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Evaluating efficacy of indoor 
non‑pharmaceutical interventions 
against COVID‑19 outbreaks 
with a coupled spatial‑SIR 
agent‑based simulation framework
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Contagious respiratory diseases, such as COVID-19, depend on sufficiently prolonged exposures for 
the successful transmission of the underlying pathogen. It is important that organizations evaluate 
the efficacy of non-pharmaceutical interventions aimed at mitigating viral transmission among their 
personnel. We have developed a operational risk assessment simulation framework that couples a 
spatial agent-based model of movement with an agent-based SIR model to assess the relative risks of 
different intervention strategies. By applying our model on MIT’s Stata center, we assess the impacts 
of three possible dimensions of intervention: one-way vs unrestricted movement, population size 
allowed onsite, and frequency of leaving designated work location for breaks. We find that there 
is no significant impact made by one-way movement restrictions over unrestricted movement. 
Instead, we find that reducing the frequency at which individuals leave their workstations combined 
with lowering the number of individuals admitted below the current recommendations lowers the 
likelihood of highly connected individuals within the contact networks that emerge, which in turn 
lowers the overall risk of infection. We discover three classes of possible interventions based on their 
epidemiological effects. By assuming a direct relationship between data on secondary attack rates and 
transmissibility in the agent-based SIR model, we compare relative infection risk of four respiratory 
illnesses, MERS, SARS, COVID-19, and Measles, within the simulated area, and recommend 
appropriate intervention guidelines.

Establishing safe return-to-work guidelines is essential to avoiding COVID-19 outbreaks. Respiratory diseases 
such as COVID-19 are often spread through droplet or aerosol transmission of the virus1–4, where spatial proxim-
ity and duration of closeness are important factors towards the transmission of pathogens. Non-pharmaceutical 
interventions have been shown to be crucial in the effort to reduce spread of COVID-19 and must be imple-
mented alongside vaccinations to reduce the number of hospitalizations and deaths5,6. Therefore, it is vital that 
organizations properly assesses the spatial effects of imposed non-pharmaceutical interventions on their ability to 
reduce risk of infection among the population by suppressing prolonged contacts. Floor layouts, walls, hallways, 
and other physical obstacles, in addition to safety guidelines such as recommended break duration, may restrict 
certain contacts from occurring while amplifying others, and spatial agent-based models are able to simulate 
these factors. Modeling these spatial effects provides a more accurate representation of the plausible patterns of 
prolonged exposures that may occur within a workplace and help in the generation of contact networks that can 
then be studied regarding their resilience to disease outbreaks.

In the current context of increasing interest and resources toward computational research, the COVID-19 
pandemic has generated great interest in mathematical modeling of infectious diseases aimed at projecting 
case counts and mortality, vaccination efficacy, efficacy of non-pharmaceutical interventions, and economical 
impacts7–11. Common approaches reported in the literature for modeling the spread of infectious disease include 
multi-compartmental models, contact network models, and agent-based models (also referred to as individual-
based models)12–14. While multi-compartmental models have had great success in forecasting progression of 
contagion, they are based on the assumption of full and homogenous mixing among the population. In reality, 
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contact behavior is crucial to understanding the spread of disease and is determined through a multitude of 
social, cultural, political, economic, and behavioral factors that vary over the study cohort15. In contrast, network-
based or agent-based approaches have the ability to simulate individual-scale behaviors and the resulting shifts 
in local contact patterns, which in turn scale superlinearly with population size. Agent-based models are ideal 
at replicating real-world spatial movement patterns and have been used to assess the spread of infectious dis-
eases such as COVID-19 in both indoor and outdoor settings9,10,15–19. For instance, Epstein et al., demonstrated 
the significant impact on overall spatio-temporal dynamics of disease spread caused by fear-related responses 
of self-isoloation and flight, highlighting the importance of modeling such behaviors when projecting future 
case counts20. A survey of mathematical modeling of infectious diseases in China found that individual-based 
modeling rose in popularity since 2003 to study a variety of disease including SARS in China21. Childs et al, 
found that out of 24 articles on mathematical models of disease spread, a majority modeled viral pathogens 
among human hosts22, with agent-based modeling of between-host dynamics being used in some studies and 
transmission rates commonly used as a linking mechanism between hosts. Another systematic literature review 
of 210 articles modeling transmission of environmentally persistent zoonotic diseases finds that roughly 12% of 
articles were found to employ agent-based models23.

Numerous studies have utilized agent-based models to investigate the impact of non-pharmaceutical interven-
tions including self-isolation, quarantine, and social distancing on the spread of COVID-196,24–28. Agent-based 
models have been more commonly utilized to investigate scenarios where the effectiveness of physical, non-phar-
maceutical interventions within a localized setting, such as within a hospital, were of interest29. In an analysis of 
698 research articles on agent-based modeling of infectious disease transmission, from 2006 to 2015, Willem et al 
find that 261 studies simulated interventions, out of which 105 studies investigated non-pharmaceutical interven-
tions, in particular30. Furthermore, the full text analysis of 24 studies focused on vaccine-preventable childhood 
diseases, excluding influenza, revealed the successful use of the AnyLogic simulation platform for simulating up 
to 100000 people over periods of up to 2000 days30. Studies have shown that the presence of highly connected 
individuals, or hubs, in social networks, is a leading factor, facilitating large outbreaks among populations31. 
While many agent-based approaches report a lack of micro-scale data for the re-construction of actual contact 
networks and opt to use theory-based, social network generation algorithms28, others overcome this challenge by 
modeling pedestrian dynamics with randomized, full mixing26,32, or by using schedule and mobility information 
to generate patterns of contact for greater simulation fidelity1,6,33,34, as we have done in this study.

We demonstrate how spatial agent-based modeling can be used to predetermine contact networks under vary-
ing intervention strategies, under constraints specified by the Centers for Disease Control (CDC) definition of 
a prolonged contact for SARS-CoV-2 transmission35. We generated contact networks using a spatial-agent based 
model implemented in AnyLogic, which incorporates room and corridor locations, entrances and exits, arrival 
schedules, restroom locations, and break areas. We investigate the effects of non-pharmaceutical intervention 
strategies based on three dimensions: one-way or unrestricted movement, population size, and frequency of 
leaving one’s designated office for breaks. The generated networks were then subjected to an agent-based SIR 
model to compare the resilience of the simulated intervention strategies against viruses with different transmis-
sion rates. Finally, we used known secondary attack rates for four respiratory illnesses, MERS, SARS, COVID-19 
(Delta and prior variants), and Measles, in order to approximate final infection ratios expected for each disease 
under the simulated intervention strategies.

Methodology
We coupled two agent-based models to assess operational efficacy of COVID-19 intervention strategies on the 
Stata center at Massachusetts Institute of Technology, by assessing resulting risks of infection. First, as shown in 
Fig. 1, a data-informed, spatial agent-based model was used to simulate individual movement within a floor of 
the building under varying physical intervention constraints, to generate high-risk contact networks. Second, 

Figure 1.   System diagram.
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an agent-based SIR model was simulated on the generated contact networks to obtain final infection ratios of 
the population.

Spatial agent‑based model.  The spatial agent-based model was implemented to mimic the movement 
of personnel under restrictions imposed by varying constraints of the intervention strategies. The model was 
implemented in the AnyLogic simulation software36, which allowed for accurate representation of physical 
spaces including offices, stairwells, and restrooms within the simulated area. The second floor of the Stata center 
was used for this purpose, which hosts several CSAIL research offices and labs, conference rooms, rest areas, 
two restrooms, utility space, and pantry area. The blueprint image of the building floor under consideration 
was loaded into AnyLogic and AnyLogic’s wall construct from the pedestrian library was used to designate areas 
impassable by agents, forming office spaces and rooms. Stairwells and elevators were identified from the blue-
prints and targetlines from the pedestrian library were allocated at these points within the model from which 
agents could enter or exit the floor. Office spaces were demarcated with their real-world identifiers and assigned 
capacities according to the current office capacities set by building administration.

Agent behavior was controlled using a state machine implemented with components from AnyLogic’s pedes-
trian library as shown in Fig. 2. Individuals were generated from a pedestrian source, at which they were ran-
domly assigned to an available office. We used an approximation of a daily schedule for the floors as shown in 
Table 1. Individuals began entering the floor from around 6am at a very low rate, followed by a gradual increase 
in rate towards 9am, ending with a gradual decrease in rate towards 11am. We assumed that individuals would 
work a complete 8 h shift after which they would exit the floor. This meant that departure times would follow a 
symmetrical distribution to that of entrance times. The agent would then enter the simulation from a designated 
stairwell or elevator according to the intervention strategy’s movement restriction as detailed below. Once on the 
floor, the agent would move towards its office location along the hallways created by the wall objects. Collision 
detection and path-finding algorithms were handled by AnyLogic and comfortable walking speed was selected for 
each individual from a uniform distribution between 0.5 and 1 meters per second. Once at the office, individuals 
remained at a chosen location within the office space, unless they were interrupted to take a break at an hourly 
probability of α . There was a 0.5 probability that they would remain on the floor in designated break locations 
and a 0.5 probability that they would exit the floor during this time. Break locations included the restrooms and 
common areas on the floor and the time agents would spend at a break location followed a uniform distribution 
between 5 and 20 min. Individuals that exit the floor during their break would use designated exits and entrances 
according to the movement restriction in place and the time spent outside was chosen from a triangular distribu-
tion of minimum, maximum, and mode of 20, 60, and 30 min, respectively.

Intervention strategies were decomposed into three dimensions, namely movement restriction, population 
capacity, hourly break probability. Two movement restrictions were simulated: (1) unrestricted movement, where 
individuals were able to enter and exit the floor from any of the available stairwells and elevators, and (2) one-way 
movement, where entrance and exits to the floor were only allowed at separate, designated locations as shown in 
the map in Fig. 3. Population capacities were controlled using a population multiplier parameter, β , applied to the 
recommended capacities of each office. For each office, o, the population capacity, no was calculated as no = βco , 

Figure 2.   State machine driving agent behavior within the simulated environment of the spatial agent-based 
model, implemented using AnyLogic’s Pedestrian library.

Table 1.   Schedule used for controlling agent entrance to the floor over time. Each hour, the specified 
proportion of the population enters the floor from the designated entrances and heads to their respective office 
spaces. Agents spend 8 h within the simulation and then exit for the day, implicitly making the exit schedule 
symmetrically distributed.

Start time End time Proportion of population

6:00am 7:00am 0.05

7:00am 8:00am 0.15

8:00am 9:00am 0.4

9:00am 10:00am 0.3

10:00am 11:00am 0.1
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where co was the capacity for o recommended by the administration. Thus the total population for the simulation 
was 

∑
o∈O βco , where O is the complete collection of offices. Hourly probability of taking a break, α , determined 

whether agents would leave their offices for a break as described above and utilize the break locations or exit 
the floor temporarily, controlling the rate at which agents may contact one another in the hallways or common 
areas. β was varied in the range [0.25, 2.0] in increments of 0.25 and α was varied in the range [0.05, 0.45] in 
increments of 0.05, and along with the two forms of movement restriction resulted in 128 separate strategies. 
Each strategy simulation was replicated 10 times to account for stochasticity.

Contacts leading to high infection risk were measured from simulations of the spatial agent-based model by 
considering the CDC definition of a prolonged contact between an infected individual and a susceptible indi-
vidual, which would lead to a high risk of transmission of the SARS-CoV-2 virus35. According to CDC guide-
lines at the time of writing, a prolonged contact occurs when a susceptible individual and infected individual 
come within 6 feet of one another for over a 15 min duration (note: We have not accounted for changes in these 
parameters under varying degrees of PPE usage.). We used this definition to track agents in our model that came 
into prolonged contact by recording instances in the spatial agent-based model simulations when two agents 
spend 15 min or more within 6 feet of one another. These contacts were then treated as graph edges and used to 
construct an undirected prolonged contact network for each simulation.

Epidemic simulation on prolonged contact networks.  An agent-based SIR model was used to simu-
late the viral spread over the contact networks generated from the spatial agent-based model. The goal of the 
agent-based SIR model was to assess the infection risk posed by the intervention strategies that generated the 
contact networks when a single infected individual would arrive during a workday. The agent-based SIR model 
was executed as follows on each contact network. Each agent m ∈ M of the population of agents M represented 
an individual person. The population of agents was initialized such that an agent, m, was created for each node 
in the contact network being simulated. The other agents that m would interact with over the entire simulation 
period were those agents, Nm ∈ M , who represented the neighboring nodes of the node represented by m in the 
contact network.

We assume a homogeneous parameter ρ to represent the transmissability of the virus, where ρ equals the 
proportion of susceptible neighbors of an infected agent that will become infected as well. Say, that agent’s infec-
tion state is represented by the function θ : M− > {S, I ,R} , where {S, I ,R} are the susceptible, infectious, and 
recovered states that any m may exist in. All agents but one were set to a susceptible state, θ(ms) = S | ms ∈ M , 
while a single, randomly selected agent, mi ∈ M , was chosen and set to an infectious state, θ(mi) = I . A pro-
portion, ρ , of the neighbors of m, ρ(Nm) | ρ(Nm) ⊂ Nm , was then randomly chosen and changed to infectious, 
θ(ρ(Nm)) = I . The infecting agent was then changed to a recovered state, θ(mi) = R , and could no longer infect 
other agents. The process was then repeated for the newly infected agents and continued until no further infected 
agents remained, θ(M) ≡ I = ∅ . Each contact network and ρ configuration, was replicated 10 times to account 
for stochasticity and heterogeneity in node degree centrality. The final infected ratio of the entire population, φ , 
was measured from each agent-based SIR simulation as the proportion of recovered agents, � | � = θ(M) ≡ R , 
at the end of the simulation:

Figure 3.   Example run of the spatial agent-based model with one-way movement restriction enabled. A 
heatmap depicting agent movement through the simulated floor is overlayed (lighter colors showing where 
agents have recently spent more time at). The designated entrance is marked with a yellow plus symbol and the 
designated exist is marked with an orange diamond symbol. In unrestricted movement, both these locations can 
be used for both entrance and exit to the space.
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Finally, we use secondary attack rate (SAR) in order to assess the efficacy of the simulated interventions at mini-
mizing φ for the respiratory diseases, MERS, SARS, COVID-19, and Measles. SAR, also known as secondary 
infection risk, is an epidemiological measurement of the proportion of susceptible individuals that are infected 
due to close contact with an infected individual37. SAR is especially useful for quantifying household infectivness 
as it considers contacts that occur among individuals within close confines, and is applicable to our study, where 
individuals spend most of their workday in the same shared space. Assuming SAR to be a good approximation 
of ρ in our model, we use empirically estimated 95% confidence intervals of mean SAR for four respiratory dis-
eases from the literature to define ranges of ρ as follows, MERS: [0.009, 0.107]37, SARS [0.048, 0.107]37, Measles 
[0.520, 0.846]37, earlier variants of COVID-19: [0.14, 0.22]38,39, and the more contagious Delta variant: [0.20, 0.32] 
among unvaccinated individuals38–40. At the time of writing, there was no peer-reviewed study estimating the 
SAR of the COVID-19 Omicron variant to our knowledge that would could include in our analysis. Thus, by 
running the agent-based SIR model with ρ within the respective range for the simulated disease, we are able to 
provide predicted final infection ratios for each disease under the simulated intervention strategies.

Results
This section presents the simulation results with respect to the three intervention parameters:

•	 Movement restriction; Either restricted to one-way movement or unrestricted movement across the floor.
•	 The hourly likelihood of taking a break, α.
•	 The population multiplier applied to recommended population capacity, β.

The effects on maximum degree centrality, Cmax , and proportion of agents with at least one contact, K, of the 
generated contact networks, alongside final infected ratios, φ , under varying transmissibility, ρ , on these net-
works were observed.

Figure 4 displays, Cmax  , the mean of maximum degree centralities of the contact networks generated by 
the spatial agent-based model for each intervention strategy. α has the greatest effect on Cmax , with α = 0.45 
being sufficient to produce at least one hub that was connected to approximately the entire network. There is 
no change in Cmax with movement restriction (Fig. 4). α is seen to have a significantly positive correlation with 
Cmax (Spearman rank correlation: rs = 0.8674 , p value < 2.673× 10−194 ) and a significant, yet weaker, positive 
correlation is seen between β and Cmax (Spearman rank correlation: rs = 0.08771 , p value = 1.7781× 10−195).

Figure 5 displays the proportion of agents in each simulation with at least one contact, K, against the three 
dimensions of intervention. Since the total population of each simulation was known, K was calculated as:

Again, it is seen that α has the strongest effect on K, (Spearman rank correlation: r = 0.8952 , 
p value < 2.673× 10−194 ). When α > 0.1 , at least more than half the population was expected to have at least 
one prolonged contact regardless of the other two parameters. β had a slight positive correlation with K (Spear-
man rank correlation: r = 0.0989 , p value < 2.673× 10−194 ) , which diminished at higher values of α . Once 
more, the two forms of movement have restriction have no apparent effect on K.

(1)φ =
|�|

∑
o∈O βco

(2)K =
|M|

∑
o∈O βco

Figure 4.   Mean maximum centrality, Cmax , of contact networks generated under varying α , β , and form of 
movement restriction.
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Figure 6, displays outbreak size as final infected ratio, φ , by β and α for both forms of movement. Both forms 
of movement show similar behaviors under varying α and β . There is a significant positive correlation between 
α and φ (Spearman rank correlation: r = 0.7954 , p value < 2.673× 10−194 ) and a weaker positive correlation 
between β and φ (Spearman rank correlation r = 0.1916 , p value < 2.673× 10−194 ). At the recommended popu-
lation capacity ( β = 1 ), φ can be maintained under 0.5, if α < 0.1 , while more than half the population is at risk 
when α > 0.1 . At α < 0.1 , it is possible to keep at least half the population uninfected even when double the 
recommended population capacity is present, i.e. β = 2.

Figure 7 displays the relationship between maximum degree centrality per contact network, Cmax , and φ , for 
varying α and β . The correlation between α and Cmax is intensified with increasing β . At high β , a non-linear 
relationship between Cmax and φ can be seen. In other words, for sufficiently large population sizes, higher hourly 
break probability can cause networks with higher maximum centrality, leading to larger networks with highly 
connected hubs that allow for higher final infection ratios.

Figure 8, shows the effects of ρ on φ under different α and β conditions. Under varying α and β , the effect that 
ρ has on φ can be separated into thee classes. Class I (blue) where gradually larger ranges of φ can be expected 
with higher ρ , but φ stays generally less than 1; Class II (orange) where there is an initial gradual increase in pos-
sible range of φ with ρ , followed by a bifurcation into an oscillation of period 2, i.e. either very low φ or higher 
ranges of φ ( > 0.5 ), which eventually transitions into φ ≈ 1 for ρ > 0.5 ; and Class III (green) where the final 
states exist in an oscillation of period 2 for ρ <= 0.5 , at φ > 0.75 and φ ≈ 0 , and for ρ > 0.5 a steady state of 
φ > 0.75 is observed.

Figure 9 displays Cmax distributions and example networks for all three classes of intervention. The normalized 
frequency of infection for each node in the example networks, over all simulations, is also shown. It can be seen 
that Class III networks tend to have hubs that are connected to nearly the entire network. This number is less for 
Class II and least for Class I. Furthermore, the example networks show how these hubs in Class III networks are 
nearly always likely to be infected, which in turn exposes the many nodes they are connected to (nearly half of 
the network). This effect is less in Class II, while in Class I the hubs have approximately the same (or even less) 
likelihood of infection in comparisons to other nodes.

Finally, we compare the predicted efficacy of Class I, II, and III interventions on φ by relating ρ to SAR 
for MERS, SARS, COVID-19 Delta and prior variants, and Measles. Figure 10 displays the predicted φ these 
diseases would have in the simulated environment under the three classes of intervention. The strictest Class 

Figure 5.   Proportion of agents with at least one prolonged contact K under varying α , β , and form of 
movement restriction.

Figure 6.   Final ratio infected by the number of times larger the population is by recommended capacity, by 
hourly break probability, for one-way and unrestricted movement.
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I interventions are likely to prevent large outbreaks of MERS, SARS, and COVID-19, yet, Measles being an 
extremely transmissible disease, can still result in moderate outbreaks even under the strictest conditions. Class 
II interventions are likely to prevent MERS and SARS outbreaks, but are ineffective against Measles, and likely to 
allow significant outbreaks of COVID-19, likely infecting more that half the population. Class III interventions 
are likely to allow significantly large outbreaks of all four diseases with nearly the entire population at risk of 
infection. For each disease, Mann-Whitney U tests were performed to confirm whether there was a statistically 
significant improvement by having Class I interventions over Class II interventions ( H0 : Class Iφ >= Class IIφ ) 
and Class II interventions over Class III interventions ( H0 : Class IIφ >= Class IIIφ ). The results for the Mann-
Whitney U tests, shown in Table 2 show that for all considered diseases, Class I interventions were likely to have 
a significant reduction in final infected ratios over Class II interventions, as did Class II interventions over Class 
III interventions.

Figure 7.   Density plot of φ by maximal network centrality, Cmax , under varying α and β.

Figure 8.   The effect of ρ on φ under different α and β . Three classes of behavior can be seen.
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Figure 9.   Maximum centrality distributions of contact networks for each intervention class, along with sample 
networks from all three classes. Colors of each node in the sample networks depict the normalized frequency of 
infection per node over 10 agent-based SIR simulations on the example network (darker colors represent higher 
risk).

Figure 10.   Effectiveness of Class I, II, and III strategies on outbreak size measured as final infected ratio, φ , for 
different contagious respiratory viruses compared by secondary attack rate.

Table 2.   Results from Mann-Whitney U tests for the null hypotheses H0 : Class Iφ >= Class IIφ and 
H0 : Class IIφ >= Class IIIφ.

Virus H0 : Class Iφ >= Class IIφ H0 : Class IIφ >= Class IIIφ

MERS (U = 22359759.5 , p value = 2.673× 10
−194) (U = 19540696.5 , p value < 2.673× 10

−194)

SARS (U = 22359759.5 , p value = 2.673× 10
−194) (U = 19540696.5 , p value < 2.673× 10

−194)

COVID-19 Older Variants (U = 11010172.0 , p value < 2.673× 10
−194) (U = 14979341.5 , p value < 2.673× 10

−194)

COVID-19 Delta Variant (U = 7806042.0 , p value < 2.673× 10
−194) (U = 17667952.5 , p value < 2.673× 10

−194)

Measles (U = 26869646.0 , p value < 2.673× 10
−194) U = 202887512.0 , p value < 2.673× 10

−194)
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Discussion
We present a simulation framework that couples a spatial agent-based model with an agent-based SIR model 
to evaluate the relative risk reduction of intervention strategies towards the prevention of outbreaks of conta-
gious respiratory diseases such as COVID-19. The spatial agent-based model, implemented in AnyLogic, used 
blueprints and building data to provide a high-fidelity representation of the room and hallway allotments of the 
modeled space, including constraints such as dedicated entrances and exits, restrooms, break areas, and arrival 
schedules. The spatial agent-based model was run under varying non-pharmaceutical intervention strategies 
to generate contact networks. These interventions included movement restrictions (one-way vs unrestricted), 
hourly break probability, and population size (relative to current recommended capacity). The resulting contact 
networks were in turn utilized for simulations of the agent-based SIR model. Additionally, this two-stage mod-
eling approach allowed us to cache the generated contact networks, which could then be used for further analysis 
through models other than the agent-based SIR model that we have used in this study. This is especially important 
as the higher fidelity of the spatial agent-based model demands more computational resources and time.

Our experiments provide insights into which intervention strategies are more successful at mitigating out-
breaks and why. Firstly, for the tested floorplan, there is no significant reduction in risk by enforcing one-way 
movement (i.e. designating dedicated entrances or exits) over allowing for unrestricted movement. Instead, 
hourly break probability and population size have significant impacts on the risk of an outbreak, with the former 
having a much stronger effect. We confirm that this is due to the generation of contact networks with highly 
centralized hubs. The strongest impact on hub formation is seen with when individuals leave for breaks more 
often, followed by a lower, yet significant impact by population size.

We identify three classes of interventions based on the possible final outbreak sizes (final infected ratios) 
produced by these two parameters, over all possible degrees of transmissibility: Class I interventions with very 
strict restrictions on the frequency of leaving for breaks paired with very low population size, Class II interven-
tions with a trade off between high (or low) break frequencies and low (or high) population size, and Class III 
interventions with both higher break frequencies and population size. We find that Class I restrictions lead to 
a significant decrease in outbreak size over Class II restrictions, for MERS, SARS, COVID-19, and Measles. 
Similarly, Class II restrictions lead to a significant decrease in outbreak size over Class III restrictions for all four 
viruses. Despite the advantage of Class I restrictions, it is important to consider the feasibility and ergonomic 
costs that such recommendations have on personnel. When the hourly likelihood of leaving one’s workstation 
is between 0.05 and 0.1, this translates to an overall probability between 0.34 and 0.57 that an individual would 
take at least one break during the whole 8 h work day. Although individuals could still take breaks inside their 
office spaces, this can lead to work-induced fatigue and isolation. In contrast, under Class II recommendations 
the hourly likelihood of taking a break is between 0.25 and 0.45, leading to a probability between 0.90 and 0.99 
that individuals leave their office space at least once during the workday. However, Class II recommendations 
with higher hourly break likelihoods, say above 0.4 (translating to a 0.98 probability of at least one break in a 
workday), necessitate lower populations, in this case less than half of the recommended office capacity. In other 
words, despite the high efficacy of strict, Class I recommendations, a slightly more lenient Class II recommen-
dation might be more ergonomic by restricting floor population below normal capacity, allowing individuals 
a more generous and safe movement to and from their designated workstations. However, Class II restrictions 
are still likely to result in significant COVID-19 outbreaks, especially considering the more contagious variants 
such as Delta and possibly Omicron, and must be combined with vaccination, which has not been modeled in 
this study, to lower transmission risk to a safe degree.

Our results concur with other studies that report a significant impact on the frequency of movement in com-
parison to other non-pharmaceutical interventions24,32. Break frequency as modeled in this study can be thought 
as the opposite of self-isolation, and many studies confirm the importance of self-isolation towards the reduction 
of epidemic size and duration5,25,27,32. However, targetted isolation based on the onset of symptoms can be less 
effective in the face of possible asymptomatic transmission41–43. In particular, a study of non-pharmaceutical 
interventions in a simulated grocery store environment finds that limiting simultaneous entries is more effective 
when population size is large24, which corroborates our finding that at large population sizes, the importance of 
break frequency is amplified.

This work provides a basis for future simulation studies that may benefit from the two-stage simulation 
approach presented in this paper. By modularizing the spatial and epidemiological aspects of contagious disease, 
we allow administrators and operations personnel to evaluate effects of spatial interventions independent of 
epidemiological model specifics made by computational epidemiologists. In other words, the spatial agent-based 
model may be thought of as a contact network generator for epidemiological models. As a result, it is important 
to note the significance of spatial layout towards the results presented in this study, as the contact networks 
generated are dependent on the degree of available paths of movement offered in the spatial agent-based model. 
Therefore, we do not claim that the relatively low importance of one-way movement restriction is generalizable 
to any floorplan, but rather, is limited to environments similar to the floorplan used in this study. Further experi-
ments considering a range of commonly occurring floorplan geometries are required to provide a generalized 
estimation of the importance of movement restriction. Furthermore, in order to enable such testing, a system 
for automating the loading of blueprints to accommodate new floorplans would be valuable. Extensions to the 
current spatial model could also include factors such as air-flow and ventilation to produce airborne transmis-
sion networks. Additionally, as we are interested in the risks posed by the proposed interventions, we have not 
discriminated between changes in transmission rates under different forms of PPE usage or vaccination, which 
offers another future direction for this work. As the results we present with regards to the importance of the 
tested non-pharmaceutical interventions are based on the full range of transmission rate, [0, 1], it is likely that, 
for similar floorplans, the relative importance of the intervention parameters would remain the same, but that 
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the final infected ratios by disease will likely be lower. Finally, although, we have considered CDC definitions 
of prolonged contacts in this study, minimal duration and distance of prolonged contacts can also be treated as 
parameters to generate the respective contact networks.

Code availability
AnyLogic spatial model file and SIR model source code have been made available at: https://​github.​com/​chath​
ika/​spati​al-​SIR-​COVID​19-​model​ing.
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