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Immunoregulatory receptors are essential for orchestrating an immune response as well
as appropriate inflammation in infectious and non-communicable diseases. Among them,
leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory
receptors that play an important role in regulating immune responses modulating the
course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard
system that mitigates the inflammatory response, allowing a prompt return to immune
homeostasis. On the other hand, because of their unique capacity to attenuate immune
responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating
their persistence within the host. Conversely, the engagement of activating LILRs triggers
immune responses and the production of inflammatory mediators to fight microbes.
However, their heightened activation could lead to an exacerbated immune response and
persistent inflammation with major consequences on disease outcome and autoimmune
disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well
as their role in regulating the immune response and inflammation. We also discuss the
LILR-based strategies that pathogens use to evade immune responses. A better
understanding of the contribution of LILRs to host–pathogen interactions is essential to
define appropriate treatments to counteract the severity and/or persistence of pathogens
in acute and chronic infectious diseases lacking efficient treatments.
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INTRODUCTION

The first line of defence against invading pathogen and host
injury is the onset of an adequate inflammatory response. Its
purpose is to mobilize effector cells and mediators of the immune
system to prevent infection while promoting the repair of
damaged tissues and reinstatement of immune homeostasis.
Although a balanced inflammatory response is required to
establish homeostasis, in some instances, infectious pathogens
can induce a dysregulation of the immune response, thus
resulting in an inappropriate inflammatory response and
disease progression (1, 2).

The evolution from a beneficial to a harmful inflammatory
response mostly depends on immunoregulatory receptors (3). In
this regard, the family of leukocyte immunoglobulin (Ig)-like
receptors (LILRs) include inhibitory (LILRB) and activation
(LILRA) receptors that play a major role in regulating immune
responses and inflammatory processes associated with the
control or progression of infectious diseases (4). Indeed, LILRs
coordinate the process of inflammation by stimulating or
inhibiting immune-cell effector functions that include 1) cell
migration, 2) cell proliferation, 3) phagocytosis, 4) cytokine
production and secretion, 5) chemical mediator production
and secretion and 6) cell death (5).

However, various infectious pathogens including human
immunodeficiency virus (HIV), dengue virus, human
cytomegalovirus (HCMV), Mycobacterium tuberculosis, or
Plasmodium falciparum have evolved to subvert immunity by
targeting LILR functions. In this regard, pathogens can directly
produce molecules that bind to specific LILRs or indirectly
modulate LILR expression. Herein, we provide a concise
overview of the current knowledge of the 1) LILR multigene
family members, 2) their cellular distribution from ligand
binding to downstream signaling and 3) their immune
functions in infectious diseases and beyond. Finally, we
emphasize a cutting-edge understanding of how pathogens
may take advantage of inhibitory LILRs to evade the immune
response, thus leading to disease emergence.
LILR GENE ORGANIZATION AND
PLASTICITY

The LILR genes are all located on chromosome 19q13.4 in the
Leukocyte Receptor Complex (LRC), a genomic region
containing several other multigenic families of the innate
immune system that belong to the Ig superfamily, such as the
killer Ig-like receptors (KIR), the leukocyte-associated Ig-like
receptors (LAIRs), and the sialic acid-binding Ig-type lectins
(SIGLECs) (Figure 1). LILRs can encode inhibitory or activating
receptors (5), and five LILR of each type are characterized:
inhibitory receptors use the “B” letter in their names and
include LILRB1-B5, while activating receptors use the “A”
letter and include LILRA1-A2 and LILRA4-A6. LILRA3 is an
exception as it is constitutively soluble due to a lack of exons
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encoding the transmembrane and cytoplasmic domains (6).
Finally, LILR pseudogenes are assigned a “P” letter and include
two genes: LIRP1-P2 (7). These thirteen LILR genes are
distributed into a centromeric (LILRA3-A6, LILRB2-B3, -B5)
and a telomeric (LILRA1-A2, LILRB1, -B4, LILRP1-P2) cluster
that have opposite transcription orientation and are separated by
a cluster of non-LILR genes (Figure 1) (8, 9).

While activating and inhibitory LILRs are both highly related
at the sequence level (10, 11) and structurally on their
extracellular part, with two to four C2-type Ig-like domains,
they notably differ in the structure and sequence of the linker
domains, transmembrane domain, cytoplasmic tail, and 3’UTR
region (12). Indeed, LILRBs possess a long cytoplasmic tail with
immunoreceptor tyrosine-based inhibition motifs (ITIM- I/V/L/
S-X-Y-X-X-L/V; X = any amino acid) (13, 14). In contrast,
LILRAs have a shorter cytoplasmic tail with a positively
charged residue (arginine) in the transmembrane domain: the
charged residue enables association with an adaptor molecule,
the FcRg chain, which contains immunoreceptor tyrosine-based
activation motifs (ITAMs) (10, 15, 16). This combination of
structural similarity in the extracellular part and opposite
signalling functions for the inhibitory and activating LILR is
compatible with an evolution in response to pathogen pressure
(17), as was proposed for activating and inhibitory KIR (18).

Consistent with a pathogen-driven evolution, gene families of
the LRC such as KIR display a tremendous plasticity between
closely related species such as human and chimpanzees (19).
Although the same comparison showed a conserved genomic
organization for the LILRs, it also revealed evidence of LILR gene
polymorphism (20). Consistent with this, an increasing number
of LILR alleles are being described in human populations: 11 for
LILRA3, 14 for LILRB3, and 11 for LILRA6 (21, 22). This
sequence variation can also combine with alternative splicing
to create more functional plasticity. Indeed, LILRs are highly
susceptible to alternative splicing that can create variants that are
either membrane-associated or putative soluble LILR (6, 21, 23).
This phenomenon is increased in the context of tumors such as
melanoma and colorectal and pancreatic adenocarcinoma, which
are characterized by soluble LILR overproduction (6, 24).

Another form of plasticity of the LILRs is copy number
variation (CNV), a phenomenon described for LILRA3,
LILRB3, and LILRA6 (22, 25). LILRB3 and LILRA6 exhibit
CNVs that can be due to sequence deletion, non-allelic
homologous recombination or crossing-over between non-
allelic sequences. These CNVs positively correlate with mRNA
and protein levels and lead to signaling modulation. Of note,
despite the high degree of sequence identity between LILRA6 and
LILRB3, only the former exhibits CNVs that are positively
correlated with the relative LILRA6/LILRB3 mRNA ratio.
Hence LILRA6 CNVs can alter the expression of LILRB3 on
the myelomonocytic cell surface (25). In this manner, the
biological outcome of LILRB3 engagement is compromised
because of an LILRA6 CNV that disturbs the activating versus
inhibitory signaling ratio (25). While genetic analysis of LILRB3
highlighted high levels of non-synonymous variation and non-
allelic homologous recombination, plasticity of LILRA6 is even
September 2021 | Volume 12 | Article 717998
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more marked and, in 20 of 48 human cell lines from the
International Histocompatibility Working Group, LILRA6
showed deletion or duplication at exons coding for the
extracellular domains (exons 3 to 6) (22).

In addition to LILRB3 and LILRA6, LILRA3 also displays
CNV and gene frequency of functional LILRA3 differs across
populations. Indeed, some individuals have a deficient LILRA3
because of a large deletion that encompasses the exons coding for
the leader peptide and Ig domains (26). This deletion can reach
an allele frequency of more than 80% in North-East Asia
(maximum of 84% in Korea) but is less common in Europe
(~17%) and Africa (~7%) (27). Additionally, a LILRA3 allele that
is non-functional due to a premature stop codon is also prevalent
in the same regions of the world, suggesting that LILRA3 is a
target of natural selection in these populations (27, 28).

Ongoing efforts from the scientific community are thus
starting to address the extent and functional impact of the
diversity of the LILRs, in particular in regard to their
Frontiers in Immunology | www.frontiersin.org 3
involvement in regulating inflammation and susceptibility to
disease. Investigations of the impact of this LILR diversity on
ligand-binding properties are also ongoing and promise to offer a
better understanding of the contribution of natural selection,
driven by host–pathogen interactions, to LILR plasticity.
Hereafter, we give an overview of the growing list of
LILR ligands.
LILR ENDOGENOUS AND PATHOGEN-
DERIVED LIGANDS

More than 2 decades after the LILR discovery, the identification
of their ligands was relatively slow. Some LILRs can recognize
several heterogeneous ligands, but others remain as orphan
receptors. The multimeric aspects of LILRs can result in
several conformational rearrangements, hinge effects, and
domain configurations, promoting large-scale binding to
FIGURE 1 | Genomic organization of the LILR gene cluster. The leukocyte immunoglobulin-like receptor (LILR) gene family is located on human chromosome
19q13.4, within the leukocyte receptor complex (LRC). The thirteen LILR genes are distributed into a centromeric and a telomeric cluster with opposite transcription
orientations (!). A, activating (green); B, inhibitory (red); P, pseudogenes (grey); KIR, killer-cell immunoglobulin-like receptor (purple).
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multiple ligands with diverse molecular composition. Moreover,
in some pathological conditions, LILR structural properties are
modified owing to polymorphism and alternative splicing. These
modifications can change the receptor topology by inducing
conformational fluctuations at the binding site that alter the
nature and stability of the receptor–ligand interaction.

Some LILRs mainly recognize HLA-I ligands with various
affinity according to HLA-I alleles but also to the amino acid
sequence of the presented peptide (4, 29). Moreover, some LILRs
are able to bind to HLA-I molecules that are dissociated from
beta-2-microglobulin (B2M) (30). Because of the unique capacity
of LILRs to regulate immune responses, some pathogens also
produce ligands specifically targeting each LILR. This finding
underlines the evolutionary plasticity of the LILR family and
highlights the importance of selective pressure along with direct
interaction with HLA-I ligands and evasion strategies of
pathogens. In this section, we provide a global vision of the
expanding spectrum of endogenous and exogenous ligands for
LILR receptors (Figure 2).

Native or Self-Ligands
Investigations identified LILRB1 and LILRB2 as receptors for a
broad range of classical (HLA-A, HLA-B, HLA-C) and non-
classical (HLA-F, HLA-G) HLA-I molecules (Figure 2) (29, 31).
Frontiers in Immunology | www.frontiersin.org 4
The ability of LILRs to bind this broad range of HLA-I ligands is
supported by the conserved regions among HLA-I subtypes and
alleles. In addition, this finding evokes the possibility of a parallel
evolution of LILRs and their HLA-I ligands. However, the
strength of the binding is influenced by several factors
including the engaged HLA-I haplotype, the amino acid
sequence of the presented antigenic peptide and LILR
polymorphism (4, 26, 32, 33). Crystallography studies provided
structural evidence for the binding domain of LILRB1 and
LILRB2 to HLA-I, and LILR family members were then
classified into 2 groups based on their sequence similarity,
structural and biophysical characteristics of binding features
with HLA-I molecules (11, 30, 34). Group 1 (LILRB1, LILRB2,
LILRA1, LILRA2, and LILRA3) has highly conserved binding
residues (amino acids) with an HLA-I contact region. In
contrast, group 2 (LILRB3, LILRB4, LILRB5, LILRA4, LILRA5,
and LILRA6) has poor conservation and was proposed to engage
different set of ligands with a different binding mode (34).

The crystal structure of HLA-A2 bound to LILRB1 revealed
the conservation of specific residues within the LILRB1 and
LILRB2 first 2 Ig-like domains, D1-D2, at the interaction sites
with HLA-I- B2M and a3 domains (34, 35). The crystal structure
of LILRB2/HLA-G highlighted significant differences at the
binding interface as compared with LILRB1/HLA-A2. LILRB2
FIGURE 2 | Structure, cellular distribution and ligands of the inhibitory LILRB (left) and activating LILRA (right). LILRB1-B5 are inhibitory LILRs that contain ITIM
domains in their cytoplasmic part (left). LILRA1, LILRA2, LILRA4, LILRA5, LILRA6 are activating receptors with a short cytoplasmic tail and an arginine residue (in red)
in their transmembrane portion (right). LILRA3 is soluble owing to the lack of a transmembrane and a cytoplasmic domain. Below is represented the LILR distribution
on immune cell populations (MØ, macrophages). The different known ligands are shown in blue.
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recognizes HLA-I molecules by relying on a predominant
interaction with the a3 domain independent of B2M. Similar
observations were reported for LILRA1 and LILRA3 (29, 36).
LILRB1 can only recognize HLA-I molecules associated with
B2M, which indicates distinct recognition patterns between
LILRB1 and LILRB2 (29, 37, 38). More recently, 2 alternative
models have been proposed, including the 4 Immunoglobulin-
like domains (D1-D2-D3-D4), and taking into consideration the
impact of HLA-I polymorphisms as well as the sequence
variations in the presented antigenic peptides. The models
differ in the orientation and distance of a1 and a2 domains of
HLA-I toward D1-D2-D3-D4 domains of LILRB1 and LILRB2,
respectively (39). Studies demonstrated a direct interaction
between D1-D2 and HLA-I. Surface plasmon resonance
approach failed to show a substantial interaction between D3-
D4 and HLA-I (31). Yet, recent evidence suggests a potential
scaffold role of D3-D4: it ensures conformational changes by
bending to allow the binding of D1-D2 with HLA-I via a trans
interaction (34, 40, 41). In addition to this trans coupling,
LILRB1 and LILRB2 can associate with HLA-I via cis
interactions (37–39). This cis binding reduces receptor
accessibility to a trans ligand interaction and thereby
modulates the cellular activation threshold (40, 42). LILRA1
Frontiers in Immunology | www.frontiersin.org 5
and LILRA3 also bind to HLA-I, but their interactions are
weaker than their inhibitory counterpart. For instance, LILRA3
presents 1 or 2 amino acid changes in the binding region that
results in reduced affinity toward HLA-I as compared with
LILRB1 and LILRB2 (29, 36, 37). Like these two inhibitory
receptors, LILRA1 was also reported to bind HLA-C and HLA-
B27 (29, 37). As mentioned above, in silico analysis suggested
that LILR group 2 members lack the required amino acid
residues for interacting with HLA-I ligands (34). However,
LILRB5 was reported to bind HLA-B7 and HLA-B27 free
heavy chains (43).

Pathogen-Derived or -Induced Ligands
Besides recognizing HLA-I ligands, the LILR family can also
recognize ligands derived directly from pathogens or via proteins
from stressed cells (Figure 3). In 1997, Cosman and colleagues
discovered that UL18, an HLA class I-related protein produced
by human CMV, was a new ligand for LILRB1 (44). Then,
LILRB2, but not other LILRs, was found to bind UL18 (23).
Moreover, LILRB1 is reported to bind to dengue virus,
Staphylococcus aureus and Escherichia coli (45, 46). However,
molecules produced by these pathogens that bind to LILRB1
have not been characterized. Recently, LILRB1, was described to
FIGURE 3 | Functional roles and dynamics of LILRs in HIV infection. HIV infection induces a dysregulation of the immune response. In black, the direct impact of
HIV in conventional dendritic cells (cDCs), plasmacytoid dendritic cells (pDCs), monocytes/macrophages, natural killer (NK) cells, CD8 T cells and gd T cells are
mentioned. The LILR-mediated dysregulation related to the upregulation of the HLA-I expression is shown in blue. ROS, reactive oxygen species; IFN-g, interferon g;
Ig, immunoglobulin; ADCC, antibody-dependent cellular cytotoxicity; CTL, cytolytic T cell.
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bind to repetitive interspersed families of polypeptides (RIFINs),
which are produced by P. falciparum in infected erythrocytes
(47). In addition, Sakoguchi and colleagues showed that a
specific RIFIN could bind to LILRB2 with potential
implications in immune evasion mechanisms of P. falciparum
(48). Besides recognizing HLA-I or pathogen ligands, LILRB2
was found to bind with low affinity to oligomeric and
monomeric synthetic amyloid-b (Ab) (49) but strongly to
Ab42 oligomers via D1-D2 (50).

LILRB3 and LILRA6 can bind to a ligand from necrotic
glandular epithelial cells associated with cytokeratin 8 (51).
Nevertheless, further investigations are needed to clearly
determine the identity of this ligand and the functional
consequences of its interaction with LILRB3 or LILRA6.
Cancer studies recently revealed 2 ligands of LILRB4:
apolipoprotein E and CD166-activated leukocyte cell adhesion
molecule (52, 53). LILRB5 could interact with Bacillus Calmette-
Guérin, an attenuated pathogen of tuberculosis. This finding
needs confirmation because it was achieved with a panel of 2B4
reporter cell lines for NFAT-GFP (54). Likewise, LILRA1 could
preferentially bind Bacillus Calmette-Guérin over a weak
interaction with Mycobacterium bovis (54). LILRA2 remained
an orphan receptor until 2016 when Hirayasu and colleagues
discovered accidentally, byMycoplasma hyorhinis contamination
of Daudi cells, that degraded IgM strongly associates with
LILRA2 (55). This finding shed light on the LILRA2
recognition of distinct cleaved Ig by microbial proteases with
stronger binding affinity to IgM, IgG3 and IgG4 than IgG1 and
IgG2 (55). Several strategies including signal recognition particle,
co-immunoprecipitation and biochemical assays were used to
confirm a high-affinity specific and saturable binding of LILRA3
to Nogo 66 (potent inhibitor of axonal regeneration and neurite
outgrowth after central nervous system injury) (56). LILRA4
recognizes the restriction factor human bone marrow stromal
cell antigen 2 (BST2, also known as tetherin and CD317), which
is upregulated in cancer and HIV-infected cells (57). To date,
LILRA5 remains an orphan receptor (58).

Even though the discovery of LILR ligands is in constant
progress, their characterization is challenging because these
ligands present variable expression according to the tissue and
physiological state. Moreover, some are produced only during
infection by specific pathogens. The ability of certain microbial
ligands to directly interact with LILRs provides opportunities for
pathogens to orient the immune response in their favour. In
response to the ligand association with LILRs, a cascade of
conformational changes and downstream signalling is
triggered. This situation results in a positive or negative signal
depending on the type of engaged LILR. To date, the complete
downstream signaling molecules remain poorly characterized.
Nevertheless, biochemical studies indicate that ligand binding to
LILRB induces a cascade of tyrosine phosphorylation, which
provides a docking site for recruiting cytoplasmic phosphatases
with Src homology 2 domain-containing protein tyrosine
phosphatase 1 (SHP-1) and/or SHP-2 (14, 59). In contrast,
LILRA molecules have a short cytoplasmic tail and deliver an
activating signal by ITAMs within the FcRg chain, which are
associated with them. The phosphorylation of the ITAM
Frontiers in Immunology | www.frontiersin.org 6
domain, resulting from LILRA engagement, induces the
recruitment and activation of tyrosine kinases such as Syk
kinase in myeloid cells and B cells or ZAP-70 in lymphoid T
cells (60, 61).
LILR DISTRIBUTION AND FUNCTION

LILR members are mainly found on myeloid lineages such as
monocytes, macrophages, neutrophils and dendritic cells (DCs).
However, some LILRs are also found on B cells and subsets of
natural killer (NK) and T cells. Because of their wide distribution
on immune effector cells, LILRs are potent regulators of both the
innate and adaptive immune response. Consequently, LILRs
modulate an immune response by inducing or controlling
inflammation. This section focuses on the current knowledge
of LILR distribution and expression on immune cells and how
these receptors shape the immune response under the
physiological state. The LILR cellular distribution is
summarized in Figure 2.

In the healthy condition, LILRB1 is expressed on various
immune cell subsets including myeloïd cells (monocytes,
macrophages and DCs), basophils, eosinophils, osteoclast
precursors and mast cell progenitors. LILRB1 is also expressed
on B cells and subpopulations of CD8, gd T cells and NK cells
(21, 42, 62, 63). Moreover, LILRB1 is specifically expressed on
subsets of memory CD8 T cells and memory NK cells, which
suggests a major role in regulating memory immune cytolytic
cells (64–66). Functionally, the engagement of LILRB1 on CD8 T
cells inhibits super-antigen–dependent cell cytotoxicity upon
interaction with HLA-I in antigen-presenting cells (APCs)
(21). LILRB1 engagement also impairs B-cell functions
including proliferation and antibody production (21, 64, 67).
In monocytes, LILRB1 specifically inhibits FcgRI-mediated
phosphorylation as well as intracellular calcium mobilization
(21, 65). In addition, LILRB1 has a central role in immune
tolerance for self- vs non-self-signals. For instance, NK cells can
distinguish normal healthy cells from abnormal cells via LILRB1
sensing HLA-I molecules. The binding of LILRB1 to HLA-I
promotes inhibitory downstream signaling to prevent normal
cells lysis by NK cells. The interaction of LILRB1 expressed on
NK cells with HLA-G on target cells blocks lytic granule delivery
and interferon g (IFN-g) production by impairing F-actin
polymerization and microtubule-organization center
polarization at the immunological synapse (66, 68). Of note,
this inhibition of NK cell functions mediated by the LILRB1–
HLA-G interaction is independent of lipid raft integrity on
tumor cells (69). Furthermore, continuous stimulation of
LILRB1 on DCs alters their differentiation programs and their
capacity to produce cytokines even after exposure to
lipopolysaccharide (70). Similarly, osteoclast differentiation
inhibition was mediated by LILRB1 engagement and
subsequent SHP-1 recruitment (71). Overall, LILRB1 fine-
tunes major cellular and immunological processes by
modulating the immune cell activation threshold.

LILRB2 is one of the most well-characterized receptors in the
LILR family, with an important physiological role in various
September 2021 | Volume 12 | Article 717998

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abdallah et al. LILRs in Regulating Immune Responses
tissues because it interacts with ligands from different origins.
Unlike LILRB1, LILRB2 is almost exclusively expressed on
myeloid cells (42, 66, 68–70). It is well known for its
tolerogenic effect in DCs that impairs CD4+ T cell activation
(72, 73). Moreover, LILRB2-induced tolerogenic DCs can
promote the induction of T regulatory cells (Tregs) (72, 73). A
hallmark of LILRB2 is its ability to inhibit signaling pathways
induced by different FcRs. In neutrophils, cross-linking FcgRIIa
with LILRB2 abolishes the production of reactive oxygen species
(ROS), whereas in DCs, it inhibits intracellular calcium
mobilization (74–76). In addition, the co-aggregation of
LILRB2 with FcgR in vitro inhibits monocyte-signaling events
via SHP-1 recruitment (65). Similarly, LILRB2 transfection of
RBL cells (basophilic-derived cell line) blocks serotonin secretion
triggered by FceRI (76). These data highlight the modulatory role
of LILRB2 in immune responses induced by FcgR. The
constitutive cis association between LILRB2 and HLA-I on
basophilic cell lines (KU812) ensures self-recognition, so it
prevents IgE-mediated allergic responses (42). In addition,
LILRB2 engagement with angiopoietin like 2 (ANGPTL2)
inhibits the differentiation but not proliferation of
hematopoietic stem cells (HSCs) ex vivo resulting in their
tumoral expansion (77, 78). Moreover, LILRB2 interferes with
neural function by binding Nogo66 and inhibiting axonal
regeneration (79). Similar to LILRB1, LILRB2 regulates
osteoclastogenesis by inhibiting osteoclast differentiation via a
cis interaction with HLA-I (71).

From cell-surface staining and RNA microarray analysis,
LILRB3 expression was reported on monocytes and
neutrophils, some T cells, osteoclasts and progenitor mast cells.
However, the use of antibodies to detect LILRB3 remains
challenging because of the high level of sequence homology of
the extracellular fragments with LILRA6 (22, 25, 71, 76, 80, 81).
LILRB3 function needs to be further characterized. Nevertheless,
LILRB3 was demonstrated to antagonize FceRI or LILRA2-
mediated allergy in both IgE-dependent and -independent
activation (82). In addition, LILRB3 triggering inhibits
osteoclast differentiation, as do LILRB1 and LILRB2 (71). More
recently, LILRB3 was reported to act on neutrophils as a potent
inhibitor of Fc receptor–mediated effector functions, including
ROS production, phagocytosis, and killing of microbes (83).
Moreover, LILRB3 was found an important myeloid
checkpoint receptor because of its immunosuppressive
functions, which inhibit in vitro immune responses such as
myeloid-induced T cell proliferation (84).

LILRB4 has only 2 extracellular Ig-like domains. Various cell
types including myeloïd cells, progenitor mast cells, and
osteoclasts express LILRB4 (71, 80) (23, 81, 85). LILRB4 blocks
intracellular calcium mobilization in monocytes and
macrophages upon co-ligation with CD11b, HLA-DR or
FcgRIII (86). Similar to LILRB2, LILRB4 can induce
immunosuppressive APCs (72, 73, 87).

LILRB4 dephosphorylates TRIM21, which results in Fc
receptor-mediated cytokine production and inhibition of
clathrin-dependent endocytosis in THP-1 cells (88). More
recently, LILRB4 was found to exert dual regulation (positive
Frontiers in Immunology | www.frontiersin.org 7
or negative) of TNF-a production by THP-1 cells (89). LILRB4
was implicated in immune tolerance to allergens. An increased
level of LILRB4 in CD4+CD25+FOXP3+ Tregs was associated
with their failure to efficiently suppress allergen-specific T helper
2 (Th2) cell responses (90).

LILRB5 is expressed by a variety of immune cells including T
cells, monocytes, NK cells, mast cells and osteoclasts (6, 23, 54,
80, 91). Yet, current knowledge about its function is limited.
LILRB5 was first described as a membrane-associated molecule,
but more recently a soluble form was detected (80). More
precisely, LILRB5 is found in mast cell granules and is released
to the extracellular milieu when these cells are activated (80). In
addition, Hogan and colleagues proposed a role for LILRB5 in
modulating a cytotoxic T-cell activation threshold (54). Thus, the
identification of a LILRB5 natural ligand would motivate further
investigations for better functional characterization and
understanding of immune responses and inflammation.

Both LILRA1 and LILRA6 functions remain not well
characterized. LILRA1 is found on monocytes, macrophages,
and B cells (23, 25, 29, 80). The specific detection of LILRA6 is
challenging because of its structural similarity with LILRB3 at the
extracellular fragments. LILRA6 expression was demonstrated by
RNA microarray analysis in monocytes, cultured macrophages,
and osteoclasts (71). Nevertheless, the specificity of RNA
microarray detection in this case remains questionable.

LILRA2 is preferentially expressed in the myeloid lineage
(monocytes, DCs and macrophages), neutrophils, eosinophils
and basophils, which suggests an important role in regulating the
innate immune response (10, 11, 23, 82). LILRA2 can detect
microbial immune evasion via its capacity to sense cleaved Igs by
bacterial proteases (55). Yamazaki et al. provided recent insights
into the molecular mechanism of LILRA2 recognizing the
cleaved Ig that would occur via hydrophobic interaction of the
LILRA2 D2 domain and exposed hydrophobic surface of N-
truncated Ig (92). These findings highlight the molecular
mechanisms of LILRA2-mediated inflammation to counteract
the altered immune response induced by pathogens. Other
studies show that in monocytes, LILRA2 engagement triggers
calcium influx as well serotonin release, whereas in basophils,
stimulation of LILRA2 results in increased allergic mediators
such as histamine, leukotriene and interleukin 4 (IL-4)
independent of IgE (82). These functional studies have
unraveled the emerging role of LILRA2 as an important
mediator of innate immune responses and inflammation
involved in host defenses.

LILRA3 is a soluble receptor produced by monocytes, NK, B
cells and some T-cell subsets (23, 26, 93). Although the immune
functions of LILRA3 remain poorly characterized, it is involved
in nervous system plasticity. In this context, LILRA3 acts as a
decoy to Nogo66, a negative regulator of axonal regeneration. As
well, LILRA3 might be a competitive antagonist with LILRB2 via
high-affinity interaction with Nogo66 resulting in neurite
outgrowth and synapse formation (56).

LILRA4 has a restricted cellular distribution as compared
with the other LILR members. So far, it is uniquely found on
plasmacytoid dendritic cells (pDCs) (94, 95). LILRA4 expression
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is variable depending on the state of pDC activation induced by
viral or bacterial stimulation (96). Several pDC-like cell lines
derived from CD4+CD56+ leukemia cells lack LILRA4
expression (96). Although it belongs to the activating family,
LILRA4 was mainly reported to have inhibitory functions. In this
regard, LILRA4 interacting with BST2 suppresses pDC
activation, thus compromising the pDC production of type-I
IFNs (57). This negative regulation is induced by the signal
adaptor protein FceRIg, which forms a complex with LILRA4.
The transduced ITAM-mediated signals negatively modulate
Toll-like receptor (TLR)-induced type-I IFN production by
human pDCs (95).

LILRA5 transcripts are found in several tissues of the
hematopoietic system including bone marrow, spleen, lymph
node, and peripheral leukocytes, although the protein form of
LILRA5 is mostly expressed in monocytes and neutrophils (58,
97). More recently, proteomic studies identified LILRA5-specific
peptides in neutrophils of patients with monogenic diseases (98).
A soluble form was detected in transfected COS cells (97). In
monocytes, LILRA5 stimulation results in intracellular calcium
mobilization. Moreover, triggering LILRA5 in monocytes
stimulates cytokine production implicated in early stages of
inflammatory responses including IL-1b, tumor necrosis factor
a (TNF-a) and IL-6, which suggests a modulatory function in
inflammatory settings (97). The identification of LILRA5 ligands
will be helpful to further delineate its function.
THE INTERPLAY OF LILRs WITH
INFECTIOUS PATHOGENS AND
INFLAMMATION

Given the major role of LILRs in regulating the immune
response, several pathogens target their immunomodulatory
functions to escape immunosurveillance. Modulation of LILR
activity is directly linked to the inflammatory response induced
after viral, bacterial or parasitic infection. In this context, LILRs
behave as pathogenic mediators by compromising the immune
response and associated inflammation.

LILRs in Viral Infection
Emerging data have revealed the involvement of LILRs in
different aspects of HIV-1 disease pathogenesis and
progression. Figure 3 summarizes the implication of LILR in
HIV-1 pathogenesis. The LILR expression profile on immune
cells varies between individuals who are HIV-positive in the
acute phase, the chronic phase, under combination antiretroviral
therapy (HIV cART+) or in elite controllers who naturally
control HIV-1 infection, which suggests an interplay of these
receptors in immune responses against HIV (99–102). Long
considered a T-cell disease, HIV disease progression is
considered to originate from a complex cross-talk between
various immune cells, implicating both innate and adaptive
immunities. HIV-induced immune activation has double-edged
consequences on disease evolution. It first fights the virus by
Frontiers in Immunology | www.frontiersin.org 8
increasing immune-cell mobilization and modulating
immunoregulatory receptors such as LILRs or their ligands,
including HLA-I molecules or BST2 (4). However, these
defence strategies induce concomitant inflammatory and
immunosuppressive responses that can participate in viral
persistence. Several studies have provided insights into the
functional role of LILR repertoires and HLA-I polymorphisms
in HIV disease progression. The framework orientation toward
LILR function in HIV-induced pathology started with growing
evidence that pointed to a correlation between HLA-I genotype
variants and the rate of acquired Immunodeficiency syndrome
(AIDS) development (103, 104). In particular, HLA-B27 and B57
were found associated with slow progression and HLA-B35 with
rapid progression (103). These results were reinforced by
targeted genotyping and whole genome analysis of different
clinical cohorts that revealed an important role of the HLA-C
locus in HIV disease control (105–110). These HLA-I
polymorphisms have a great impact on the binding affinity
toward LILRs. Indeed, besides their impact on antigen
presentation to cytotoxic T lymphocytes, our understanding of
how these HLA-I genetic variants modulate immune responses
and HIV progression emerged only a few years ago.
Investigations into the role of LILRs in HIV have
foreshadowed a functional significance of the binding between
HLA-I and LILR molecules during HIV pathogenesis, which is
associated with viral replication and immune dysregulation.
Hence, this immunomodulatory function of HLA-I mediated
by LILR balances the immune response and influences the
clinical HIV-1 infection outcome. Ten years ago, Huang and
colleagues demonstrated a compromised ex vivo DC function in
HIV-1–infected carriers as a result of a selective interaction
between LILRB2 and the HLA-B*35-Px allele over HLA- B*35-
PY (111). Then, they showed that allostimulatory functions of
DCs were inhibited by LILRB2 interacting with soluble HLA
class I found predominantly in HIV-1–positive plasma (105).
The binding affinity to LILRB2 seems to depend on the epitope
specificity as sensitive as a single amino acid mutation, as with
the HLA-B2705–restricted HIV-1 Gag KK10 epitope
(KRWIILGLNK) with an L-to-M amino acid substitution at
position 6 (L6M) (106). Moreover, soluble HLA-G significantly
upregulated during HIV infection interacts with LILRB2 on
conventional DCs (cDCs), thus resulting in their functional
impairment (107, 108).

In line with these observations, our team demonstrated
enhanced LILRB2 and HLA-I expression on cDCs in the early
stages of HIV and simian immunodeficiency virus infection that
could be responsible for early cDC dysfunction and failure of the
subsequent adaptive immune response to control viral infection
(101). By contrast, the LILRB2/HLA-I axis was decreased in
cDCs in a chikungunya model of infection characterized by
efficient immune responses and rapid control of viral replication
(101, 109). This accumulating evidence indicates that the
enhanced expression of LILRB2 and its HLA-I ligands in early
HIV-1 infection could be a potent way to inhibit cDC functions
leading to improper adaptive immune responses and ultimately
to disease progression. In agreement with this hypothesis, the
September 2021 | Volume 12 | Article 717998

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abdallah et al. LILRs in Regulating Immune Responses
strength of the LILRB2–HLA-I interaction, modulated by HLA-I
haplotypes or HIV-derived peptide, was directly correlated with
the level of cDC dysregulation and disease progression in HIV-
infected patients (106, 108).

Besides being involved in cDCs, elevated levels of serological
IL-10 in HIV-1–positive patients promoted LILRB2 upregulation
in CD14+ monocytes via the signal transducer and activator of
transcription 3 pathway (110).

In contrast to LILRB2, the expression of LILRB1 and LILRB3
was increased in cDCs from elite controllers as compared with
HIV-1 progressors or healthy individuals (102). The
examination of HIV-1 infected patients revealed an
upregulation of LILRB1 on subsets of NK cell subsets (112).
Further investigations with an in vitro model of NK cells co-
cultured with HIV-infected autologous monocyte-derived DCs
showed an enhanced capacity of NK cells expressing LILRB1 to
control viral replication (113).

Activating LILR members are also emerging relevant actors in
HIV infection. LILRA1 and LILRA3 may affect the HIV outcome
by binding to HLA-C, known to play a major role in disease
control (29, 114). Nevertheless, a recent report linked a 6.7-kb
deletion in LILRA3 with increased transmission risk for HIV
(115). Moreover, the interaction of LILRA4 with BST2 drives
pDC dysregulation in HIV-1 infection characterized by
inhibition of type-I IFN production (116). All the progress in
the study of LILR function in HIV progression highlights the
importance of an equilibrium balance between activating and
inhibitory signals to ensure efficient immune responses for
preventing HIV viral replication, dissemination and
pathogenesis. Yet, further investigations are needed to elucidate
the convenient mechanisms at the origin of this LILR
dysregulation in HIV infection.

Other viruses, including dengue virus and HCMV, were
shown to attenuate inflammation and associated immune
responses by targeting LILRB1 inhibitory functions (Figure 4).
In this regard, dengue virus manages to shut down the monocyte
antiviral defence program by inhibiting IFN-stimulated gene
transcription. This inhibition is mediated by dengue virus
ligating to LILRB1 and leading to FcgR-mediated early IFN-
blocked gene expression, which results in antibody-dependent
enhancement and viral replication (45, 117). The ligand
interacting with LILRB1 leading to immune response
attenuation during dengue virus infection remains to be
characterized. By contrast, HCMV modulates the host immune
response by expressing UL18 protein, which binds to LILRB1,
thus inhibiting immune effector cells. As described above, UL18
has 1000-fold higher affinity to LILRB1 than host HLA-I ligands
(31). This finding highlights the strength of a viral protein such
as UL18 to compete with host proteins to evade the host
immune response.

LILRs in Parasite Infection
Intracellular parasites have evolved mechanisms to inhibit and
escape the immune response to ensure their survival in the host.
P. falciparum, the causative pathogen agent of malaria, uses a
family of proteins called RIFINs to dampen immune cell
Frontiers in Immunology | www.frontiersin.org 9
functions and impair anti-malarial immunity (Figure 4). In the
blood, P. falciparum-infected erythrocytes express RIFINs; a
portion of these molecules can bind LILRB1 expressed on a
wide range of immune cells including NK and B cells (118). The
engagement of LILRB1 by these RIFINs transduces an inhibitory
signal that impairs the cytolytic functions of NK cells and
inhibits IgM production by primary B cells (47). Hence,
P. falciparum escapes the host defence by impairing anti-
malarial immunity via RIFINs, which mimic the binding mode
of the HLA-I host ligands of LILRB1 (47). Similarly, LILRB2 is
targeted by RIFIN for immune evasion of P. falciparum (48).
These findings highlight the importance of further studies on
LILRB2 functions in malaria, which could be a potential hit to
block disease progression. The parasite Trypanosoma cruzi
causes Chagas disease. The expression of LILRB1 increases
during the differentiation of T. cruzi-specific CD4+T cells,
compromising T-cell functions (119). Moreover, the expression
of the LILRB1 ligand HLA-G is increased by T. brucei gambiense
infection (120). These data suggest a common inhibitory
pathway induced by an LILRB1–HLA-G interaction after
Trypanosoma infection.

LILRs in Bacterial Infection
A modification of the LILRB expression profile was found in
several bacterial infections. Moreover, some bacteria were shown
to directly bind some LILRs, which underlies their potential
implication in the shaping of inflammation and regulation of
immune responses in bacterial infection. LILRB2 and LILRB4
were upregulated in response to Salmonella infection, which
highlights a potential role of these inhibitory receptors in
balancing the inflammatory response after invasion by this
pathogen (Figure 4) (121). Mycobacteria challenge induces
LILRB5 expression in T cells. The purpose of LILRB5
induction could be to initiate an inflammation resolution
program by dampening T-cell activation. However, it could
also constitute a mechanism induced by M. tuberculosis to
escape immune recognition (54). Another important emerging
role of LILRs is their ability to mediate control of TLR activity in
certain bacterial infections. Investigations in vitro and in a mouse
model provided clues about the ability of LILR and murine PIR-
B (a human LILRB distant homolog) to bind in conjunction S.
aureus and TLR2, thus promoting release of inhibitory cytokines
such as IL-10 (46). This LILR-mediated TLR2 inhibition is
associated with the Th2 response and impaired DC maturation
(122). Moreover, in vitro studies indicated that LILRB1 and
LILRB3 bind to S. aureus, but the consequences of these
interactions remain to be characterized (46).

Studies of Mycobacterium leprae infection identified the
overexpression of LILRA2 in skin lesions of leprosy patients
(123). This LILRA2 overexpression exerts innate host defence
modifications by driving monocytes to produce IL-10 instead of
IL-12 and by inhibiting antimicrobial activity in response to
mycobacterial TLR2/1 ligands (123, 124).

However, LILRA2 can promote neutrophil and monocyte
activation to inhibit bacterial growth. Indeed, LILRA2 can
recognize degraded antibodies generated by bacterial and
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fungal proteases including Mycoplasma hyorhinis, Legionella
pneumophila, Streptococcus pneumonia and Candida albicans
(55, 92). The engagement of LILRA2 by cleaved Igs stimulates
ROS production by neutrophils and inhibits bacterial
multiplication in monocytes (55). Hence, in this case, LILRA2
serves as a microbial sensor that promotes the early onset of
innate immunity.

LILRs in Sepsis
Increasing evidence has indicated an interplay between LILRB2
modulation and the host response to sepsis initiated by
exacerbated inflammation and followed by immunosuppressive
responses. In this regard, transcriptomic analysis showed a
significant downregulation of LILRB2 in the very early phase
of sepsis that is associated with increased risk of death (125).
Another study demonstrated an increased expression of LILRB2
in monocytes during severe sepsis. These LILRB2high monocytes
showed low IL-12 but high IL-10 production in response to
endotoxin stimulation (126). Moreover, neutrophils from septic
patients were unable to upregulate LILRB2 as compared with
neutrophils from healthy donors (75). This failure of LILRB2
upregulation on neutrophils may correspond to the
immunoparalysis state observed in sepsis patients. LILRB3,
LILRB4, LILRA3 and LILRA5 were found highly upregulated
in neonatal sepsis (127). This dysregulated profile of LILRs was
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proposed to interfere with APC activity and convert effective T
cells into suppressive T cells. A recent study showed increased
LILRB3 expression on macrophages associated with an
immunosuppressive role in septic patients. Accordingly, the
silencing of LILRB3 was accompanied by bacterial killing by
macrophages along with enhanced ROS and cathelicidin
production (128). All these data point to the contribution of
LILRs to the dysregulation of immune and inflammatory
responses induced during septic shock.
BEYOND INFECTIONS: LILRs IN
INFLAMMATION AND AUTOIMMUNITY

Although LILRs have in certain circumstances a beneficial
outcome during infections, they may also disrupt the
immunologic balance, resulting in persistent inflammation and
autoimmunity. In this regard, the key role of LILRs in immune
homeostasis places them at the crossroads of tolerance and
autoimmune disorders. Quite a few autoimmune diseases are
associated with an aberrant expression of LILRs. LILRB2,
LILRB3 and LILRA2 were highly upregulated in synovial
tissues from rheumatoid arthritis (RA) patients. The
engagement of LILRA2 induced an exacerbated production of
FIGURE 4 | LILRB1 and LILRB2 implication in various infectious diseases. Human cytomegalovirus (HCMV, in purple) produces UL18 protein that binds to LILRB1
with high affinity and regulates NK cell functions. Dengue virus (DENV in blue) can directly bind to LILRB1 expressed by monocytes and macrophages. This
interaction inhibits the production of interferon (IFN)-stimulated genes (ISG). In red, Plasmodium falciparum produces RIFINs in infected erythrocytes. Binding of
RIFINs to LILRB1 inhibits NK cell cytolytic activity and production of IgM by B cells. Exposure of macrophages to S. typhimurium bacteria promotes the upregulation
of LILRB2 and LILRB4.
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TNF-a by macrophages illustrating the potential role of LILRs in
the induction of inflammatory processes associated with RA
(129). In addition, Kollnberger et al. provided evidence for the
contribution of LILRB2 to joint inflammation and disease
pathogenesis by HLA-B27 binding in spondylarthritides (130).
LILRA3 is also associated with RA severity in early disease (131).
Systemic lupus erythematosus (SLE) is another autoimmune
condition with modified expression of different LILR members.
A recent study reported that LILRA3 amount in both serum and
CD14+ monocytes were significantly elevated and positively
correlated with disease severity in SLE patients (132). Data
from humanized mice suggest LILRA3 as a promoter of
excessive expression of T follicular helper cells and B cells,
which primes the induction and maintenance of plasma cell
differentiation and autoantibody production (133). Of note,
enhanced expression of LILRB1 was achieved after ex vivo IL-
10 stimulation of DCs isolated from SLE patients (134). In
addition, plasmablasts and plasma cells from SLE patients
showed increased expression of LILRB4. Intriguingly, these
LILRB4high cells contained abundant anti-double-stranded
DNA Ig VH transcripts, which suggests a contradictory role of
this inhibitory receptor as a pathogenic marker. Hence, further
studies are needed to elucidate the impact of LILRB4 on SLE
pathogenesis (135). Moreover, multiple sclerosis (MS) is
considered an autoimmune disease characterized by
demyelinating the central nervous system caused in a part by
deregulated T-cell response (136). MS patients showed aberrant
expression of LILRA3 and LILRB1 that was concomitant with
disease severity. Serum levels of LILRA3 were associated with
clinical subtype of MS: patients with primary progressive disease
had the highest amounts of LILRA3 as compared with those with
intermediate progressing disease. In line with this, LILRA3 might
play a role in the pathogenesis by promoting chronic
inflammation and could be considered a biomarker and
indicator of MS severity. Nevertheless, the exact functions of
LILRA3 in MS require further exploration (137).
TARGETING LILRs FOR NEXT-
GENERATION THERAPEUTICS IN
INFECTIOUS DISEASES

The use of immune checkpoint agonists or antagonists for
treating certain debilitating human inflammatory diseases has
drawn a lot of interest. Particularly, monoclonal antibodies
(mAbs) have valuable advantages as pharmacological immune
modulators and have been used successfully as immune
checkpoint inhibitors both in preclinical and clinical settings,
including notably mAbs targeting the CTLA-4, PD-1–PD-L1
axis in chronic infectious diseases (138). Notably, mAbs show
high stability and high affinity to their molecules and can be used
to activate (agonists) or block (antagonists) the function of the
intended target (139). Agonists to LILRA and/or anti‐LILRB
antagonists that compete with ligand binding without activating
LILRB signaling could promote immune responses against
Frontiers in Immunology | www.frontiersin.org 11
infectious agents. Nonetheless, until now, most preclinical and
clinical research has focused on evaluating such therapeutic
approaches in the treatment of solid tumors (140, 141). For
instance, JTX-8064-101 (Jounce Therapeutics Inc.) is currently
in an open-label, dose escalation phase-1 clinical trial
(NCT04669899). The trial is designed to evaluate the safety,
tolerability, and recommended phase-2 dose of JTX-8064 (anti-
LILRB2) alone and in combination with JTX-4014 (anti-PD-1)
or pembrolizumab (anti-PD-1) in adults with advanced
refractory solid tumors. At the same time, another clinical trial
including an anti-LILRB4 antibody (IO-202, Immune-Onc
Therapeutics Inc.) is in a clinical phase-1 trial (NCT04372433)
to assess its safety and primary effects in regression of solid
tumors. Yet, in infectious diseases, although preclinical and
clinical research investigated various immune checkpoint
targets such as the CTLA-4 and PD-1–PD-L1 axis (138, 142)
LILRs as therapeutic targets remain to be properly appraised but
represent a strong research premise in intractable infectious
diseases. LILR family members provide various possible
therapeutic strategies to reverse or enhance the immunity
failure for the benefit of patients. As in cancer therapy, next-
generation therapeutics in infectious diseases will probably
combine an immune checkpoint blockade with a strategy
targeting agonists to LILRA and/or antagonists to LILRB
receptors. Therefore, clarification and exposition of the
fundamental function and mechanism of action of LILRs in
infectious diseases is vital for accelerating the development of
innovative therapeutics involving LILR agonists and/or
antagonists, especially in severe acute or persistent infectious
diseases lacking appropriate treatment.

In this regard, plasmodium falciparum, Dengue virus and
HCMV in human host are often persistent pathogens taking an
advantage in targeting LILRB1 to attenuate immune effector cells
and evade immune recognition. The evolution of these
pathogens toward the production of their own ligands (e.g.
RIFINS or UL18) to trigger LILRB1 inhibitory functions
illustrate the important role of this receptor in the control of
immune responses. In this context, there is a need to counteract
weakened immune responses through LILRB1 inadequate
activation that can be otherwise used by pathogens as an
efficient mechanism of immune evasion and persistence in the
host. Henceforth, therapeutic blockade of LILRB1 with mAbs
could exhibit a high potential therapeutically for number of
severe infections by thwarting pathogen-derived ligands and thus
allowing the host immune responses to resolve the disease and
clear the infectious pathogens. Likewise, HIV infection induces
dendritic cell dysregulation by exacerbating the LILRB2
inhibitory activity, subsequently leading to inefficient adaptive
immune responses and virus replication (105–108, 111).
Therefore, the development of preclinical studies using
therapeutic anti-LILRB2 mAbs in the setting of HIV infection
could provide important information for the design of novel
clinical protocols aimed at improving immune responses and
blocking disease progression in infected patients.

Up to now, pre-clinical evaluation of LILR-based therapies
has been hampered by the lack of clear LILR orthologues in
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rodents. Given the high expression of LILRs on various myeloid
cell subsets including resident tissue macrophages and
granulocytes, existing humanized mice models are as well
poorly appropriate to characterize either the toxicity or the
efficiency of drugs targeting LILRs. Nonetheless, LILR
orthologues have been identified in non-human primates and
dynamics of LILRB2 and MHC-I expression have been
characterized on dendritic cells, monocytes and macrophages
in cynomolgus macaque during SIV or Chikungunya infections
(101). Given the close phylogeny and similarities of immune
responses between human and macaque during infectious
diseases, this pre-clinical model could therefore represent a
unique opportunity to study LILR-based therapeutic strategies
and accelerate their translational in medicine toward humans
suffering severe acute and/or persistent infections.
CONCLUSION

LILRs are essential in maintaining immune homeostasis and in the
shaping of immune responses against pathogens. Certain
inhibitory LILRs directly interact with endogenous or microbial
ligands, and these interactions provide a large window of
opportunities to pathogens to evade the immune response.
Conversely, some activating LILRs have evolved to detect and
avoid immune evasion mechanisms developed by pathogens. A
better understanding of the LILR contribution to host–pathogen
interactions using adequate in vivomodels to study the early phase
of the immune response to infection, is essential to develop next-
generation therapeutics targeting LILRs and intended to counteract
virulence and/or persistence of pathogens in severe acute and
chronic infectious diseases lacking appropriate treatments.
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