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Advances in chemotherapy and targeted therapies have improved survival in cancer 
patients with an increase of the incidence of newly diagnosed brain metastases (BMs). 
Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance 
imaging (MRI) with gadolinium is more sensitive than computed tomography and 
advanced neuroimaging techniques have been increasingly used in the detection, treat-
ment planning, and follow-up of BM. Apart from the morphological analysis, the most 
effective tool for characterizing BM is immunohistochemistry. Molecular alterations not 
always reflect those of the primary tumor. More sophisticated methods of tumor analysis 
detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circu-
lating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules 
(microRNA), have shown promise regarding tumor treatment response and progression. 
The choice of therapeutic approaches is guided by prognostic scores (Recursive 
Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). 
The survival benefit of surgical resection seems limited to the subgroup of patients with 
controlled systemic disease and good performance status. Leptomeningeal disease 
(LMD) can be a complication, especially in posterior fossa metastases undergoing a 
“piecemeal” resection. Radiosurgery of the resection cavity may offer comparable sur-
vival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone 
is now the treatment of choice only for patients with single or multiple BMs not amenable 
to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive 
sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and 
pharmacological approaches (memantine and donepezil) have been investigated. In the 
last decade, a multitude of molecular abnormalities have been discovered. Approximately 
33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth 
factor receptor mutations develop BMs, which are targetable with different generations 
of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). 
Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrange-
ments of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, 
brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast 
cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, 
lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents 
have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, 
pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).

Keywords: brain metastases, chemotherapy, neuroimaging, neuropathology, surgery, stereotactic radiosurgery, 
whole-brain radiotherapy, targeted therapy
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iNTRODUCTiON

Recent advances in chemotherapy and targeted therapies have 
improved survival in cancer patients. In this context of a better-
controlled systemic disease, brain metastases (BMs) are emerging 
as a new challenge for the oncologist.

Brain metastases are the most frequent intracranial tumors: the 
incidence of newly diagnosed BMs is 3–10 times the incidence of 
newly diagnosed primary malignant brain tumors (1) and is still 
increasing. This trend could be explained by improvement in the 
quality of neuroimaging [magnetic resonance imaging (MRI)] 
and increased survival of patients with solid tumors (2).

In adults, lung (36–64%), breast (15–25%), and skin 
(melanoma) (5–20%) are the most frequent sources of BMs. Less 
frequent are cancers from colon-rectum, kidney, prostate, testis, 
ovary, sarcomas, and unknown tumors (3).

Brain metastases occur more frequently in patients with 
advanced disease. However, in some subgroups of patients, such 
as HER2+ breast cancer receiving trastuzumab, the brain repre-
sents now the first, often solitary, site of metastatic relapse (4).

The biology of BM remains poorly understood. Interactions 
between circulating tumor cells (CTCs) and blood–brain barrier 
(BBB) components are required. Some cytokines may act as 
CTC attractants and promote BM formation. BM development 
involves several steps (extravasation through non-fenestrated 
capillaries, local proliferation, and neoangiogenesis). Recently, 
clinical studies have detected specific genomic alterations in BMs 
but not in the primary tumor or extracranial metastases (5–7). 
How and when metastatic cells that spread to the brain evolve in 
a divergent way remains elusive: answering these questions could 
open the way for novel-specific therapies.

BiOLOGY AND PATHOPHYSiOLOGY  
OF BMs

Metastatization from systemic cancer requires several steps and 
complex genetic, epigenetic and biological changes in tumor cells, 
globally defined as “metastatic cascade,” beginning with detachment 
from the primary tumor and invasion of the surrounding tissue, 
intravasation into blood vessels and hematogenous dissemination, 
arrest in brain capillaries, and extravasation. Ultimately, neoplastic 
cells have to colonize surrounding tissue induce angiogenesis and 
proliferate in response to local growth factors (8). Those cells that 
survive find microenvironments that are conducive to their growth 
and development, also known as “niches”(9); they then form 
micrometastases that may, in turn, establish clinically significant 
lesions after a fairly variable period of dormancy, in which require-
ments for cell division are acquired (10).

Tumor cells have the capacity to evade growth suppressors 
and inhibitors of cell proliferation via mechanisms that include 
the resistance of apoptosis by overexpression of Bcl-2, Bcl-xL 
and downregulation of pro-apoptotic Bax and Bim. Through a 
phenomenon called epithelial–mesenchymal transition, acti-
vated by intrinsic (gene mutations) or extrinsic factors (growth 
factor signaling), epithelial tumor cells can de-differentiate, 
migrate to a distant focus, survive to apoptosis, disseminate, and 

then re-differentiate to the original cell (11, 12). Activation of 
cells in the adjacent stroma (endothelial cells, cancer-associated 
fibroblasts, pericytes, and leukocytes) via paracrine signaling 
with pro-tumorigenic factors (transforming growth factor beta, 
hepatocyte growth factor, epidermal growth factor, fibroblast 
growth factor, and IL-6) sustain tumor growth, enhancing 
genomic instability and epigenetic dysregulation (8, 13, 14).

Invading tumor cells show a downregulation of proteins 
preserving structural tissue integrity, such as E-cadherins, 
integrins, and catenins, lose cell–cell adhesion, secrete proteo-
lytic enzymes that degrade the epithelial basement membrane, 
penetrate the endothelial basement membrane of vessels, and 
enter the circulation. Tumor cells, which arrest in capillary 
beds adhering to the endothelium of target tissue, behave like 
macrophages, creating pseudopodia and penetrating the cell–
cell junctions, and then gain access to the tissue parenchyma 
by activating angiogenic programs to develop a new vascular 
supply. Circulating cancer cells attract platelets because of their 
expressed surface tissue proteins, which protect them from the 
immune system (15, 16).

The BBB is a functional and anatomic barrier, which plays 
a central role in interacting with brain microenvironment and 
influencing metastatic colonization. Several components can be 
subjected to adaptions by metastatic tumors to breach this barrier. 
Studies have found a role of cell–cell adhesion factors, including 
cyclo-oxygenase 2, heparan-binding epidermal growth factor, 
and alpha-2,6 sialyltransferase (ST6GALNAC5). As the tumor 
cells adhere to the BBB, infiltrative and transmigratory processes 
allow the tumor cells to breach the BBB. Later, the tumor cells 
use the inflamed brain microenvironment as a niche. Tumor cells 
interact with activated microglia and astrocytes, which provide 
support for neuronal function (17). Studies have found that meta-
static tumor cells secrete cytokines involved in the MAP kinase 
pathway: the hyperactivation of this pathway permits breast 
cancer cells to overexpress MMP2, a proinflammatory enzyme 
that helps in tissue remodeling and angiogenesis. Metastatic 
lung cancer cells have been found to produce IL-8, macrophage 
inhibitory factor, and plasminogen activator inhibitor 1. These 
factors activate astrocytes to produce growth factors (IL-6, IL-1B, 
and tumor necrosis factor), resulting in a perpetuation of cancer 
cell growth in the neural niche (18). Activation of VEGF, Notch 
pathways and secretion of BMP-2 (a growth factor that differenti-
ates neuronal stem cells into astrocytes) sustain neoangiogenesis 
in BMs and tumor–astrocyte interactions (19).

Tumor-driven activation of the mitogen-activated protein 
kinase (MAPK) and AKT pathways promotes endothelin-driven 
astrocytic survival and upregulate the antiapoptotic genes BCL2L1, 
GSTA5, and TWIST1 (20). Tumor cells have also been observed to 
possess double-stranded DNA repair mechanisms, which protect 
from reactive oxidative species that are the primary mechanisms 
of microglial killing of tumor cells. Tumor metastatic cells activate 
mechanisms in the brain to escape immuno-surveillance [recruit-
ment of myeloid-derived suppressor cells, reduced expression of 
transporter associated with antigen processing 1 (TAP1), thereby 
reducing the effect of T-cell-mediated cell death] (21).

Metastatic cells can also take advantage of other mechanisms 
in the neural niche, such as nerve growth factor–tropomyosin 
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TABLe 1 | Comparison of neuroimaging techniques in diagnosis of BMs.

Technique Advantages Disadvantages

CT  – First-line approach
 – Fast information on intracranial hemorrhage, 

herniation, mass effect, and hydrocephalus
 – Useful in non compliant patients

 – Low resolution and low sensibility for differential diagnosis

MRI (T1/T2/FLAIR 
sequences)

 – Major resolution
 – Better lesion characterization and localization 

(cortical/subcortical)

 – Difficult resolution of calcifications
 – Longer time for image acquisition and processing

MRI with Gad Better characterization  – Longer time
 – Allergic reactions to Gad

Advanced MRI Spectroscopy Useful in DD glioma vs BM  – Longer time

Perfusion Useful in DD HGG vs BM (rCBV value in 
peritumoral FLAIR hyperintense region)

 – Longer time
 – Variable target definition for measurement
 – Unclear rCBV cutoff values in DD HGG vs BM

DTI images  – Evaluate the structural organization of white 
matter tracts and spatial relationships with 
brain lesions

 – Useful in surgical planning

 – Low specificity

DWI and ADC images  – DD HGG/BM and abscesses (restricted 
diffusion with DWI+ is more typical in 
abscesses)

 – DD HGG/BM edema in peritumoral region 
(higher ADC signal in BM)

 – DD PCNSL/HGG and BM (DWI + ADC maps)

 – Longer time

PET-CT 18F-FDG PET  – Metabolic and functional information  – Low specificity in DD with others brain lesions 
(inflammatory disease, abscesses, and granulomatous 
lesions) and other tumors (HGG)

Amino acids PET  – More useful for the differentiation of tumor 
and non-tumoral processes, as tumors have 
significantly higher uptake

 – Increased uptake in acute inflammatory lesions
 – Not sufficient discrimination from HGG and some non-

neoplastic lesions

CT, computed tomography; MRI, magnetic resonance imaging; Gad, gadolinium; DTI, diffusion tensor imaging; DWI diffusion-weighted imaging; DD, differential diagnosis; 
BMs, brain metastases; HGG, high-grade glioma; rCBV, relative cerebral blood volume; ADC, apparent diffusion coefficient; PET, positron emission tomography; 18F FDG, 
18F-fluorodeoxyglucose; FLAIR, fluid attenuated inversion recovery.
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receptor kinase B interaction on breast brain metastatic cells 
amplifying oncogenic signaling (22). A subset of metastatic 
breast cancer tissue has been observed to possess an upregu-
lation of GABA receptors and transporters compared with 
their primary tumor tissue counterparts: after transport-
ing synaptic GABA into their own cytosol, it is converted 
to NADH in the cellular mitochondria enhancing energy 
production, cellular respiration, and finally metastatic cell 
function and survival (23).

Understanding the mechanisms of metastatic cell invasion 
and survival within the neural niche could elucidate solutions for 
metastatic cancer prevention and cure.

DiAGNOSiS: CLiNiCAL AND 
NeUROiMAGiNG FeATUReS

Intracranial metastases are most frequently diagnosed in patients 
with an established primary site of malignancy (metachronous 
presentation). To a lesser extent, BMs are discovered at the same 
time of primary tumor (synchronous presentation in up to 30%) 
or may be the initial presentation as an occult malignancy (preco-
cious presentation) in up to 10% of patients (24).

Intracranial metastases are symptomatic in 60–70% of patients 
with neurologic symptoms including headache (40–50%), focal 
neurological deficits (40%), and seizures (15–20%). Impaired 
cognition and altered mental status are frequent in patients 
with multiple metastases and/or increased intracranial pressure. 
Another 5–10% of patients present with acute “stroke like” symp-
toms due to an intratumoral hemorrhage (especially in melanoma, 
kidney cancer, and choriocarcinoma). However, symptoms and 
signs at presentation can be subtle. As a general rule, BMs should 
be suspected in any patient with known systemic cancer in whom 
new neurologic findings develop (25).

In both asymptomatic and symptomatic patients, imaging of 
the brain has a primary role in the diagnosis and is important for 
subsequent patient management (Table 1).

Computed tomography (CT) can provide information on 
intracranial hemorrhage, herniation, mass effect, and hydroceph-
alus. MRI with intravenous contrast is preferable for the greater 
sensitivity than CT, particularly for lesions in the posterior fossa 
or multiple punctate metastases (26). There are no specific features 
on MRI that characterize BMs; however, a peripheral location, 
spherical shape, ring enhancement with extensive peritumoral 
edema, and multiple lesions suggest a metastatic disease (27).
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Differential diagnosis (DD) includes primary brain tumors 
[high-grade gliomas (HGGs), primary CNS lymphomas] and 
non-neoplastic conditions (abscesses, infections, hemorrhages, 
subacute infarcts, demyelinating diseases, granulomatous dis-
eases, and radiation necrosis).

Advanced neuroimaging techniques have been increasingly 
used in the detection, treatment planning, and follow-up of BMs. 
The most frequently used techniques include MR proton spectros-
copy (MRS), MR perfusion, diffusion-weighted imaging (DWI), 
and diffusion tensor imaging (DTI). MRS more often shows a 
lower choline to creatinine ratio in BMs than in HGGs (28). 
When employing MR perfusion (dynamic contrast-enhanced), 
although the relative cerebral blood volume (rCBV) ratio may 
not be reliable for a differentiation of the enhancing portion of 
HGGs from metastases, the evaluation of the peritumoral fluid 
attenuated inversion recovery (FLAIR) hyperintensity has shown 
lower rCBV in case of metastases compared with HGG: this is 
likely due to the presence of infiltrative cells and neoangiogen-
esis in HGGs, while metastatic lesions are surrounded by pure 
vasogenic edema. Peritumoural perfusion-weighted imaging 
can assist in preoperative differentiation between a glioma and a 
solitary metastasis, but to date there is no a definite cutoff value 
useful for radiological DD (29). In addition, evaluation of the 
DSC (dynamic susceptibility contrast MRI) perfusion signal 
changes over time in the contrast-enhancing mass has shown that 
metastasis has a vascular permeability or “leakiness” of contrast 
which is higher compared with an HGG but lower compared with 
PCNSL. DWI evaluates the mean diffusivity of water molecules in 
a given region of brain parenchyma: highly cellular tumor results 
in a “restricted diffusion” pattern, with hyperintensity on highly 
diffusion-weighted DWI sequences and lower signal intensity 
on apparent diffusion coefficient (ADC) images. Because of the 
various degrees of cellularity in different metastatic tumor types, 
DWI is highly variable (30). ADC can be helpful in distinguishing 
the peritumoral edema surrounding metastases, which usually 
demonstrates higher ADC signal, from the non-enhancing 
peritumoral area of HGGs, which demonstrates relatively lower 
ADC values (31). Diffusion-weighted MR imaging may be useful 
in the diagnosis of ring-enhancing lesions: restricted diffusion is 
more typical in abscesses compared with unrestricted diffusion 
in necrotic metastases or glioblastomas, but the findings are not 
specific (32). DTI is an MRI technique, which is able to evaluate 
the structural organization of the brain, particularly white matter 
tracts. It is useful in surgical planning to localize the relationships 
of a metastasis to the major white matter tracts. DTI has been also 
employed to differentiate metastases from HGGs (33, 34).

The capability of 18F-fluorodeoxyglucose (FDG) positron 
emission tomography (PET) in differentiating BMs from HGGs 
is limited, since a considerable overlap of standardized uptake 
values (SUVmax) exists. 18F-FDG PET also has limited specificity 
for distinguishing metastases from non-neoplastic lesions, such 
as brain abscesses, demyelinating tumefactive (“tumor-like”) 
lesions, fungal infections, and neurosarcoidosis due to the 
increased glucose metabolism in inflammatory tissues (35).

Amino acid PET seems more useful for the differentiation of 
tumor and non-tumoral processes, as tumors have significantly 
higher uptake than non-neoplastic tissues. However, a moderate 
increase of uptake can also be seen in acute inflammatory lesions. 

In conclusion, in BMs, both 18F-FDG and amino acid PET do not 
provide sufficient discrimination from high-grade glial tumors 
and some non-neoplastic lesions (36, 37). Overall, no advanced 
imaging techniques can reliably identify the nature of an enhanc-
ing brain lesion, and hence histopathological analysis remains the 
gold standard.

A tissue diagnosis by biopsy should then be considered in 
patients with either unknown primary tumor or absent well-
controlled systemic cancer, especially if a long interval has 
elapsed since the initial cancer diagnosis, or, seldom, in patients 
with active systemic cancer when the radiographic appearance is 
highly atypical and life expectancy is not too short.

When a brain mass is discovered on MRI and there is no prior 
history of cancer, in most cases the primary tumor is located in 
the lung (38, 39): thus, chest CT is recommended, while CT of 
the abdomen only occasionally shows an unsuspected cancer. 
Further search for a primary tumor is almost never fruitful in 
asymptomatic patients (40). Whole-body FDG PET is a sensi-
tive tool for detecting a “probable” primary tumor by visualizing 
foci of abnormal uptake, more often in the lung (41, 42), but the 
specificity in differentiating malignant tumors from benign or 
inflammatory lesions is relatively low.

Regarding BMs from an undetected primary site after the first 
investigations, serial CT scans of the thorax during follow-up 
in asymptomatic patients can discover the primary tumor (a 
non-small cell lung carcinoma in the majority), but few patients 
only benefit in terms of survival from early detection and treat-
ment (43). However, there are no data dealing with this issue in 
molecular subgroups with available targeted therapies [i.e., EGFR 
mutated or anaplastic lymphoma kinase (ALK)-rearranged 
tumors].

In patients with BMs, a CSF examination is not indicated, unless 
there are coexistent symptoms or signs or neuroimaging findings 
that suggest an associated leptomeningeal carcinomatosis.

DiAGNOSiS: NeUROPATHOLOGY

Routine hematoxylin–eosin stain of biopsy specimens usu-
ally allows the distinction of metastases from malignant 
gliomas, meningiomas, lymphomas, and more rare entities. 
Immunohistochemical markers may be useful for a further 
characterization of the tumor type.

The immunohistochemical expression of glial cell markers, 
such as glial fibrillary acidic protein or oligodendrocyte tran-
scription factor (OLIG2), suggests a glial tumor.

Usually, BMs mimic the histological appearance of the pri-
mary tumor, but sometimes with a lesser degree of differentiation. 
Overall, the vast majority of BMs are adenocarcinomas. The pres-
ence of glandular architecture and mucous allows the distinction 
of an adenocarcinoma from a small or non-small cell carcinoma 
with neuroendocrine differentiation, squamous carcinoma, 
or unspecified non-small cell carcinoma (44). Apart from the 
morphological analysis, the most effective tool for characterizing 
a BM is immunohistochemistry (45).

Lung cancers are the most common cause of BM. The brain 
tropism of non-small cell lung cancer (NSCLC) is higher for 
adenocarcinoma (54.8%) and poorly differentiated carcinoma 
(31.7%) than for squamous cell carcinoma (46). Pulmonary 
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adenocarcinomas express cytokeratin 7 in the absence of expres-
sion of cytokeratin 20 (CK7+/CK20− phenotype). However, most 
adenocarcinomas from breast or other origins behave similarly, 
thus other markers are needed (47). Thyroid transcription factor 
(TTF1) is a marker of lung and thyroid origin, and is expressed in 
80% of primary non-mucinous lung adenocarcinomas. TTF1 is 
also expressed in 90% of small cell and 50% of non-small cell neu-
roendocrine pulmonary carcinomas, thus the pathologist should 
search for the expression of neuroendocrine markers (CD56, 
chromogranin A, and synaptophysin) and pancytokeratin AE1/
AE3. Focal expression of TTF1 has been described in breast car-
cinoma, while 20% of primary pulmonary adenocarcinomas do 
not express TTF1. Anti-Napsin A expression may help to identify 
a small fraction of these TTF1-negative adenocarcinomas (48). 
A molecular analysis searching for molecular abnormalities 
should include mutations of epidermal growth factor receptor 
(EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), 
BRAF, human epidermal growth factor receptor 2 (HER2), 
c-MET abnormalities, translocations of ALK, rearranged during 
transfection (RET), or repressor of silencing 1 (ROS1).

When a breast cancer metastasis is suspected, the expression 
of hormonal receptors [estrogen receptors (ERs) and proges-
terone receptors (PgR)] must be investigated, although their 
expression is not specific as observed in ovarian, endometrial 
adenocarcinomas, and bronchopulmonary adenocarcinomas 
(47, 49). Furthermore, breast cancers frequently express mam-
maglobin, gross cystic disease fluid protein-15 (GCDFP15), and 
trans-acting T-cell-specific transcription factor (GATA3) (50). 
An immunohistochemical overexpression of HER2 has prog-
nostic and therapeutic significance (51). “Triple negative” breast 
cancers (absence of expression of HER2, ER, and PR) have the 
highest risk of BM and a poor prognosis.

The diagnosis of BM from colorectal (CRC) adenocarcinoma 
is often done based on the morphological appearance and is 
supported by the immunohistochemical profile (CK20+/CK7−). 
The expression of CDX2, a transcription factor expressed in the 
nuclei of intestinal epithelial cells, also favors the diagnosis, such 
as the finding of an activating mutation of the RAS genes. In CRC 
adenocarcinoma KRAS mutations are found in approximately 
40% of patients, resulting in the activation of the RAS/RAF/ERK 
pathway, rendering EGFR inhibitors ineffective (52–54). KRAS 
and neuroblastoma RAS viral oncogene homolog (NRAS) are 
closely related, and mutations tend to be mutually exclusive. Few 
data are available on the molecular subsets of BM from CRC 
adenocarcinoma. In addition to RAS, activating mutations in 
the BRAF gene have been found in 8–10% of CRC cancers, and 
they are almost always mutually exclusive with KRAS mutations 
(55–57). They are typically associated with right-sided tumors, 
high-grade mucinous histology, high frequency of lymph node 
and peritoneal metastasis, and microsatellite instability (58, 59).

The diagnosis of squamous cell carcinoma is based on conven-
tional histology (presence of intercellular bridges and keratiniza-
tion). The immunohistochemical expression of cytokeratins 5/6 
or p40 (more specific than p63 which is expressed in 26–65% 
of adenocarcinomas) can confirm the epidermoid differentia-
tion (50, 60): however, no marker can specifically determine the 
primary site.

Other markers of squamous differentiation are CK34bE12 and 
desmocollin-3, while TTF1 is not expressed. The coexistence of 
morphological and immunohistochemical features of carcinoma 
and adenocarcinoma suggests the possibility of an adenosqua-
mous carcinoma of pulmonary or gynecological origin.

Most of the patients with BM from an unknown primary site 
can be diagnosed by searching for mucins and TTF1 and p40. 
When a primary breast cancer is suspected, TTF1 and GATA3 are 
the most relevant markers (50). CK7 and CK20 are less helpful, 
since many cancers with brain tropism, such as NSCLC or breast 
cancer, have a CK7+/CK20− phenotype.

MOLeCULAR BiOLOGY

In BM, molecular alterations do not always reflect those of the 
primary tumor (Table  2). In BM of NSCLC, fibroblast growth 
factor receptor 1 (FGFR1) amplifications are found in 19% of 
squamous cell carcinomas, and in 15% of adenocarcinomas. A 
positive correlation of ALK and FGFR1 gene amplification status 
exists in BMs (61). Discoidin domain-containing receptor 2 
(DDR2) mutation was reported in 1–4% of Sq-NSCLC, and its 
sensitivity to dasatinib inhibition was demonstrated both in vitro 
and in vivo (62).

With regard to EGFR status, lung adenocarcinomas carrying 
EGFR mutations have a higher risk of developing BM (64%), 
probably as a consequence of the prolonged survival due to 
treatment with EGFR-tyrosine kinase inhibitors (TKIs) (63, 64). 
In BM, EGFR status was evaluated in few studies. Porta et  al. 
evaluated EGFR mutation status in 69 NSCLC-BM patients 
treated with erlotinib: 17 had EGFR mutation with an intracranial 
response rate of 82.4% (65, 66). ALK rearrangements occur in 
3–7% of patients with NSCLC, but no data are available about 
the incidence in BM (67). Approximately 1.4% of NSCLCs harbor 
ROS1 rearrangements. ROS is strongly homologous to ALK, so 
that ALK inhibitors can be efficacious against ROS1-positive 
tumors (68). In NSCLC, multiple mechanisms of c-MET activa-
tion have been reported, including gene amplifications and exon 
14 skip mutations (69).

In melanoma, BRAF mutations (mainly BRAF V600E) are 
found in 50% of melanoma BM, leading to a constitutive activa-
tion of the MAPK signaling pathway, promoting cellular growth, 
invasion, and metastasis (70).

The identification of BRAF mutations is relevant for thera-
peutic management, but it is not a diagnostic tool, given the fact 
that it is observed in numerous CNS tumors, notably in 10% of 
glioblastomas (in 50% of epithelioid glioblastomas), in over 60% 
of gangliogliomas and pleiomorphic xanthoastrocytomas, in 5% 
of BM of colon cancers, and in 1–4% of BM of NSCLC (71).

In breast cancer, 62–75% of patients maintain the same recep-
tor status between the primary tumor and the brain metastasis, 
whereas discordance rates of 25–37.5% have been found. The rate 
of ER and PgR expression was 41.6% in the primary tumors and 
decreased to 12.5 and 16.6% in the BMs. By contrast, the rate for 
Her2+ tumors increased from 41.6% in primary breast cancer to 
65.2%, respectively, in the BMs. All anti-estrogen treated breast 
tumors lost the ER expression in the BMs, whereas a Her2/neu 
conversion did not occur after treatment with trastuzumab. 
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TABLe 2 | Neuropathological and molecular markers of brain metastases.

Morphology Histochemistry and iHC Molecular biology Standard detection method Targeted therapy

Undifferentiated tumor Desmin Sarcoma

HMB45 MelanA Melanoma BRAF/NRAS 
mutations

ARMS-PCR/targeted NGS
Real-time allele-specific PCR

Dabrafenib + trametinib
Vemurafenib + cobimetinib

cKIT mutations Targeted NGS Imatinib (not registered in this 
indication)

CKAE1AE3 Undifferentiated carcinoma EGFR, KRAS, BRAF, 
HER2, ALK, ROS1, 
RET, c-MET

ARMS-PCR/targeted NGS
Real-time allele-specific PCR, 
IHC, FISH or RNA seq

Adenocarcinoma 
(glandular ± mucosecretion)

Mucins, TTF1, 
p40, CK7, CK20

Unknown primary
TTF1−, CK 7+/−, CK20−

Broncopulmonary 
adenocarcinoma (NSCLC)
TTF1+, CK 7+, CK20−

EGFR-activating 
mutations

Targeted NGS or real-time allele-
specific PCR (FDA-approved 
COBAS© EGFR mutation test 
v2, ARMS-PCR)

Gefitinib, erlotinib, afatinib

EGFR resistant 
mutation: T790M

COBAS© EGFR mutation test v2 
(tumor tissue and plasma)
Dropet digital PCR (plasma), 
targeted NGS

Osimertinib

ALK translocation IHC, FISH, or RNA seq (for IHC+) Crizotinib

ROS1 translocation IHC, FISH, or RNA seq (for IHC+) Crizotinib, ceritinib, brigatinib, 
lorlatinib (not registered)

RET translocation FISH or RNA seq Cabozantinib, vandetanib (not 
registered in this indication)

c-MET amplification FISH or targeted NGS Crizotinib (not registered in this 
indication)

c-MET splice-
mutation (exon 14 
skip mutation)

Targeted NGS Crizotinib

BRAF V600E or 
V600K mutations

Targeted NGS
Real-time allele-specific PCR
IHC (V600E)

Dabrafenib + trametinib
Vemurafenib + cobimetinib

Breast adenocarcinoma
TTF1−, RE/
RP+/− (GATA3+, 
mammaglobin+), CK 7+, 
CK20− (triple negative: 
CK5/6/14+)

HER2 amplifications FISH, IHC Trastuzumab, pertuzumab, 
lapatinib, trastuzumab-
emtansine (TDM1)

Colorectal 
adenocarcinoma
CK 7−, CK20+, CDX2+

KRAS, NRAS 
mutations

ARMS-PCR/targeted NGS
Allele-specific PCR-COBAS© 
KRAS mutation test

EGFR mAb (cetuximab, 
panitumumab) resistance

Renal adenocarcinoma
CK 7−, CK20−, vim+, 
CD10+

Rare cancers
PSA, CA125, TG, PLAP, 
alpha-fetoprotein, β HCG

Squamous cell carcinoma Keratinization, intercellular 
bridges, p40+, CK5/6+, 
TTF1

FGFR1 amplification FISH Not registered drugs

DDR2 mutations Targeted NGS Dasatinib (not registered in this 
indication)

Neuroendocrine carcinoma CK+, TTF1+/−, 
chromogranin+, 
synapthophysin+

Small cell lung carcinoma 
(SCLC)

TTF1+ Not registered drugs

Large cell neuroendocrine 
tumor

TTF1+/−

CK, cytokeratins; TTF1, thyroid transcription factor; IHC, immunohistochemistry; ARMS-PCR, amplification refractory mutation system-polymerase chain reaction; FISH, fluorescent 
in situ hybridization, NGS, next-generation sequencing; RNA seq, RNA sequencing; EGFR, epidermal growth factor; KRAS, Kirsten rat sarcoma viral oncogene homolog; BRAF, v-raf 
murine sarcoma viral oncogene homolog B; NRAS, rat sarcoma oncogene; HER2, human epidermal growth factor receptor 2; ALK, anaplastic lymphoma kinase; ROS1, repressor 
of silencing 1; RET, rearranged during transfection; c-MET, tyrosine-protein kinase Met or hepatocyte growth factor receptor; cKIT, tyrosine-protein kinase Kit or CD117; FGFR1, 
fibroblast growth factor receptor 1; DDR2, discoidin domain-containing receptor 2.
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Therefore, the receptor status of the primary tumor is invalid for 
planning a targeted therapy against BMs, especially after hormone 
therapy. In these cases, new tissue collection by biopsy or resec-
tion should be required for more accurate decision-making (72).

BiOMARKeRS AND LiQUiD BiOPSY

The diagnosis and management of BMs still rely on histopathol-
ogy and neuroimaging. However, considering tumor complex 
genetic profiles, more sophisticated methods of tumor analysis 
are under investigations in fluids (so-called liquid biopsy). 
Circulating biomarkers, including tumor nucleic acids, tumor 
cells (CTCs), and extracellular vesicles, which contain tumor 
DNA as well as other macromolecules, such as microRNA, have 
shown promise to provide information regarding tumor evolu-
tion over time, specifically for monitoring treatment response 
and disease progression (73, 74).

Although the technical aspects of biomarker detection still 
require optimization, these tools have already demonstrated 
their diagnostic, prognostic, and predictive value in several 
tumor types, including breast, CRC, non-small cell lung, prostate 
cancers, and melanoma. In addition, they can be used in the 
laboratory to probe mechanisms of acquired drug resistance and 
tumor invasion and dissemination (75, 76).

Genomic alterations can be detected in the CSF by micro-
arrays, digital or real-time polymerase chain reaction (qPCR) and 
targeted amplicon sequencing, and whole exome sequencing (77, 
78). Although a lumbar puncture is a more invasive procedure than 
a blood draw, the possible lack of representative tumor DNA in 
the plasma may lead to inconclusive results. CSF likely represents 
a preferable source of liquid biopsy in brain metastatic lesions 
featuring meningeal carcinomatosis, at least when no extra-CNS 
localizations are evident (79). It remains unclear in patients with 
metastatic solid tumors diagnosed with leptomeningeal carcino-
matosis whether tumor DNA detection in the CSF compartment 
always reflects the local presence of cells or whether this DNA 
may be derived from tumor cells circulating in the blood or even 
from distant extracerebral metastases (80–82). Yang and col-
leagues have evaluated EGFR gene status in tumor-derived free 
DNA in CSF to test correspondence with the molecular pattern 
of the primary tumor and to guide the clinical use of EGFR-TKI. 
Indeed, between the paired primary tumor and tumor-derived 
DNA in CSF, 75% of samples had a concordant EGFR status 
(83). Findings on two patients by Marchiò and colleagues cor-
roborate the notion that CSF represents a preferable source for 
liquid biopsy in brain metastatic lesions featuring meningeal 
carcinomatosis, at least when no extra-CNS localizations are 
evident (72). Liquoral liquid biopsy can allow the identification 
of either actionable genetic alterations or a mutation correlated to 
resistance to targeted therapies leading to crucial changes in the 
treatment decision.

THeRAPY

The choice of therapeutic approaches, both in clinical trials and 
daily practice, is guided by the knowledge of the natural prognos-
tic factors. Karnofsky performance status (KPS), age, primary/

systemic tumor activity, neurocognitive function, number of 
BMs, primary tumor type, and time from primary tumor diag-
nosis to the brain lesion all have shown an individual prognostic 
significance in patients with BMs (84, 85). Of these, the KPS is 
the major determinant of survival. On the basis of most powerful 
factors, prognostic indices have been developed to distinguish 
subgroups of patients with different outcomes. The first prog-
nostic categorization [Recursive Partitioning Analysis (RPA)], 
developed in 1997 by the Radiation Therapy Oncology Group 
(RTOG) (84), subdivided patients treated with whole-brain 
radiotherapy (WBRT) into three classes: class I including patients 
with a KPS greater than 70, controlled primary tumor/number of 
extracranial metastases and age below 65 years (median survival 
7.7 months); class III including patients with KPS less than 70 
(median survival 2.3 months); and class II including the rest of 
patients (median survival 4.5 months).

A new prognostic index, the diagnostic-specific Graded 
Prognostic Assessment (DS-GPA), derived from an updated 
RTOG database, has been proposed more recently, considered 
as prognostic as the RPA, less subjective and more quantitative 
(86). A further analysis has shown that the prognostic factors vary 
according to the tumor type (87). The DS-GPA uses four factors 
(age, KPS, status of extracranial disease, and number of BMs) to 
subdivide patients into one of four categories with median surviv-
als ranging from 2.6 to 11 months. A new updated GPA, including 
molecular markers, has been proposed to better estimate survival 
in patients with BM: lung-mol-GPA is an update of the DS-GPA, 
which incorporates EGFR and/or ALK mutation status in addition 
to the well-known prognostic factors such as KPS, age, presence of 
extracranial metastases, and number of BMs (88). For melanoma 
there are five significant prognostic factors: age, KPS, extracranial 
metastases, number of BMs, and BRAF status (89). Conversely, 
significant prognostic factors for breast cancer are KPS, age and 
tumor subtype (classified HER2, ER, and PgR status) (90), but not 
the number of BMs and extracranial metastases.

SURGeRY

Three randomized trials have compared surgical resection fol-
lowed by WBRT with WBRT alone (91–93). The American and 
European trials have shown a survival advantage for patients 
receiving the combined treatment (median survival 9–10 vs 
3–6  months). In the American study, patients who received 
surgery displayed a lower rate of local relapses (20 vs 52%) and 
a longer time of functional independence. The Canadian study, 
which included more patients with an active systemic disease 
and a low performance status, did not show any benefit with 
the addition of surgery to WBRT. Therefore, the survival benefit 
of surgical resection seems limited to the subgroup of patients 
with controlled systemic disease and good performance status. 
Surgical resection allows a relief of symptoms of intracranial 
hypertension, a reduction of neurological deficits and seizures, 
and a rapid steroid taper.

Gross total resection of a brain metastasis can be achieved with 
lower morbidity using advanced image-guided systems, such as 
preoperative functional MRI and DTI, intraoperative neuronavi-
gation and cortical mapping (94, 95).
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Leptomeningeal disease (LMD) can be a complication, espe-
cially for patients with posterior fossa metastases undergoing a 
“piecemeal” resection (13.8%) compared with “en-bloc” resection 
(5–6%) (96).

Surgery may be considered for patients with two to three 
surgically accessible BMs in good neurological condition and 
controlled systemic disease: a complete resection yields results 
comparable to those obtained in single lesions (97).

The use of carmustine wafers in the resection cavity in newly 
diagnosed brain metastasis has not been tested in prospective 
trials (98).

Another technique is the GliaSite Radiation Therapy System, 
an intracavitary high-activity 125-I brachytherapy, performed 
with a balloon placed in surgical cavity and filled with a radio-
active solution, delivering highly localized doses of radiation 
to the resection margins (60 Gy to 1 cm depth). However, this 
technique has not been further developed after some interesting 
preliminary results (99).

STeReOTACTiC RADiOSURGeRY (SRS)

Stereotactic radiosurgery is a single, high-dose radiation treat-
ment with precise localization of a target of 3–3.5 cm of maximum 
diameter by using gamma-knife (multiple cobalt sources) or 
linear accelerator (Linac) through a stereotactic device. The steep 
dose fall-off minimizes the risk of damage to the normal nervous 
tissue. Most BMs are an ideal target for SRS, owing to the small 
size, spherical shape, and distinct radiographic and pathologic 
margins (100). The dose is inversely related to tumor diameter and 
volume (101). In general local tumor control decreases as the size 
of metastasis increases and the dose that could be given decreases. 
Following SRS for newly diagnosed BMs a decrease of symptoms 
and a local tumor control (shrinkage or arrest of growth) at 1 year 
of 80–90% and a median survival of 6–12  months have been 
reported (102). Metastases from radioresistant tumors, such as 
melanoma and renal cell carcinoma, respond to SRS as well as 
do metastases from radiosensitive tumors (103). Radiosurgery 
allows the treatment of BMs in almost any location, including 
brainstem (104). The type of radiosurgical procedure, gamma-
knife or Linac-based, does not have an impact on the outcome. 
SRS combined with WBRT (radiosurgical boost) is superior to 
WBRT alone in terms of survival (105) in patients with single 
lesions only. Survival following radiosurgery is comparable to 
that achieved with surgery (106). SRS is less invasive and can be 
performed in an outpatient setting, and offers cost effectiveness 
advantages over surgery; on the other hand, patients with larger 
lesions may require chronic steroid administration.

Acute (early) and chronic (late) complications following radio-
surgery are reported in 10–40% of patients (107). Acute reactions 
(due to edema) occur more often within 2 weeks of treatment, and 
include headache, nausea and vomiting, seizures, and worsening 
of preexistent neurological deficits. These reactions are generally 
reversible with corticosteroids. Chronic complications consist 
of hemorrhages and radionecrosis (1–17%). Radiographically, a 
transient increase in the size of the irradiated lesion, with increas-
ing edema and mass effect, with or without radionecrosis, cannot 
be distinguished from a tumor progression: MR spectroscopy and 

perfusion and PET techniques can give additional information 
(108, 109).

Hypofractionated radiosurgery is used for larger metastases 
(two to five fractions of smaller doses) to decrease the risk of 
radionecrosis and other neurological complications (110–112).

Most studies comparing SRS with surgical resection have 
reported similar outcomes in terms of survival for patients with 
oligometastases (113, 114). However, these are retrospective 
studies and are likely to be affected by selection bias.

Overall, the choice between surgery and SRS should be made 
considering many factors, such as number, location and size of BMs, 
neurologic symptoms, patient preference and physician expertise.

wBRT FOLLOwiNG SURGeRY OR 
RADiOSURGeRY

The rationale of WBRT in conjunction with surgery or SRS is that 
of destroying microscopic disease at the original tumor site or at 
distant intracranial locations: however, it has been questioned by 
recent trials (115). Three phase III trials (116–118) in patients with 
single brain metastasis have reported that the addition of WBRT to 
either surgery or SRS reduces the risk of local and distant relapses 
in the brain but does not improve overall survival. The American 
(116) and the Japanese (117) trials included patients with pro-
gressive systemic disease, while the EORTC 22952-26001 trial 
recruited patients with stable systemic disease, i.e., only those who 
could maximally benefit from the addition of early WBRT (118).

An individual patient data meta-analysis of three randomized 
trials assessing SRS with or without WBRT has challenged our 
current understanding of the effect of adding WBRT (119). The 
investigators reported a survival advantage for SRS alone in those 
patients presenting with one to four metastases, KPS of 70 or higher 
and age of 50 years or younger. Moreover, in the subgroup of patients 
with <50 years, a reduction in the risk of new BMs with adjuvant 
WBRT was not noted, while, in older patients (aged >50 years), 
WBRT decreased the risk of new BMs, but did not affect survival.

A secondary analysis of the Japanese trial has stratified 
patients by GPA score and suggested that a subgroup of patients 
with NSCLC with higher GPA scores (2.5–4.0) have a survival 
benefit from SRS +  WBRT compared with SRS alone (median 
survival 16.7 vs 10.7 months) (120). However, a similar secondary 
analysis of the EORTC trial has not confirmed this finding (121).

The impact of adjuvant WBRT on cognitive functions and qual-
ity of life (QoL) has been analyzed in few studies (Table 3). Aoyama 
et al. compared, by using the Mini-Mental State Evaluation, the 
neurocognitive function of patients who underwent SRS alone 
or SRS + WBRT and showed a deterioration of neurocognitive 
function in long-term survivors (up to 36 months) after WBRT 
(120). Chang et al. in a small randomized trial have shown that 
patients treated with SRS plus WBRT were at greater risk of a 
decline in learning and memory function at 4 months after treat-
ment compared with those receiving SRS alone (122).

A randomized phase III trial (Alliance trial) has compared SRS 
alone vs SRS + WBRT in patients with one to three BMs using a 
primary neurocognitive endpoint, defined as decline from baseline 
in any six cognitive tests at 3 months. The decline was significantly 
more frequent after SRS + WBRT vs SRS alone (88 vs 61.9%) (class 
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TABLe 3 | Phase III trials of SRS ± whole brain radiotherapy for brain metastases (BMs) with cognitive endpoints.

Reference inclusion 
criteria

Number of Pts Primary endpoint OS (months) Outcome Distant brain metastases 
and secondary endpoint

Chang et al. (122) 
(MDACC)

1–3 BMs 58 5-point drop on HVLT-R total recall at 
4 months

SRS + WBRT: 5.7
SRS alone: 15.2 
(p = 0.003)

Neurocognitive decline at 4 months:
SRS + WBRT 52%
SRS alone: 24%

SRS + WBRT: 73%
SRS alone: 45% (p = 0.02) 
(at 1 year)

Brown et al. (287) 
(Alliance)

1–3 BMs 213 >1 SD in any of the six cognitive tests 
at 3 months

SRS + WBRT: 7.5
SRS alone: 10.7 (p = NS)

Neurocognitive decline at 4 months:
SRS + WBRT 88% (p = 0.02)
SRS alone: 62%

SRS + WBRT: 85%
SRS alone: 51% (p < 0.01) 
(at 1 year)

Brown et al. (123) Pts with 1–3 BM 213:
– SRS alone, n = 111
– SRS plus WBRT, n = 102

Primary endpoint: cognitive 
deterioration (decline >1 SD from 
baseline on at least 1 cognitive test at 
3 months)
Secondary endpoint: time to 
intracranial failure, QoL, FI, long-term 
cognitive status, OS

m OS:
– 10.4 ms for SRS alone
– 7.4 months for 

SRS + WBRT (p = 0.92)

Cognitive deterioration at 3 months:
– After SRS alone: 40/63 Pts 

(63.5%)
– SRS + WBRT: 44/48 Pts 

(91.7%)

Less deterioration with SRS alone 
(p < 0.001)

 – Time to intracranial 
failure shorter for 
SRS alone compared 
with SRS + WBRT 
(p < 0.001)

 – For long-term survivors, 
cognitive deterioration 
was less after SRS alone 
at 3 months (45.5 vs 
94%, p = 0.07) and at 
12 months (60 vs 94%; 
p = 0.04)

 – QoL was higher at 
3 months with SRS alone

Brown et al. (126) 
(NCCTG N107C/CEC·3)

1 resected BM 
and a resection 
cavity <5 cm

194
– SRS alone 98 Pts
– WBRT 96 Pts

Cognitive-deterioration-free survival 
and OS

SRS: 12.3 months
WBRT: 11.6 months

Median cognitive-deterioration-free 
survival:
 – SRS: 3.7 months
 – WBRT: 3 months
 – Cognitive deterioration at 

6 months: SRS: 52% (28/54 
Pts); WBRT: 85% (41/48 Pts)

MDACC, M.D. Anderson Cancer Center; Alliance, alliance for clinical trials in Oncology; Pts, patients; HVLT-R, Hopkins verbal learning test-Recall; SRS, stereotactic radiosurgery; WBRT, whole-brain radiotherapy; NS, not significant; 
OS, overall survival; BMs, brain metastases; QoL, quality of life; FI, functional independence.
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I) with more deterioration in immediate recall (31 vs 8%), delayed 
recall (51 vs 20%), and verbal fluency (19 vs 2%) (123).

A QoL analysis of the European Organisation for Research and 
Treatment of Cancer (EORTC) 22952-26001 trial has shown over 
1 year of follow-up that patients receiving adjuvant WBRT had 
transient lower physical functioning and cognitive functioning 
scores and more fatigue (124). Based on the results of these tri-
als, the American Society for Radiation Oncology (ASTRO) has 
recommended in its Choose Wisely campaign not to routinely 
add adjuvant WBRT to SRS for patients with a limited number of 
BMs, and the same has been done in the European Association 
of Neuro-Oncology guidelines (25). Importantly, in case of omis-
sion of WBRT, following either SRS or surgery, close monitoring 
with MRI is mandatory.

SRS FOLLOwiNG SURGeRY

Surgery alone in brain metastasis is associated with a high risk 
of local recurrence (118). Postoperative SRS is an approach to 
decrease local relapse and avoid the cognitive sequelae of WBRT. 
SRS has other advantages over WBRT, such as reduced number of 
fractions and a shorter break for chemotherapy during radiation, 
thus reducing the risk of systemic recurrences. Based on retrospec-
tive cohort studies, the results of a meta-analysis by Lamba and 
colleagues (125), suggest that SRS of the resection cavity may offer 
comparable survival and similar local and distant control as adju-
vant WBRT. A phase III randomized trial has been conducted to 
evaluate postoperatively SRS vs WBRT in brain metastasis patients 
(126). The co-primary endpoints were cognitive-deterioration-
free survival and overall survival; secondary endpoints were QoL, 
adverse events, and functional independence. This trial concluded 
that SRS to the surgical cavity results in improved cognitive out-
comes, better preservation of QoL and functional independence 
compared with WBRT. Despite worse intracranial control, there 
was no difference in overall survival. In conclusion, after resection 
of a brain metastasis, SRS should be considered one of the standard 
of care, as a less toxic alternative to WBRT (123, 127, 128).

However, postoperative SRS can be associated with a higher 
risk of developing leptomeningeal disease (LMD). Some recent 
studies have reported an incidence of LMD in patients receiving 
SRS to the resection cavity around 12–14% and breast cancer 
patients can have a particularly high rate of LMD (129–131). 
Several questions remain regarding SRS after surgery, such as 
major risk of radionecrosis, the optimal dose and fractionation 
schedule, especially for large metastases (>3  cm). The risk of 
radionecrosis following postoperative SRS is higher (between 9 
and 15%) than that reported in an EORTC study with WBRT 
following surgery or SRS alone (2.6%) and could be reduced by 
modifying the treatment schedule with multifraction SRS (132). 
The actual incidence over time is 5.2% at 6  months, 17.2% at 
12 months and 34.0% at 24 months (133). Preoperative SRS could 
be an alternative to reduce the risk of radionecrosis (134).

Overall, the true incidence of biopsy proven radionecrosis is 
unknown, as many studies have reported a combination of patho-
logically proven and MRI suspected radionecrosis. Advanced 
neuroimaging techniques (MRI perfusion, MR spectroscopy, and 
PET with amino acids) may help diagnosis (109, 135). Treatment 

options for radionecrosis include corticosteroids and bevaci-
zumab that could reduce edema and symptoms (136).

There are still few data regarding the impact of postoperative 
SRS on health related quality of life. Caveats of available studies 
comparing postoperative SRS and WBRT for BMs include the 
heterogeneity regarding primary tumor histology (with varying 
proportion of melanoma, colon, renal, breast, and unknown 
histologies), numbers of BMs and treatment modalities, which 
were not always clearly reported (125). Some studies described 
outcomes of intraoperative radiotherapy instead of SRS (137).

wBRT ALONe

Whole-brain radiotherapy alone is now the treatment of choice 
for patients with single or multiple BMs not amenable to surgery 
or radiosurgery, or, more in general, patients with poor prognos-
tic factors and limited life expectancy. Tumor volume reduction 
after WBRT seems to be associated with better neurocognitive 
function preservation and prolonged survival (138). Median 
survival following WBRT alone ranges from 3 to 6  months, 
with 10–15% of patients alive at 1  year. A meta-analysis of 39 
trials, involving 10.835 patients, concluded that altered WBRT 
dose fractionation schemes are not superior in terms of overall 
survival, neurologic function or symptom control as compared 
with standard fractionation (30 Gy in 10 fractions or 20 Gy in 
5 fractions) (139). Currently, radiosensitizers, such as motexafin 
gadolinium (Gad) or efaproxiral, have not provided any addi-
tional benefit over conventional treatment in BMs from NSCLC 
or breast cancer (140, 141). Recently a phase III randomized trial 
(QUARTZ) randomly assigned 538 NSCLC patients with BMs, 
unsuitable for surgical resection or stereotactic radiotherapy, 
either to optimal supportive care (OSC) plus WBRT (20 Gy in 
five daily fractions) or OSC alone. The primary outcome measure 
was quality-adjusted life-years (QALYs): QALYs was generated 
combining overall survival and patients’ weekly completion of the 
EQ-5D questionnaire. An absence of a difference in QALYs and 
overall survival between the two groups was reported, suggesting 
that WBRT provides little additional benefit, over supportive care 
(i.e., dexamethasone), for this patient group (142).

The cognitive decline following WBRT has been linked to leu-
koencephalopathy, whose incidence is higher after WBRT vs SRS 
(143, 144). A study, evaluating 59 patients treated with primary 
SRS, found that even after multiple courses of SRS, QoL, measured 
with the EQ-5D instrument, was preserved in 77% of patients at 
12 month follow-up (145). Thus SRS seems to be a valid treatment 
option that can help maintain neurocognition and QOL.

BRAiN DAMAGe FOLLOwiNG wBRT

Radiation-induced brain injury can be categorized as acute, early-
delayed or late-delayed reactions (146). Acute injury is very rare 
and occurs hours to weeks after radiation therapy and consists 
of somnolence, drowsiness, and headache. Early delayed injury 
occurs from 1 to 6 months post-irradiation and is characterized 
by drowsiness and transient demyelination. Both acute and early-
delayed reactions are normally reversible with corticosteroids. 
Late delayed effects, characterized by demyelination, vascular 
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abnormalities and ultimately white matter necrosis, are generally 
observed with a latency of 6  months or more post-irradiation, 
and are irreversible and progressive (147). Giving the prolonged 
survival of many cancer patients, long-term complications of 
WBRT could negatively impact the QoL of survivors. Currently, 
no treatments to prevent or reverse these effects are available.

Radiation-induced dementia with ataxia and urinary inconti-
nence developed in up to 30% of patients by 1 year after receiving 
unconventional large size fractions of WBRT (6–8.5 Gy) (148). 
A diffuse hyperintensity of the periventricular white matter on 
T2-weighted and FLAIR images with associated hydrocephalus 
was observed on MRI. When using more conventional size 
fractions (up to 3 or 4 Gy per fraction) the risk is that of milder 
cognitive dysfunction, consisting of learning and memory 
impairment with changes in the white matter and cortical atrophy 
on MRI. Patients with advanced age and vascular disease (such as 
arterial hypertension) are at higher risk of developing cognitive 
dysfunction. The pathogenesis of this radiation-damage consists 
of an injury of the endothelium of microvessels, which leads to 
atherosclerosis and chronic ischemia: the clinical–radiological 
pictures are similar to those of small vessel disease.

To reduce the neurocognitive sequelae of WBRT pharmaco-
logical approaches have been investigated. The RTOG 0614 was a 
phase III trial investigating memantine, an N-methyl-d-aspartate 
receptor blocker, shown to be effective in vascular dementia, and 
included 508 patients with BM who were randomized to either 
WBRT plus placebo vs WBRT plus daily memantine for 6 months 
(149). Memantine has the potential to block excessive NMDA 
stimulation following ischemia, which causes damage of the nor-
mal brain. The study narrowly missed statistical significance for the 
primary endpoint of a lesser decline in delayed recall at 6 months. 
However, the memantine arm showed a longer time to cognitive 
decline, with probability of cognitive decline at 6 months being 
54% in the memantine arm and 65% in the placebo arm. Other 
treatments, including donepezil and cognitive rehabilitation, have 
been tested in the population at risk for dementia, although they 
have not been adequately studied in patients with BM, following 
cranial radiotherapy (150). An innovative approach could be the 
use of intranasal metabolic stimulants, such as low dose insulin, 
which could be valuable in improving cognition and memory, by 
reversing impaired brain metabolic activity (151).

Radiation-induced cognitive deficits may result, at least in part, 
from a radiation injury to the neuronal stem cells in the subgranular 
zone of the hippocampus (152, 153), that are responsible for main-
taining neurogenesis, and preserving memory functions. Preclinical 
and clinical studies have shown that radiation-induced injury to 
the hippocampus correlates with neurocognitive decline following 
WBRT. Hippocampal sparing WBRT uses intensity modulated 
radiotherapy (IMRT) to conformally reduce the radiation dose to 
the hippocampus, while applying the usual higher dose to the whole 
brain (154). A potential concern is whether hippocampal avoidance 
could lead to loss of control of metastases in the limbic structures: 
however, the hippocampus does not seem to be frequently involved 
in the metastatic process (155, 156). The single-arm phase II 
RTOG 0933 study has suggested that conformal avoidance of the 
hippocampus during WBRT is associated with some sparing of 
memory and QoL: performance on standardized memory tests 

declined 7% from baseline to 4  months in patients treated with 
HS-WBRT, as compared with 30% in historical control group (157).

The potential combined neuroprotective effects of hippocam-
pal avoidance in addition to memantine during WBRT for BMs 
are being investigated in a phase III trial (158).

TReATMeNT OF ReCURReNT BRAiN 
MeTASTASiS

Treatment of recurrent BMs with salvage surgery or SRS is used in 
an increasing number of patients. Reoperation can afford a neu-
rological improvement and prolongation of survival in patients 
with a local accessible brain lesion, high performance status, 
stable extracranial disease and relatively long time to recurrence 
(>6 months) (159, 160). Arbit et al. analyzed 109 patients with 
recurrent BMs of NSCLC. Thirty-two patients, who underwent 
surgery at relapse, had significantly longer median survival 
(15 months) than 77 patients in whom surgical intervention was 
omitted (10 months, p < 0.001) (161).

Salvage SRS after WBRT has been widely used during the 
initial development of SRS: several retrospective studies have 
reported reasonable local control and survival rates (162–165). A 
population-based study has suggested similar survival outcomes 
following either salvage SRS or boost SRS (166). Reirradiation 
with SRS after local recurrence of an initial SRS has been 
employed in a limited number of patients thus far, and the risk of 
long-term radionecrosis should be considered against the benefit 
(167). Multiple courses of SRS for new BMs after an initial course 
of SRS to defer WBRT could yield high rates of local control, low 
risk of toxicity, and favorable duration of overall and neurologic 
progression-free survival (PFS) (168, 169). When using multiple 
courses of SRS the aggregate volume, but not the cumulative 
number of BMs, and the GPA score, as recalculated at the second 
course of SRS, are seen as critical for survival (170). Salvage 
WBRT following previous WBRT or SRS is rarely employed.

CHeMOTHeRAPY AND TARGeTeD 
THeRAPieS

Unfortunately, few clinical trials of systemic agents have been 
conducted to date in patients with BM, and this population has 
frequently been excluded from clinical trials of emerging inves-
tigational drugs (171). Historically, the use of systemic therapy in 
patients with BMs has been limited by the presence of the BBB, 
which limits the access of hydrophilic and/or large agents into the 
CNS. However, the BBB is disrupted in macroscopic BMs result-
ing in an increased exposure to systemic drugs. An additional 
increase in BBB permeability can be induced by radiotherapy, 
even if unpredictably. The sensitivity of tumor cells to cytotoxic 
chemotherapy appears to be as important as the BBB: response 
rates are high in BMs from small cell lung cancer (30–80%), inter-
mediate in breast cancer (30–50%) and NSCLC (10–30%), and low 
in melanoma (10–15%), and responses in the brain do not always 
parallel that of the systemic disease (172, 173). Because active BMs 
often coexist with active systemic disease, antitumor agents that 
can control both intracranial and extracranial disease are needed.
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The combination of radiotherapy and chemotherapy may 
improve response rate, but not survival (174). Various chemo-
therapeutic agents have been employed to treat BM, often used 
in a combination of two to three agents along with WBRT. 
Temozolomide alone has a modest therapeutic effect with some 
improvement when used in conjunction with WBRT and/or 
other anticancer agents (175).

Brain metastases differ from metastases to other organs from 
a biologic and clinical perspective. The brain has a unique micro 
environment and an immune system distinct from other organs 
(176). Other considerations, which could explain the disappoint-
ing results of chemotherapy in BM, are the fact that metastatic cells 
in the brain often develop after multiple rounds of prior chemo-
therapies for the systemic disease, allowing for the development 
of resistance through the accumulation of different mutations. 
Second, the breakdown of BBB is heterogeneous in BM, prevent-
ing an optimal drug distribution. Finally, BM patients may develop 
neurologic deficits and seizures, which could require the use of 
medications (i.e., enzyme-inducing anticonvulsants, corticoster-
oids), that accelerate the metabolism of antitumor agents (177).

Recent advances in understanding the molecular basis of tumor 
growth in many solid tumors have allowed the development of 
agents targeting molecular pathways both in the extracranial and 
intracranial disease (172, 178–180). Encouraging results have 
emerged for tyrosine kinase inhibitors and monoclonal antibod-
ies in subgroups of patients with BM (Table 4). As CNS immune-
accessibility has become accepted, and immunotherapy (IT) gains 
greater understanding within trials for primary brain tumors, 
there is an increasing interest in immunotherapeutic approaches 
to BMs with immune checkpoint inhibitors (181–183) (Table 5).

Overall, the response rate to targeted agents in specific molecu-
lar subtypes of BMs seems now higher than those observed after 
conventional chemotherapy. However, even if the majority of 
targeted agents are small molecules, still the passage across the 
BBB is critical, as most of these new compounds, similar to the 
old chemotherapeutics, have been shown to be a substrate of one 
or more active efflux transporters (i.e., PgP signaling).

BMs From NSCLC
The survival of the general metastatic NSCLC population is 
approximately 12  months, with a median PFS ranging from 3 
to 6 months. BMs are associated with poor prognosis, and the 
median survival ranges from 2.4 to 4.8 months for patients who 
receive palliative radiotherapy.

Platinum compounds (cisplatin and carboplatin) and pem-
etrexed, alone or in association (etoposide, vinorelbine, and 
radiotherapy) are the most commonly used chemotherapeutics 
against BMs from NSCLC (184). Temozolomide has shown some 
activity.

In the last decades, a multitude of molecular abnormalities 
have been discovered in NSCLC.

Approximately 33% of patients with NSCLC tumors and 
EGFR-TKI-sensitizing mutations develop BM (185). A pooled 
analysis including 464 patients from 16 trials to study the efficacy 
of first generation EGFR-TKIs (gefitinib, erlotinib) in NSCLC 
patients with BM showed significant beneficial effects, with a 
higher response rate (85 vs 45.1%) for EGFR mutated vs wild-type 

tumors and a median PFS of 7.4 months, and OS of 11.9 months 
in the EGFR mutation group (186). These data suggest that 
EGFR-TKIs are an effective treatment for NSCLC patients with 
BMs harboring activating EGFR mutations. However, even in 
EGFR wild-type patients, EGFR-TKIs seem to represent a poten-
tial second-line therapy with a response rate of about 10% (187). 
Evidence suggests that first generation EGFR-TKIs have limited 
BBB penetration (188, 189).

Afatinib is a second-generation irreversible covalent inhibi-
tor of the EGFR tyrosine kinase including ErbB-2 (HER2) and 
ErbB-4. Subgroup analysis from LUX-LUNG 3 and LUX-LUNG 
6 studies demonstrated a significant overall survival benefit for 
afatinib compared with chemotherapy in stage IIIB/IV lung 
adenocarcinoma patients with 19del-EGFR mutation (190). In a 
combined post hoc analysis of both studies, PFS was significantly 
improved with afatinib vs chemotherapy in patients with BM 
(8.2 vs 5.4 months; p = 0.0297) (191). Afatinib has reported good 
results in some cases of LM in stage IV exon 19-del-EGFR-mutant 
lung adenocarcinoma in association with WBRT, resulting in an 
almost complete regression of neurological symptoms as well 
as good, durable radiological responses (192). A good brain 
response in a patient with EGFR-mutant lung adenocarcinoma 
and multiple BMs who switched from erlotinib to afatinib due to 
hepatotoxicity, has been reported (193).

Based on the high intracranial response rates, TKIs have been 
hypothesized to be used alone as initial treatment in patients har-
boring activating EGFR mutations and asymptomatic small BMs 
(64, 194, 195). The main advantages of using TKIs alone are that 
patients can potentially avoid the adverse effects of WBRT as long 
as the intracranial disease is well controlled. The disadvantages 
could be that the discordance rate of EGFR mutations between 
the primary tumor and BMs can be as high as 32%, and the CSF 
penetration rate of gefitinib (1–10%) and erlotinib (2.5–13%) is 
limited. A meta-analysis has suggested that cranial radiotherapy 
(SRS or WBRT) associated with TKIs is more effective in improv-
ing response rate and disease control rate than radiotherapy alone 
or chemotherapy. Moreover, radiotherapy plus EGFR-TKIs sig-
nificantly prolonged the median overall survival but significantly 
increased adverse events of any grade, especially rash and dry 
skin (196).

On the other hand, clinical trials offering a combination 
of erlotinib with radiation therapy (SRS or WBRT), in patient 
cohorts not specifically selected for target expression (197–199), 
has failed to demonstrate a superiority over radiotherapy alone. 
The use of up-front icotinib was recently evaluated in untreated 
patients in comparison with first-line chemotherapy (cisplatin 
plus pemetrexed) (200) or WBRT followed by chemotherapy 
(201). PFS was significantly longer for icotinib in both trials: 
PFS of 11.2 months in the icotinib group vs 7.9 in the chemo-
therapy group, an intracranial PFS of 10 months with icotinib vs 
4.8 months with WBRT and CT.

Osimertinib, a third-generation EGFR-TKI, that targets 
activating mutations (EGFRm) and resistance mutations 
(T790M), has demonstrated robust systemic activity and a bet-
ter CNS penetration with sustained tumor regression of BM. In 
the phase I BLOOM study, two third-generation EGFR-TKIs, 
osimertinib and AZD3759, were studied in patients with EGFR 
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TABLe 4 | Targeted agents in brain metastases (BMs).

Main studies on targeted therapies in BMs Results

Reference Agent tested Number of Pts Clinical trial characteristics

NSCLC
Sperduto et al. 
(199)

Erlotinib 126 •	 Phase III multicenter trial (RTOG 0320)
•	 Three arms: arm 1: WBRT + SRS; 

arm 2: WBRT + SRS + TMZ; arm 3: 
WBRT + SRS + erlotinib

•	 EGFR mutation not tested

•	 MST: arm 1 (44 Pts): 13.4 months; arm 2 (40 
patients): 6.3 months; arm 3 (41 Pts): 6.1 months

•	 CNS mPFS: arm 1: 8.1 months; arm 2: 
4.6 months; arm 3: 4.8 months

Welsh et al. (197) Erlotinib 40 Phase II study of erlotinib plus WBRT
•	 Erlotinib started 1 week before WBRT

•	 ORR 86% (n = 36)
•	 MST 11.8 months
•	 9 of 17 patients tested for EGFR mutation were 

positive
•	 MST in EGFR mutant: 19.1 months
•	 MST in EGFR wild-type 9.3 months

Rosell et al. (288) Erlotinib + bevacizumab 109 Phase II trial, single-arm, multicentre •	 Overall median PFS: 13.2 months in T790M-
positive group

•	 Median PFS: 16.0 months in the T790M-positive 
group while it was 10.5 months in T790M-negative

Ceresoli et al. 
(289)

Gefitinib 41 •	 Phase II single-arm study
•	 No concurrent local therapy for BM
•	 Both squamous and adenocarcinoma 

included
•	 EGFR mutation not tested

•	 ODC 27%
•	 mPFS 3 months
•	 Disease control better in patients who received 

prior WBRT and who had adenocarcinoma 
histology

Costa et al. (205) Crizotinib Retrospective analysis of trials Poor activity against CNS metastasis in NSCLC as 
evidenced by low concentrations detected in CNS 
samples

Gadgeel et al. 
(290)

Alectinib 50 Pooled analysis of two phase II studies
•	 136 patients had BM, 50 had measur-

able disease
•	 ALK-positive NSCLC, previously treated 

with crizotinib

•	 CNS ORR 64%
•	 CNS DOR 10.8 months

Shaw et al. (291) Ceritinib 122 Phase I study in advanced ALK-positive 
NSCLC

•	 The ORR was 58%
•	 Among the 80 patients who failed crizotinib, the 

response rate was 56%
•	 NSCLC who received ceritinib with doses 400 mg 

or higher, the mPFS was 7.0 months

Crinò et al. (292) Ceritinib 140 (100 with BM) Phase I •	 Intracranial overall response rate: 45.0% (95% CI, 
23.1–68.5%)

•	 Ceritinib treatment provided clinically meaningful 
and durable responses with manageable tolerability 
in chemotherapy- and crizotinib-pretreated 
patients, including those with brain metastases

Gettinger et al. 
(293)

Brigatinib (dual inhibitor 
of ALK and EGFR)

137 Phase I/II single-arm, open-label, 
multicenter study in patient Pts with 
advanced NSCLC

•	 50 Pts with BM
•	 Eight (53%) of 15 assessable patients with 

measurable BM had an intracranial response
•	 11 (35%) of 31 assessable patients with only non-

measurable BM had complete disappearance of 
lesions on imaging

•	 Median intracranial PFS for these Pts is 97 weeks

Yang et al. (294) Osimertinib Phase II AURA trial •	 Activity in patients with CNS metastases: 16 (64%) 
of 25 evaluable Pts had an objective response, 
including 4 complete responses

•	 Median PFS in Pts with CNS metastases was 
encouraging, although it was shorter than in those 
without (7.1 vs 13.7 months, respectively)

•	 Benefit was observed across all predefined 
subgroups, including patients with asymptomatic 
CNS metastases at baseline (PFS: 8.5 vs 
4.2 months)

(Continued)
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mutation-positive advanced NSCLC with BM and LM, showing 
improved BBB penetration and preliminary interesting results 
(202, 203).

Other “druggable” alterations seen in up to 5% of NSCLC 
patients are the rearrangements of the ALK gene. In particular, 

ALK translocations have been found in 3% of BMs from NSCLC 
and seem to be maintained in brain metastasis (204). NSCLC with 
ALK activating translocations are sensitive to the ALK inhibitor 
crizotinib. A recent study on BMs from ALK-rearranged NSCLC 
(205) has reported that crizotinib was associated with more than 

Main studies on targeted therapies in BMs Results

Reference Agent tested Number of Pts Clinical trial characteristics

Planchard et al. 
(295)

Dabrafenib and 
trametinib

57 total (only 
one patient with 
asymptomatic 
BM)

Phase II, multicentre, non-randomized, 
open-label study

Dabrafenib plus trametinib is a promising new therapy 
for patients with BRAFV600E-mutant NSCLC, 
with high overall response, a prolonged duration of 
response, and manageable toxicity. Few data on 
efficacy on BM

Breast cancer (HeR2-positive)
Bachelot et al. 
(231)

Lapatinib + capecitabine 45 •	 Single-arm phase II study
•	 No prior WBRT, or lapatinib or 

capecitabine

CNS ORR 65.9%

•	 CNS mPFS 5.5 months
•	 mOS 17 months

Lin et al. (230) Lapatinib + capecitabine 50 Phase II trial CNS response of 20%PFS not reported

Cortes et al. 
(296)

Afatinib 121 Phase II, multicenter, randomized trial, 
open-label, three-arm study

•	 Arm A: afatinib, arm B: 
afatinib +vinorelbine, arm C: 
investigator choice

•	 Arm A: PB = 30%
•	 Arm B: PB = 34.2%
•	 Arm C: PB = 41.9%

Freedman et al. 
(232)

Neratinib 40 •	 Multicenter, open-label phase II study
•	 Patients who had progressed after 

one or
•	 More lines of CNS directed therapy

•	 CNS ORR: 8%
•	 mPFS 1.9 months
•	 mOS 8.7 months

Melanoma
Long et al. (243) Dabrafenib 172 •	 Multicenter, open-label phase II study

•	 V600E or V600K BRAF-mutant patients
•	 Two cohorts: cohort A: BM treatment 

naive, cohort B: previously treated BM

•	 Cohort A, V600E (74 patients)
 – CNS ORR 39.2%
 – CNS PFS 16.1 weeks
 – OS 33.1 weeks

•	 Cohort A, V600K (15 patients)
 – CNS ORR 6.7%
 – CNS PFS 8.1 weeks
 – OS 31.4 weeks

•	 Cohort B, V600E (65 patients)
 – CNS ORR 30.8%
 – CNS PFS 16.6 weeks
 – OS 16.3 weeks

•	 Cohort B, V600K (18 patients)

 – CNS ORR 22.2%
 – CNS PFS 15.9 weeks
 – OS 21.9 weeks

McArthur et al. 
(245)

Vemurafenib 146 •	 Open-label, phase II study
•	 Two cohorts:
 – Cohort-1: previously untreated  

(90 Pts)
 – Cohort-2: previously treated (56 Pts)

•	 Cohort-1:
 – CNS ORR 18%
 – CNS PFS 3.7 months
 – OS 8.9 months

•	 Cohort-2:
 – CNS ORR 23%
 – CNS PFS 4.0 months
 – OS 9.6 months

WBRT, whole-brain radiation therapy; SRS, stereotactic radiation; TMZ, temozolomide; Pts, patients; mPFS, median progression-free survival; EGFR, epidermal growth factor 
receptor; MST, median survival times; CNS, central nervous system; ODC, overall disease control; ORR, overall response rate; DOR, duration of response; mOS, median overall 
survival; PB, patient benefit (defined as intracranial or extracranial progression-free survival, no new neurologic signs or symptoms related to tumor, increase corticosteroid use) at 
12 weeks; BM brain metastases; CT, chemotherapy.

TABLe 4 | Continued
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TABLe 5 | Immunotherapy (IT) in BMs.

Main studies on iT (checkpoint inhibitors) in BMs Results

Reference Agent tested Primary tumor Number of pts Clinical trial 
characteristics

Margolin et al. 
(244)

Ipilimumab Melanoma BM 72 Single-agent, open-label 
phase II study

•	 Cohort A: 51 asymptomatic Pts with active 
BM who were not on corticosteroids; 
cohort B: 21 Pts with symptomatic 
melanoma-derived BM taking a 
corticosteroid

•	 Immune-related response criteria: the RR 
of 25% (13 Pts) and 10% (2 Pts) in cohorts 
A and B, respectively

•	 mOS: 7.0 months in cohort A and 
3.7 months in cohort B

Di Giacomo et al. 
(252)

Ipilimumab and 
fotemustine

Melanoma BM 20/83 with 
asymptomatic BM

Open-label, single-arm, 
phase II trial

•	 The mPFS in Pts with BM was 3.0 months
•	 3-year follow-up of group with BM: mOS of 

12.7 months

Patel et al. (297) SRS vs 
SRS + ipilimumab

Melanoma BM SRS: 34
SRS + ipilimumab: 20

Restrospective comparative 
analysis

•	 SRS: 1 year LC 91%; 12 months OS: 38%
•	 SRS + ipilimumab: 1 year LC 71%; 

12 months OS 37%

Weber et al. (298) Ipilimumab/
budesonide 
(asymptomatic BM)

Melanoma BM 12 Retrospective analysis of 
phase II trial

•	 Intracranial RR: 41.6%
•	 mOS: 14

Knisely et al. (261) SRS vs 
SRS + ipilimumab

Melanoma BM SRS: 17
SRS + ipilimumab: 11

Retrospective comparative 
analysis

•	 SRS: OS 4 months
•	 SRS + ipilimumab: OS 21.3 months

Silk et al. (299) SRS vs 
SRS + ipilimumab

Melanoma BM SRS: 37
SRS + ipilimumab: 33

Retrospective comparative 
analysis

•	 SRS: PFS 3.3 months; OS 5.3 months
•	 SRS + ipilimumab: PFS 2.7 months; OS 

8.3 months

Mathew et al. 
(300)

SRS vs 
SRS + ipilimumab

Melanoma BM SRS: 33
SRS + ipilimumab: 25

Retrospective comparative 
analysis

•	 SRS: 6-month OS 56%
•	 SRS + ipilimumab: 6-month OS 45%

Ahmed et al. (265) SRS/nivolumab Melanoma BM 26 Retrospective analysis •	 OS 11.8 months

Goldberg et al. 
(221)

Pembrolizumab NSCLC, 
melanoma BM

36 (18 NSCLC, 18 
melanoma)

Phase II trial •	 Brain metastasis response was achieved 
in 4 (22%) of 18 Pts with melanoma and 6 
(33%) of 34 Pts with NSCLC. Responses 
were durable

Schachter et al. 
(301)

Pembrolizumab Melanoma BM 834 •	 Median follow-up was 22.9 months
•	 Median overall survival was not reached in 

either pembrolizumab group and was 16 
months with ipilimumab

•	 Pembrolizumab continued to provide 
superior overall survival vs ipilimumab

Parakh et al. (302) Nivolumab and 
pembrolizumab

Melanoma BM 66 Retrospective analysis •	 The IC overall RR was 21% and disease 
control rate 56%. Responses occurred 
in 21% of Pts with symptomatic BM. 
The median OS was 9.9 months (95% 
CI 6.93–17.74). Pts with symptomatic 
BM had shorter PFS than those without 
symptoms (2.7 vs 7.4 months, p = 0.035) 
and numerically shorter OS (5.7 vs 
13.0 months, p = 0.068). Pts requiring 
corticosteroids also had a numerically 
shorter PFS (3.2 vs 7.4 months, p = 0.081) 
and OS (4.8 vs 13.1 months, p = 0.039)

Pts, patients; BMs, brain metastases; NSCLC, non-small-cell lung cancer; RR, response rate; mOS, median overall survival; mPFS, median progression-free survival; 1 year LC, 
local control; IC RR, intracranial response rate.
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55% disease control within the CNS at 3 months of therapy in 
both RT-naïve and RT-pretreated patients; moreover, crizotinib 
was associated with a moderate (18–33%) RECIST-confirmed 

response rate. However, the CNS is a common site of progression 
in NSCLC receiving crizotinib (206). Crizotinib, in addition of 
blocking ALK and ROS1, is also a potent c-MET inhibitor: clinical 
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trials using crizotinib are ongoing in patients with NSCLC and 
c-MET mutations (207).

The US Food and Drug Administration approval of ceritinib 
and alectinib (second-generation of ALK inhibitors) for patients 
failing crizotinib means that ALK TKIs with improved CNS 
penetration are now available. The recently reported ASCEND-4 
study (208) compared ceritinib with chemotherapy for treatment-
naive patients with advanced ALK-positive NSCLC; this trial 
allowed both untreated as well as symptomatic BM to be accrued. 
Ceritinib achieved superior PFS and RR, with a similar trend seen 
in the subset of patients with BM. In the 22 patients with measur-
able CNS disease, ceritinib achieved a 73% CNS RR, with 86% of 
patients without CNS progression at 24 weeks. The J-ALEX study 
compared alectinib with crizotinib in patients with TKI-naive 
advanced ALK-positive NSCLC and demonstrated an overall PFS 
improvement: while only 21% of the patients had BM, the PFS 
benefit in these patients was dramatic (hazard ratio, 0.08) (209).

Third-generation ALK inhibitors, such as brigatinib and lor-
latinib (a selective brain-penetrant ALK/ROS1TKI active against 
most known resistance mutations) have shown efficacy on BM in 
initial studies (210–212).

Another compound investigated in association with WBRT 
in BMs from breast and NSCLC is veliparib, a PARP 1–2 inhibi-
tor. Despite preliminary encouraging safety and efficacy results 
(213); a phase II, randomized study evaluating the efficacy and 
safety of veliparib in combination with WBRT vs WBRT plus 
placebo in patients with BMs from NSCLC did not show sig-
nificant differences in OS, intracranial response rate, and time to 
progression (214).

c-MET is an oncogenic driver and is implicated in the 
resistance to targeted therapies, including EGFR and VEGFR 
inhibitors. Increased c-MET expression may predict response 
to c-MET-targeted drugs (215, 216). Since c-MET amplification 
can contribute to acquired resistance to EGFR-TKI therapy, com-
bined inhibition of EGFR and c-MET is being investigated (217).

Nivolumab, a checkpoint inhibitor, is a human IgG4 anti-
PD-1 monoclonal antibody active in the second-line treatment 
of metastatic NSCLC after progression on a platinum-based 
chemotherapy (218). Intracranial activity and responses to 
nivolumab in a small cohort of five patients with NSCLC and 
untreated/progressive BMs suggested a role for this molecule in 
brain disease control. Importantly, no grade 3/4 adverse events 
were seen. Systemic responses and intracranial responses were 
largely concordant. However, no firm conclusions can be drawn 
due to the small sample size of the cohort (219).

An analysis presented at American Society of Clinical Oncology 
(ASCO) 2016 pooled data of patients with advanced NSCLC and 
pretreated asymptomatic CNS metastases from CheckMate 063 
(phase II), 017 (phase III), and 057 (phase III). The best response 
in the nivolumab arm with CNS metastases arm was CR/PR in 
28%, SD in 33%, and PD in 39% compared with CR/PR in 19%, 
SD in 31%, and PD in 43% in the docetaxel arm. Among patients 
with pretreated CNS metastases (74% had prior radiotherapy and 
85% had ≥2 extra-CNS sites of metastases), median OS was a 
little longer in the nivolumab group (8.4 months) compared with 
the docetaxel group (6.2 months). Nivolumab was well tolerated, 
with low-grade toxicities. One-third of patients had no evidence 

of CNS progression at time of PD/last assessment. Additional 
results (including OS and CNS progression rates in patients 
with/without pretreated CNS metastases and safety/efficacy 
of nivolumab in patients with untreated CNS metastases from 
CheckMate 012) will be presented shortly (220). Overall, these 
results support further investigation of nivolumab monotherapy 
in patients with NSCLC and asymptomatic CNS metastases.

Pembrolizumab, a fully human anti-PD-1 monoclonal anti-
body, is approved in first- and second-line treatment of metastatic 
NSCLC. Early data in NSCLC demonstrated that there is a 
response in BMs similar to that of the systemic disease (221). The 
median OS was 7.7 months to date. The available data for the use 
of anti-PD-1 agents in the treatment of BM do not yet include 
information on PD-L1 status.

BMs From SCLC
Various combinations of etoposide, teniposide, cisplatinum, or 
carboplatinum are active against BMs (173). So far, no targeted 
agents are available.

BMs From Breast Cancer
Chemotherapy regimens that combine cyclophosphamide, 5-FU, 
methotrexate, vincristine, cisplatin, and etoposide are active 
in patients with BMs from breast cancer (173). Capecitabine, 
belonging to the class of fluoropyrimidines, is an active drug 
(222). Likewise, high-dose methotrexate is effective in recur-
rent BMs (223), but a risk of leukoencephalopathy exists when 
administered after WBRT.

In HER2-positive, breast cancer targeted therapies have been 
widely used. Trastuzumab, which crosses a disrupted BBB within 
established BMs, could be active (224). Several case reports and 
small patients’ series indicate an activity of the antibody-drug 
conjugate T-DM1 (trastuzumab-emtansine) (225, 226). Few data 
are available on the combination of different anti-HER2 agents. 
The use of pertuzumab, a monoclonal antibody, that binds HER2 
on another epitope than trastuzumab, in combination with tras-
tuzumab and docetaxel, leads to a substantial improvement in 
progression-free and overall survival and may delay CNS disease 
onset (227, 228).

The dual EGFR and HER2 tyrosine kinase inhibitor lapatinib 
has shown moderate antitumor activity in HER2-positive BM 
(229). In a phase II study in HER 2+ breast cancer patients with 
BMs, following trastuzumab-based systemic chemotherapy and 
WBRT (230), CNS objective responses to lapatinib were observed 
in 6% of patients, and 21% experienced ≥20% volumetric reduc-
tion. A recent phase II single-arm study (LANDSCAPE) has shown 
that the association of lapatinib and capecitabine in patients with 
previously untreated BMs from HER-positive metastatic breast 
cancer yields durable responses in up to 65% of patients (231). 
Based on these results a randomized trial comparing lapatinib 
and capecitabine vs WBRT has been launched.

A single-arm phase II trial on neratinib, an irreversible TKI of 
HER 2, has shown a response rate of 8% with an OS of 8.7 months 
in patients with BMs, pretreated either with WBRT or SRS (232). 
Despite the advances in treating HER2-positive breast cancer, 
many questions remain unanswered, such as how to impact 
prior resistance or affect a sanctuary site, and the optimal use of 
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these novel compounds with regard to disease setting, treatment 
sequence, and combination regimens (233).

There are no available data on the efficacy on BM of endocrine 
therapies. Another druggable pathway in breast BM is the phos-
phatidylinositol 3 kinase/Akt/mammalian target of rapamycin 
(mTOR) pathway, which is dysregulated in a significant number 
of HR-positive breast cancers (234).

Everolimus, an mTOR inhibitor, approved for the manage-
ment of HR-positive, postmenopausal breast cancer patients, in 
combination with an aromatase inhibitor (235) has also shown 
CNS penetration with activity against subependymal giant-cell 
astrocytomas associated with tuberous sclerosis (236), and ongo-
ing studies are testing the activity of everolimus in BM. Other 
small-molecule inhibitors, like abemaciclib (CDK 4/6 inhibitor), 
are being evaluated in breast cancer BM (237). PARP inhibitors 
are being investigated in BMs from triple negative breast cancer.

BMs From Melanoma
Approximately half of advanced melanoma patients will develop 
BM (MBMs). The median OS for patients with MBMs is 
4–5 months (87, 238).

Fotemustine (response rate of 5–25%) and temozolomide 
(response rate 6–10%), either as single agents or in combination 
with WBRT, are the most active chemotherapeutics against BMs 
from melanoma (173, 239). Novel targeted and immunothera-
peutic agents have revolutionized the systemic management of 
melanoma. A number of prospective clinical trials have dem-
onstrated that these agents, either alone or in combination, can 
prolong PFS and OS (240–242). Several studies have assessed the 
impact of these agents in patients with MBMs in a prospective 
setting (243–245).

The immune checkpoint inhibitors ipilimumab [targeting the 
cytotoxic T-lymphocyte antigen 4 (CTLA-4)] and nivolumab 
have led to astonishing results and unexpected long-term survival 
gains in advanced/unresectable melanoma (246, 247). It is of rel-
evance that both compounds interfere with T-cell signals (248).

Ipilimumab showed activity in melanoma BMs, particularly if 
asymptomatic, and improved OS (244, 249, 250). An open-label 
phase II multicenter US trial (244) has shown that ipilimumab 
has activity in those patients with melanoma BMs, who do not 
need corticosteroids: disease control (CR  +  PR  +  SD) after 
12 weeks of treatment was 16% in the cohort of asymptomatic 
patients without corticosteroids compared with 5% in the cohort 
of symptomatic patients receiving corticosteroids. Importantly, 
the investigators did not report any neurological adverse event as 
an effect of an inflammatory response to treatment in the CNS, 
even in patients who received prior radiation therapy. The pos-
sibility remains that steroid treatment at initiation of ipilimumab 
could abrogate or downmodulate the immune response. One of 
the larger studies to investigate ipilimumab evaluated 127 patients 
and demonstrated an OS benefit (93 vs 42 weeks, p < 0.0028) for 
patients who received concomitant IT and RT (251).

A single-arm phase II trial of ipilimumab in combination 
with fotemustine in patients with melanoma and asymptomatic 
BMs showed intracranial disease control in 50% of patients 
and a median OS of 13.4 months (252). A phase III trial of this 
combination is currently ongoing. A triple-arm phase III clinical 

trial will compare the OS at 2 years of fotemustine monotherapy, 
ipilimumab and fotemustine, and ipilimumab and nivolumab 
in patients with metastatic melanoma with BMs. This study 
(NCT02460068) is currently recruiting participants and is not 
expected to reach completion until 2020.

The anti-PD-1 antibodies nivolumab and pembrolizumab 
have demonstrated highly durable response rates (41 and 38%, 
respectively) in large phase I trials (253, 254), that were confirmed 
in subsequent phase III trials (255) and in the second-line setting 
after failure of anti-CTLA-4 therapy (240, 256). These agents 
in combination with ipilimumab are currently investigated in 
several ongoing phase II trials in advanced melanoma patients 
with BM (257, 258).

Barker and colleagues reviewed the clinical outcomes of the 
combination of ipilimumab and RT in melanoma, including BM 
(259). Radiographically, it was noted that an increase of brain 
metastasis size >150% occurred in 40% of the tumors treated 
with SRS before or during ipilimumab, while this occurred in 10% 
of metastases treated with SRS after ipilimumab. Hemorrhage was 
also noted after SRS during ipilimumab in 42% of treated BMs. 
Preliminary results, that need further study, suggest an interac-
tion between IT and RT. Also the reported “abscopal effect” in 
melanoma patients, in whom radiotherapy for one lesion induced 
a shrinkage of non-irradiated lesions, probably depending on 
the activation of an antitumor immune response, supports the 
potential of combining radiotherapy and IT in the treatment of 
melanoma (260).

Other several small, retrospective series have evaluated 
patients with melanoma BMs treated with IT and SRS report-
ing successful outcomes in terms of OS (261, 262). Qian et  al. 
investigated melanoma BM patients treated concurrently (within 
4  weeks of IT) with immune checkpoint inhibitors and SRS 
(defining “concurrent” when SRS was administered): the median 
percentage of the reduction in lesion volume was significantly 
greater for the concurrent group without hemorrhagic compli-
cations (263). In contrast to this report, the preliminary data 
reported by Shen et al. showed an increase in lesion size in 13 of 
26 lesions treated concurrently (defined as IT starting “prior to or 
with SRS”) (264). A recent phase I prospective study explored the 
maximum tolerable dose and safety of ipilimumab with SRS or 
WBRT in patients with BMs from melanoma, demonstrating the 
safety of combining SRS with either ipilimumab 3 or 10 mg/kg.

The higher rate of increasing lesions as well as radionecrosis 
among patients receiving SRS or WBRT in combination with 
immune checkpoints inhibitors is a matter of debate, but many 
authors believe that these findings could be an expression of a 
greater local immune reactions. Ahmed et  al. retrospectively 
analyzed data from two prospective nivolumab trials in patients 
with advanced disease treated at a single institution, selecting 
patients with BMs who were treated with SRS within 6 months 
of receiving nivolumab. Local brain control rate was 91 and 85%, 
respectively, at 6 and 12 months, with a median survival time of 
12 months and a distant BM control rate of 53%. These prelimi-
nary results suggest a better intracranial control with nivolumab 
compared with ipilimumab, probably related to a higher clinical 
activity and a lower toxicity profile; however, these initial findings 
should be confirmed in prospective trials (265). Combinations of 
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ipilimumab and new molecular agents, such as trametinib (MEK 
inhibitor), are under investigation (266).

Dabrafenib and vemurafenib are potent kinase inhibitors of 
BRAF V600E-mutated melanoma cells, with substantial activity 
in BRAF-mutated melanoma BM (267). The activity of dabrafenib 
in BMs was demonstrated in a large multicenter, open-label, phase 
II trial which enrolled V600E-V600K-mutated-BRAF metastatic 
melanoma patients and at least one measurable brain lesion. An 
overall intracranial objective response rate of 31%, with little 
difference between patients who progressed after prior CNS 
therapy and patients who were treatment naïve (243). Dabrafenib 
was well tolerated, and the number of spontaneous intracranial 
hemorrhages was lower than those reported after ipilimumab.

The activity of vemurafenib is also meaningful, as both 
retrospective (268) and phase II trials (269) have reported an 
intracranial response rate of 16–50%, even if the improvement 
of OS was disappointing. Acquired resistance to single-agent 
BRAF inhibitors develops within 6–7  months of therapy (270) 
and is mainly driven by MAPK reactivation. The combination of 
a BRAF inhibitor and a MEK inhibitor, in comparison with BRAF 
inhibitor alone, significantly improved response rates, median 
PFS/OS in phases I/II (dabrafenib/trametinib vs dabrafenib) 
(241, 271) and in phase III studies (vemurafenib/cobimetinib vs 
vemurafenib) (272).

Preliminary clinical reports evaluated the efficacy and safety 
of RT plus vemurafenib and dabrafenib in patients with BRAF 
V600E-mutated melanoma BMs (273, 274). These studies indi-
cated a potential synergistic effect, resulting in 75% response rate, 
65% of symptomatic relief, and median survival of 13.7 months. 
Ahmed et  al. also showed good local control rates after vemu-
rafenib and SRS with low toxicity (273).

Activating mutations in cKIT have been identified in up to 
6% of some cutaneous melanomas subtypes. BRAF wild-type 
patients, which harbor cKIT mutations, could benefit from TKI 
inhibitors such as imatinib, an oral cKIT inhibitor that has dem-
onstrated dramatic clinical responses (275, 276).

Dasatinib, a second-generation drug developed for CML 
(chronic myeloid leukemia) that also acts on cKIT, has better CNS 
penetration and perhaps more toxicity than imatinib.

Supportive Care
Corticosteroids
Corticosteroids are used to control cerebral edema and mass 
effect. Two evidence-based guidelines on the role of steroids have 
been published in Europe (277) and US (278). Dexamethasone 
is recommended for patients who are symptomatic, with a start-
ing dose of 4–8 mg/day up to higher doses of 16–32 mg/day in 
patients with severe symptoms. Dexamethasone is the steroid 
of choice because of its minimal mineral corticoid effect and 
long half-life, although any other corticosteroid can be effec-
tive if given in equipotent doses. A neurological improvement 
within 24–72  h after beginning of treatment is seen in up to 
75% of patients. When used as the sole form of treatment, dexa-
methasone produces about 1 month’s remission of symptoms and 
slightly increases the 4- to 6-week median survival of patients 
who receive no treatment at all (278). To minimize side effects 
from chronic dexamethasone administration, including proximal 

myopathy, tapering of steroid dosing within 1 week of starting 
therapy and discontinuation within 2  weeks is encouraged. By 
contrast, asymptomatic patients do not need corticosteroids, even 
during radiotherapy.

The need for anticonvulsant medication is clear in patients 
who have experienced a seizure by the time their brain tumor 
is diagnosed. The evidence does not support prophylaxis with 
antiepileptic drugs (AEDs) in patients with brain tumors, includ-
ing metastases. Twelve studies, either randomized trials or cohort 
studies, investigating the ability of prophylactic AEDs (phenytoin, 
phenobarbital, and valproic acid) to prevent first seizures, have 
been examined, and none have demonstrated efficacy (279). 
Subtherapeutic levels of anticonvulsants were extremely common 
and the severity of side effects appeared to be higher (20–40%) 
in brain tumor patients than in the general population receiving 
anticonvulsants, probably because of drug interactions. Phenytoin, 
carbamazepine, phenobarbital and to a lesser extent oxcarbazepine 
stimulate the cytochrome P450 system and accelerate the metabo-
lism of corticosteroids and chemotherapeutic or targeted agents, 
such as nitrosoureas, paclitaxel, cyclophosphamide, topotecan, iri-
notecan, thiotepa, adriamycin, methotrexate, imatinib, erlotinib, 
and other TKIs, and thus reduce their efficacy. The role of prophy-
lactic anticonvulsants remains to be addressed in some subgroups 
of patients, who have a higher risk of developing seizures, such 
as those with metastatic melanoma, hemorrhagic lesions, and 
multiple metastases (277, 280). A recent meta-analysis in patients 
with BM concluded that primary prevention with AEDs might 
not reduce the risk of seizures, and it is associated with frequent 
adverse effects (281). For patients who underwent a neurosurgical 
procedure the efficacy of prophylaxis has not been proven. The 
efficacy of newer AEDs (levetiracetam, topiramate, gabapentin, 
lamotrigine, lacosamide, and perampanel) has not been exten-
sively investigated but in some retrospective studies their use in 
patients with seizures related to BMs, significantly reduce seizure 
frequency (independently of systemic treatment), produce few 
side effects and appear not to affect life expectancy (282).

Anticoagulation
Anticoagulation is the standard treatment for acute venous 
thromboembolism (VTE) in cancer patients. The ASCO pub-
lished updated evidence-based guidelines for the treatment and 
prevention of VTE in patients with cancer based on a systematic 
review of the literature. These guidelines address the treatment 
and prevention of VTE in hospitalized medical and surgical 
cancer patients and in ambulatory patients receiving cancer 
therapy. They also concern immediate and extended secondary 
prophylaxis in patients with established VTE, the potential role of 
anticoagulation in the treatment of patients with cancer without 
other recognized indication, and the importance of VTE risk 
assessment in cancer patients [(283), https://www.asco.org/sites/
new-www.asco.org/files/content-files/practice-and-guidelines/
documents/VTE-Summary-of-Recs.pdf].

LMWH is preferred over UFH for the initial 5–10 days of anti-
coagulation for the cancer patient with a newly diagnosed VTE 
who does not have severe renal impairment (defined as creatinine 
clearance <30 mL/min). For long-term anticoagulation, LMWH 
for at least 6 months is preferred due to improved efficacy over 
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vitamin K antagonists. Prolongation of anticoagulation over 
6 months has to be considered for select patients with active can-
cer, such as metastatic disease or those receiving chemotherapy. 
The insertion of an inferior vena cava filter is only indicated for 
patients with contraindications to anticoagulant therapy or as 
an adjunct to anticoagulation in patients with progression of 
thrombosis (recurrent VTE or extension of existing thrombus) 
despite optimal therapy with LMWH (284).

In patients with CNS malignancies and VTE anticoagulation 
is recommended as described for other patients with cancer. 
Careful monitoring is necessary to evaluate the risk of intrac-
erebral hemorrhage on one side and, on the other, the effect of 
anticoagulation on survival. These patients merit individualized 
discussions of the risk and benefit of anticoagulation therapy 
(284, 285).

Use of novel oral anticoagulants for either prevention or treat-
ment of VTE in cancer patients is not recommended at this time. 
An open-label, non-inferiority trial, randomly assigned patients 
with cancer and acute symptomatic or incidental VTE to receive 
either low-molecular-weight heparin followed by oral edoxaban 
at a dose of 60 mg once daily (edoxaban group) or subcutaneous 
dalteparin at a dose of 200 IU/kg of body weight once daily for 
1 month followed by dalteparin at a dose of 150 IU/kg once daily 
(dalteparin group) for 6–12  months. This study concluded that 
oral edoxaban was non-inferior to subcutaneous dalteparin with 
respect to the composite outcome of recurrent VTE or major 
bleeding. The rate of recurrent VTE was lower but the rate of major 
bleeding was higher with edoxaban than with dalteparin (286).

Although several new studies are ongoing, some important 
questions remain regarding the relationship between thrombosis 
and cancer and the optimal care of patients at risk for VTE, in 
particular with CNS malignancies.

eXeCUTive SUMMARY

•	 Advances in chemotherapy and targeted therapies have 
improved survival in cancer patients with an increase of the 

incidence of newly diagnosed BMs representing a stimulating 
challenge for development of new therapies.

•	 Advanced neuroimaging techniques have been increasingly 
used in the detection, treatment planning, and follow-up of BM.

•	 Better understanding of mechanisms of brain metastatization 
and molecular characterization of BM could help finding more 
selected and effective targeted therapies.

•	 More sophisticated methods of tumor analysis, including 
detection of circulating biomarkers in fluids (liquid biopsy), 
have shown promising information regarding tumor treatment 
response and progression.

•	 The therapeutic choice is guided by prognostic index, reserving 
surgical approaches to the subgroup of patients with controlled 
systemic disease and good performance status. Radiosurgery 
of the resection cavity may offer comparable survival and local 
control as postoperative WBRT. WBRT alone is now the treat-
ment of choice for patients with single or multiple BMs not 
amenable to surgery or radiosurgery, or with poor prognostic 
factors, also considering the neurocognitive sequelae of WBRT. 
Technological advances, such as IMRT with hippocampal 
sparing and pharmacological approaches (memantine and 
donepezil), could reduce the risk of cognitive sequelae.

•	 Leptomeningeal disease (LMD) can be a complication, espe-
cially in posterior fossa metastases undergoing a “piecemeal” 
resection.

•	 In the last decades, a multitude of molecular abnormalities 
have been discovered representing potential druggable 
alterations, such as mutations of EGFR, ALK in NSCLC and 
HER2-mutations in breast cancer. Novel targeted and immu-
notherapeutic agents have also revolutionized the systemic 
management of melanoma.
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