL-1β and IL-18 release in BMDM and
THP-1 cells through inhibition of PKM2, a kinase that promotes
the activation of NLRP3 and AIM2 inflammasomes (Xie et al.,
2016). Shikonin has been investigated in the treatment of
AIDS and cancer (Chen et al., 2003; Wang et al., 2017, 2019;
Zhao et al., 2018).

Sulforaphane
Sulforaphane (SFN) is a widely used dietary supplement
that is found in broccoli extracts and cruciferous vegetables.
SFN is known to have anti-inflammatory properties that
are attributed to activating the Nrf2 transcription factor, a
protein that regulates the antioxidant responses upon oxidative
damage caused by ROS, and NF-κB by employing its ability
to modify cysteine residues (Heiss et al., 2001; Jiao et al.,
2017). SFN can also inhibit TLR activation through covalent
modification of a cysteine residue in the hydrophobic pocket
of myeloid differentiation 2 (MD2), which complexes with
TLR (Koo et al., 2013). However, recent research has shown
that SFN has anti-inflammatory properties independent of the
priming step and is a non-selective inflammasome inhibitor
of the NLRP3, NAIP5/NLRC4, NLRP1b, and AIM2 pathways
(Greaney et al., 2016). SFN can inhibit NLRP3-mediated IL-
1β production with an IC50 of 5 µM and NLRC4- and
AIM2-mediated IL-1β production with an IC50 of ∼10 µM
(Jiang H. et al., 2017). It’s not clear whether SFN acts in a
direct or indirect manner; however, the non-selective inhibition
on multiple inflammasomes may suggest that SFN targets a
shared mechanism by the inflammasomes during the activation
process. Greaney et al. (2016) also showed that the SFN inhibits
caspase-1 autoproteolytic cleavage but does not modify cysteine
residues in the caspase-1 active site, as incubation with SFN
in the presence of active caspase-1 does not inhibit the IL-1β

processing. SFN itself has been investigated for the treatment
of retinal ischemic/reperfusion injury, cancer, neurodegenerative
diseases, and many more diseases (Kan et al., 2018; Gong et al.,
2019; Kim, 2021). There is abundant research on the dietary
benefits of broccoli in preventing diseases, and SFN is suggested
to play a significant role (Subedi et al., 2019; Nandini et al., 2020;
Liebman and Le, 2021).

Other Inhibitors
Several synthetic small molecules and biologics have been
investigated to inhibit the NLRP3 inflammasome pathway as
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FIGURE 4 | Other NLRP3 inhibitors structures.

well, some of which have successfully made it to the market
(Figure 4).

X-11-5-27
X-11-5-27 is a synthetic derivative of daidzein, a natural
isoflavonoid found in soybeans, with antioxidant and

anti-inflammatory properties. Daidzein has been shown to
suppress the secretion of pro-inflammatory cytokines in vitro
and it’s suspected that these effects are the result of a variety
of targets in the MAPK pathway (Hämäläinen et al., 2007;
Liu et al., 2009; Sakamoto et al., 2016). X-11-5-27 inhibits
NLRP3 expression and activation, ASC speck formation, and
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subsequent caspase-1 activation and IL-1β secretion in BMDMs
and THP-1 cells (Zhou et al., 2017). It was also observed that
X-11-5-27 inhibits NLRP3 through the induction of autophagy, a
process that is negatively correlated with NLRP3. Further studies
suggested that the inhibitory activity of X-11-5-27 in these studies
may be through antioxidant effects by reducing ROS production
and protecting mitochondrial function (Zhou et al., 2017).

INF Analogs
In 2014, a series of α, β-unsaturated warheads from an
electrophilic fragment-based library were reported to irreversibly
inhibit the NLRP3 inflammasome (Cocco et al., 2014). Further
characterization of one of the compounds, INF4E (compound
9), demonstrated its irreversible inhibition of the NLRP3 protein
via its Michael acceptor to form a covalent bond with NLRP3,
which subsequently inhibits IL-1β secretion in ATP-induced
THP-1 cells. INF4E also inhibits NLRP3’s ATPase and caspase-1
activity, suggesting those as targets. Furthermore, INF4E
prevents caspase-1 dependent pyroptosis and attenuates ATP-
and nigericin-induced cell death (Cocco et al., 2014). To
decrease toxicity associated with these types of compounds,
further structural derivatization led to a series of acrylamide
analogs using the ligand-merging strategy to combine the
Michael acceptor moiety and a sulfonamide moiety. One
of the analogs, INF58 (compound 14), irreversibly inhibits
NLRP3 ATPase with improved potency (Cocco et al., 2016).
Further optimization led to the identification of an ethyl acrylate
derivative, INF39 (compound 11), that possesses decreased
cytotoxicity and reactivity compared to both INF4E and INF58.
Mechanistic studies suggest its direct interaction with the
NLRP3 ATPase domain and can inhibit IL-1β production with
an IC50 of 10 µM (Cocco et al., 2017). The same study
found that INF39 can attenuate NEK7-NLRP3 interactions in
HEK293 cells expressing NLRP3 and NEK7, confirming that
INF39 blocks NLRP3 inflammasome assembly. INF39 continues
to be investigated in the inflammasome pathway, a recent
study has further verified INF39’s selective interaction with
NLRP3, as it does not suppress AIM2 or NLRC4 inflammasomes,
and showed the inhibition of ASC speck formation and the
cleavage of caspase-1, IL-1β, and GSDMD proteins in THP-1
cells (Shi et al., 2021). Other studies have continued to
derivatize INF39 and investigate the mechanism of binding
(Gastaldi et al., 2021).

Novel Boron Compounds (NBC)
2-aminoethyldiphenyl borate (2APB), a boron containing
compound, is known to inhibit IP3-mediated calcium release,
store-operated calcium entry, and disrupt other calcium-
dependent pathways in HeLa cells and cardiac myocytes, which
may affect the ion flux balance required to activate NLRP3
(Peppiatt et al., 2003). Further studies demonstrated that 2APB
can inhibit nigericin- and ATP-induced NLRP3 inflammasome
signaling cascade independently of its effect on calcium flux
(Katsnelson et al., 2015). However, 2APB’s effects on calcium
flux limits its drug development. Further optimization of
2APB to weaken its effects at calcium flux while strengthening
the effects on NLRP3 resulted in compound NBC6 with
significantly enhanced potency (IC50 = 574 nM) (Baldwin

et al., 2017). NBC6 can inhibit ASC oligomerization and
was found to be a potent inhibitor of NLRP3; however, it’s
also able to inhibit NLRC4 and AIM2 pathways at higher
concentrations. Interestingly and unlike 2APB, NBC6 retained
activity after washing away free drug, suggesting it may act as
a covalent inhibitor. NBC13, a similar analog to NBC6 with
better solubility, inhibited IL-1β release in vivo (Baldwin
et al., 2017). NBC compounds have yet to be investigated in
disease states.

BAY 11-7082
BAY 11-7082 (BAY) is a phenyl vinyl sulfone and is known
for its inhibition of TNF-α induced IKK phosphorylation
which subsequently inhibits activation of NF-κB and
expression of NLRP3 (García et al., 2005). However, due to
its non-specific modification of cysteine residues, BAY shows
polypharmacological properties with multiple mechanisms
suggested (Lee et al., 2012). In 2010, a study found that
BAY reduces NLRP3’s ATPase activity and inhibits ASC
oligomerization (Juliana et al., 2010). Upon further investigation,
this study found that BAY inhibits NLRP3 activity by
irreversibly alkylating cysteine residues in the ATPase region of
NLRP3 through a Michael addition mechanism and SAR studies
of BAY revealed the importance of the vinyl sulfone in the
observed inhibitory activity. BAY can inhibit IL-1β production
in BMDM’s with an IC50 of ∼5 µM (Jiang H. et al., 2017).
Increased ubiquitination of NLRP3 by BAY was also observed
which may contribute to its inhibition of the NLRP3 protein by
interfering with NLRP3-ASC interactions (Shim et al., 2017). A
recent study demonstrated that BAY inhibits pore-formation of
GSDMD by covalently modifying the critical cysteine residue
C191 which is involved in GSDMD pore-formation (Hu et al.,
2018). This study also found that BAY can inhibit canonical
and non-canonical caspases. BAY has been investigated in a
number of disease states and injuries including psoriasis, diabetic
nephropathy, spinal cord injury, and extensively in cancer for its
effects on the NF-κB pathway (White and Burchill, 2008; Kolati
et al., 2015; Irrera et al., 2017; Jiang W. et al., 2017).

3,4-Methylenedioxy-β-Nitrostyrene
3,4-Methylenedioxy-β-nitrostyrene (MNS) is a well-known Syk
and Src tyrosine-kinase inhibitor; however, it is also shown to
be a direct, selective inhibitor of the NLRP3 inflammasome
(He et al., 2014). MNS can block IL-1β production with
an IC50 of 2 µM in BMDMs. Pull-down studies suggest
that MNS binds to the LRR and NACHT domains of the
NLRP3 protein, and further investigation showed that the MNS
inhibits NLRP3 ATPase activity. MNS has no inhibitory activity
towards AIM2 or NLRC4 inflammasomes. Moreover, SAR
studies of MNS indicated that the nitrovinyl group is essential
for its inhibition of NLRP3, whereas the dioxole is dispensable.
It’s suspected that the vinyl group may interact with the cysteine
side chains in NLRP3, possibly in the ATPase region, making
it an irreversible inhibitor (He et al., 2014). A recent study
found that MNS induced ubiquitination of NLRP3, which may
contribute to its inhibitory mechanism (Shim et al., 2017). MNS
has been studied in wound healing and in osteosarcoma tumors
(Messerschmitt et al., 2012; Xiao et al., 2016).
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Tranilast
Tranilast has historically been approved to treat bronchial
asthma in Japan, China, and South Korea. Tranilast was
initially found to inhibit NF-κB by interfering with NF-
κB and CREB-binding protein (CBP) association, but recent
studies demonstrated that tranilast is a selective inhibitor
that directly binds to the NLRP3 protein and inhibits IL-1β

production with an IC50 of 25–50 µM (Spiecker et al., 2002;
Huang et al., 2018). Mechanistically, tranilast binds to the
NACHT domain of NLRP3, consequently inhibiting NLRP3-
NLRP3 and NLRP3-ASC interactions, but not NLRP3-NEK7,
inhibiting inflammasome formation and activation of caspase-1.
Unlike other direct NLRP3 inhibitors, tranilast does not inhibit
ATPase activity (Huang et al., 2018). Recently, tranilast has
been investigated for the treatment of neuropathic pain, gouty
arthritis, CAPS, and cancer, and has been suggested to be a
potential therapy for vitiligo (Huang et al., 2018; Saito et al., 2018;
Moore et al., 2019; Zhuang et al., 2020).

OLT1177 (Dapansutriler)
OLT1177 is a β-sulfonyl nitrile compound that selectively
blocks the NLRP3 inflammasome by inhibiting its ATPase
activity, preventing NLRP3-ASC interactions and IL-1β release
in J774A.1 macrophages with an IC50 of ∼1 nM. OLT1177 has
demonstrated to be a highly potent and selective inhibitor
of NLRP3 since it failed to inhibit IL-1β secretion upon
activation of NLRC4 or AIM2 inflammasomes (Marchetti
et al., 2018a). OLT1177 has shown both in vitro and in vivo
success and has recently been developed into an oral tablet
and topical gel, Dapansutrile, that has proven to be safe in
humans and completed phase II clinical trial for osteoarthritis
of the knee by Olatec Therapeutics LLC (Marchetti et al.,
2018a). Aside from clinical trials, OLT1177 has recently
been tested as a potential treatment for numerous disease
states including AD, autoimmune encephalomyelitis, myocardial
ischemia, arthritis, and more (Marchetti et al., 2018b; Sánchez-
Fernández et al., 2019; Toldo et al., 2019; Lonnemann et al.,
2020).

CY-09
CY-09 has recently been reported to selectively and directly bind
to the ATPase domain of NLRP3 and inhibit IL-1β release in
BMDM cells with an IC50 of ∼6 µM (Jiang H. et al., 2017; El-
Sharkawy et al., 2020). Mutating the Walker A motif of NLRP3’s
ATPase pocket abolishes the activity of CY-09, whereas mutating
the Walker B motif shows no effect, suggesting the Walker A
motif of the ATPase pocket as the binding site of CY-09 where it
interferes with ATP binding. This is contrary to MCC950 which
binds to the Walker B motif of NLRP3. ATP also competes with
CY-09 to bind to NLRP3 which further confirms this interaction.
Using microscale thermophoresis (MST), CY-09 binds to
recombinant NLRP3 with a KD of 500 nM (Jiang H. et al., 2017).
CY-09 has shown to be effective in ex vivo and in vivo models
for CAPS, type 2 diabetes, gout, non-alcoholic fatty liver disease
(NAFLD), pain, and more (Jiang H. et al., 2017; Fan et al., 2021;
Wang X. et al., 2021).

BOT-4-One
BOT-4-one is a benzoxathiole derivative that exhibits
anti-inflammatory activities through several different
mechanisms of action due to its ability to irreversibly alkylate
its targets. A 2016 study found that BOT-4-one inhibits the
NF-κB pathway by alkylating IKKβ, subsequently inhibiting
NLRP3 expression (Lee H. G. et al., 2016). Recent studies
demonstrated that BOT-4-one inhibited NLRP3 ATPase activity
through alkylation (Shim et al., 2017). Furthermore, alkylation
of NLRP3 by BOT-4-one can increase ubiquitination of NLRP3,
which could contribute to its inhibitory mechanism. While it’s
not clear whether alkylation induces ubiquitination or inhibits
deubiquitination, other NLRP3 alkylators BAY and MNS also
increase NLRP3 ubiquitination. BOT-4-one is able to inhibit
IL-1β secretion induced by ATP with an IC50 of 1.28 µM and
by nigericin with an IC50 of 0.67 µM. This compound has been
investigated in arthritis, pathogenic skin inflammation, and
cancer, particularly Hodgkin’s lymphoma, in animal models
(Kim et al., 2011, 2016; Lee H. G. et al., 2016).

Methylene Blue
Methylene blue has a long history of use in medicine, from
treatment for methemoglobinemia and septic shock to being
used as a dye in surgeries for tissue labeling. Methylene
blue is known to have anti-inflammatory, antioxidant, and
neuroprotective effects through a variety of mechanisms
including its non-selective inhibition of canonical and
non-canonical NLRP3, NLRC4, and AIM2 inflammasomes
(Ahn et al., 2017). Studies have shown that methylene
blue decreases NLRP3, pro-IL-1β, and iNOS expression by
interrupting transcription factors NF-κB and STAT1. Methylene
blue exhibits no effects on the nuclear transportation of NF-κB
and STAT1 but markedly decreases their binding to DNA, thus
suggesting methylene blue’s potential interference at binding
(Huang et al., 2015). The attenuation of IL-1β and caspase-1
secretion as well as ASC oligomerization when methylene blue is
added after LPS suggests that methylene blue inhibits both the
priming and activation step of the NLRP3 pathway. In addition,
methylene blue also inhibits the activity of recombinant capase-1
(Ahn et al., 2017). Methylene blue has been investigated in
inflammation in spinal cord injury, cognitive impairment from
neuroinflammation, diabetic retinopathy, AD, and more (Lin
et al., 2017; Hao et al., 2019; Soeda et al., 2019; Zhou et al., 2019).

Disulfiram (Antabuser)
Disulfiram is an FDA-approved drug to treat chronic
alcohol dependence through an irreversible cysteine residue
modification on aldehyde dehydrogenase. However, it’s recently
been discovered that disulfiram contains anti-inflammatory
properties. Deng and colleagues found that disulfiram provides
lysosomal protection and regulates ROS production that is
independent of mitochondria, inhibiting NLRP3-dependent IL-
1β secretion with an IC50 of ∼5 µM under LPS/ATP conditions
in mouse macrophages (Deng et al., 2020). In addition,
disulfiram can directly inhibit canonical and non-canonical
caspases (Hu et al., 2018). Recent studies demonstrated that
disulfiram inhibits GSDMD pore formation by modifying
Cys191 of GSDMD and, as a result, suppressing IL-1β secretion
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and the subsequent pyroptosis (Hu et al., 2020). Others have
investigated the potential to repurpose disulfiram to treat several
diseases including cancer and bacterial infections and recently
has been a suggested as a potential therapy for COVID-19
infection (Viola-Rhenals et al., 2018; Frazier et al., 2019;
Fillmore et al., 2021).

Fenamic Acids
Fenamic acid derivatives are known non-steroidal
anti-inflammatory (NSAID) agents. While the primary role
of NSAIDs is inhibiting prostaglandin synthesis through
cyclooxygenase (COX) enzymes, recent studies have shown
that fenamic acid derivatives also exhibit anti-inflammatory
effects by inhibiting the NLRP3 inflammasome pathway via
interference with the Cl- volume-regulated anion channel
(VRAC), a regulator of NLRP3 (Daniels et al., 2016). While
flufenamic, meclofenamic, and mefenamic acids were able to
inhibit IL-1β release in iBMDMs under challenging for the
NLRP3 pathway, flufenamic, and mefenamic acid were unable
to inhibit IL-1β under NLRC4 and AIM2 challenge, suggesting
these acid derivatives are specific to the NLRP3 pathway. In
addition, other COX enzyme inhibitors such as Ibuprofen and
celecoxib did not affect IL-1β release (Daniels et al., 2016).
These fenamic acid derivatives have been studied in a variety
of disease models including AD, prostate cancer, and more
(Delgado-Enciso et al., 2015; Mangan et al., 2018).

Fluoxetine (Prozacr)
Fluoxetine, also known as Prozac, is an FDA-approved drug
used to treat clinical depression. Recently, fluoxetine was found
to directly inhibit the NLRP3 protein, stopping inflammasome
formation and subsequent IL-1β release in retinal pigmented
epithelium (RPE) and macrophage cells (Ambati et al., 2021).
In addition, the study demonstrated the physical interaction
of fluoxetine with the NLRP3 protein by pull-down. Further
binding studies found that a CY-09 probe could also pull-down
NLRP3, and that excess fluoxetine was able to compete with the
binding of CY-09, an NLRP3 ATPase inhibitor, suggesting these
compounds share a similar mode of binding. Both CY-09 and
fluoxetine contain a (trifluoromethyl)phenyl moiety and SAR
studies suggest that this moiety may assist in the interaction
with NLRP3’s ATPase domain. Unlike other antidepressants,
fluoxetine reduced RPE degeneration in vivo caused by activating
the NLRP3 inflammasome (Ambati et al., 2021). This may open
new avenues for the use of fluoxetine; however, more research is
needed to prove its potential in different disease states.

β-Hydroxybutyrate
β-Hydroxybutyrate (BHB) is an endogenous ligand produced
in the liver and functions as an energy source during nutrient
deprivation and low-carb diets. During long fasting periods or
ketogenic diets, circulating concentrations of BHB can increase
which is shown to be correlated with decreased immune
response. Youm and colleagues showed that BHB can inhibit
the NLRP3 pathway by blocking potassium efflux, an activator
of NLRP3 (Youm et al., 2015). The concentrations of BHB that
produced these anti-inflammatory effects in vitro were similar to
its endogenous level after strenuous exercise or 2 days of fasting.

Unfortunately, in vivo administration of BHB alone resulted in
rapid clearance; however, when complexed with nanolipogels,
BHB retained its anti-inflammatory activity, reducing NLRP3-
driven neutrophil infiltration and decreasing IL-1β release at the
injection site of MSU crystals (Youm et al., 2015). In LPS-primed
BMDMs, BHB can inhibit NLRP3-mediated IL-1β with an IC50
of ∼5 µM (Jiang H. et al., 2017). BHB has been studied in
stress-related mood disorders, hypertension, seizures, and gout
(Goldberg et al., 2017; Yamanashi et al., 2017; Chakraborty et al.,
2018; Rho et al., 2019).

MicroRNA as Post-transcriptional Regulators of
NLRP3 Expression
MicroRNA are small, non-coding single-stranded RNA
molecules that regulate gene expression post-transcriptionally
by RNA silencing. These molecules represent an attractive
strategy for drug discovery due to their high specificity. In
addition, miRNAs have multiple binding sites, also known as
seeding regions, which allows them to be involved in multiple
pathways. While there are several miRNAs that influence
different targets in the NLRP3 inflammasome pathway, there
are several miRNAs that target the NLRP3 protein (Boxberger
et al., 2019). The first miRNA discovered to target NLRP3 is
miRNA (miR)-223-3p which was found to negatively regulate
the NLRP3 protein (Bauernfeind et al., 2012; Haneklaus et al.,
2012). It’s been proposed that miR-223-3p is important for
mediating protein expression in different cell types since
differentiation of monocytes to macrophages resulted in a
decreased expression of miR-223-3p and increased levels of
NLRP3 protein. This could potentially explain why some cell
lines have low responses to inflammatory NLRP3 stimuli. MiR-
7-5p and miR-30e-5p were also found to negatively regulate
NLRP3 protein expression in vitro and in vivo (Zhou et al.,
2016; Li et al., 2018). In addition, delivery of miR-7-5p and
miR-30-5p mimics were found to protect dopaminergic neurons
from degeneration and decrease inflammatory cytokines
through inflammasome suppression in an MPTP-induced
PD mouse model. Other miRNA’s that negatively regulate
NLRP3 protein expression are miR-22-3p, miR-133b-3p,
miR-186-5p, and miR-495-3p which have been studied in
a variety of disease states including asthma, AD, allergic
inflammation, cardiac microvascular endothelial cell injury
(CMEC) and more (Xiao et al., 2017; Chen M. L. et al.,
2018; Zhou et al., 2018; Han et al., 2020; Guo et al., 2021).
There are currently extensive efforts underway to explore
the therapeutic potentials of miRNA. However, the major
limitation of these molecules is their delivery and membrane
permeability. Nanoparticles show promising results in delivering
peptides and could provide hope for the future of miRNAs
as a therapy to treat numerous diseases (Wang et al., 2015;
Sezlev Bilecen et al., 2017).

Anakinra (Kineretr), Rilonacept (Arcalystr), and
Canakinumab (Ilarisr)
There are currently three FDA-approved biologics that target
the NLRP3 pathway. Anakinra was the first to be developed
and is a modified IL-1Ra that blocks the binding of IL-1β
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and IL-1α, inhibiting their signaling pathways and further
inflammation. Anakinra was approved for the treatment of RA
in 2001 and was later approved for the treatment of CAPS
in 2013 (Calabrese, 2002; Jesus and Goldbach-Mansky, 2014).
The short plasma half-life of anakinra (4–6 h) is a pitfall
among patients due to required daily injections (Granowitz
et al., 1992). Rilonacept is a dimeric fusion protein with
decoy receptors containing extracellular residues of the two
IL-1R subunits, IL-1R1 and IL-1R accessory protein (IL-
1RAcP), which can bind to and neutralize IL-1β and IL-1α

(Jesus and Goldbach-Mansky, 2014). With an improved half-life
(7 days) compared to anakinra, rilonacept was approved for
the treatment of CAPS in 2008 and was recently approved
for recurrent pericarditis in 2021 (Hoffman, 2009; Fava et al.,
2022). Canakinumab is an anti-IL-1β monoclonal antibody that
selectively binds to and neutralizes IL-1β. With a half-life of
26 days, canakinumab is a preferred treatment option and
has been approved for CAPS, juvenile idiopathic arthritis, rare
periodic fever syndromes, and adult-onset Still’s disease (AOSD)
(Curran, 2012; Orrock and Ilowite, 2016; Malcova et al., 2020;
Sfriso et al., 2020). In addition, a number of clinical trials
have recently investigated anakinra and canakinumab as a
therapeutic treatment for patients with COVID-19 (Kooistra
et al., 2020; Landi et al., 2020; Kyriazopoulou et al., 2021;
Kharazmi et al., 2022). These therapies have proven to be
safe and effective in treating inflammation-driven diseases,
however, some issues remain. All three biologics require
administration by injection, a route that is not preferred
by patients and is particularly problematic for anakinra due
to its short half-life. In addition, due to the nature of
biologics and protein-based therapies, it’s likely that these
therapeutics have poor BBB penetrance, potentially limiting
their applications to diseases outside of the CNS. Furthermore,
increased infection is a concern for therapies blocking all
IL-1β signaling regardless of the source, an issue that was
observed with canakinumab (Dinarello et al., 2012; Mangan
et al., 2018). These problems emphasize the necessity for small-
molecule inhibitors of NLRP3 to overcome pharmacokinetic and
selectivity issues.

CONCLUSION

The NLRP3 inflammasome plays an intricate and important role
in the innate immune system in response to a variety of stimuli.
Upon the formation of the NLRP3 inflammasome, caspase-1
is released and activates the pro-inflammatory cytokines IL-
1β and IL-18. These cytokines continue the inflammatory
signaling cascade and recruit immune cells to fight infections
or heal injuries. Aberrant activation of NLRP3 leads to chronic
inflammation, a common denominator of several diseases that
causes and/or encourages disease pathology. NLRP3 is activated
and IL-1β and IL-18 levels are upregulated in diseases where
pathology is accompanied by inflammation. Thus, NLRP3 has
become an attractive target in the drug discovery field and
inhibitors possess high therapeutic value for the treatment of
many diseases. Several hurdles remain to finding a potent
and selective NLRP3 inhibitor with adequate pharmacokinetic
properties, particularly BBB penetrance for CNS diseases. More
research is required to further the understanding of the binding
and mechanism of compounds targeting this pathway.
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