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Abstract
In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, dam-
age, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. 
We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString 
gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target 
gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high 
intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our 
in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell 
de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxil-
lin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/
TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided 
direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that 
ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent par-
ticularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.

Keywords  De-adhesion · Migration · Intratumoral heterogeneity · Liver metastasis · EMT · CAM model

Introduction

Colorectal cancer (CRC) is one of the most commonly diag-
nosed cancers [1]. Most CRC-related deaths are associated 
with metastatic progression. Metastasis is a multistep and 
multifactorial process, starting with the dissemination of 
tumor cells from the bulk tumor and their local invasion 
into the surrounding extracellular matrix [2]. The molecu-
lar and cellular mechanisms underlying these early steps in 
metastatic spread of CRC are mostly unknown [3]. Thus, 
the discovery of molecular markers for the identification of 

highly invasive tumor cells is urgently needed to investigate 
novel therapeutic targets.

Intratumoral heterogeneity (ITH) exists and arises among 
cancer cells within the same tumor as a result of (epi-)
genetic changes, environmental differences, and cellular 
plasticity [4]. It reflects distinct tumor cell populations with 
specific phenotypic, molecular, and functional characteris-
tics. Consequently, ITH is the leading cause of tumor relapse 
and chemotherapy resistance [5]. The relevance of ITH 
became highly recognized following the pioneering work 
of Guinney et al. in defining consensus molecular subtypes 
in CRC according to specific gene signatures [6]. Though 
this transcriptome analysis was based on bulk tumor data, it 
lacked the ability to capture ITH. Recently, gene signatures 
of single knockout (KO) cells generated by CRISPR gene 

Cellular and Molecular Life Sciences

 *	 Regine Schneider‑Stock 
	 regine.schneider-stock@uk-erlangen.de

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0482-531X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04445-5&domain=pdf


	 K. Huebner et al.

1 3

423  Page 2 of 17

editing have changed our molecular understanding of ITH by 
providing an instrument to characterize the diverse cellular 
and functional populations in a tumor [7], thereby signifi-
cantly reducing experimental bias.

Activating transcription factor 2 (ATF2) belongs to the 
family of bZIP transcription factors and is involved in tran-
scriptional regulation, chromatin remodeling, and DNA 
damage response [8, 9]. As part of the AP1 transcription 
factor complex, it forms homo-/heterodimers with other 
bZIP proteins, preferentially c-JUN, that bind to specific 
DNA motifs via their conserved leucine zipper regions [9]. 
ATF2 has a highly divergent character, and can either drive 
or block tumor progression in a tissue- and stimulus-depend-
ent manner [10–13]. In CRC, ATF2 has been highlighted 
in a global transcription factor network analysis combining 
topological and biological features [14]. Moreover, ATF2 
motifs are enriched in the non-canonical Wnt target cluster 
in colon cancer cells [15]. In data from The Cancer Genome 
Atlas (TCGA), a subgroup of CRC patients with poor prog-
nosis had low ATF2 gene expression [9]. Thus, ATF2 might 
be closely linked to tumor invasiveness in CRC; however, 
the pathway remains unknown. Here, we identified a novel 
ATF2-dependent mechanism underlying tumor invasiveness 
in CRC in vitro, in vivo, and in silico. We observed that the 
cancer driver trophoblast cell surface antigen 2 (TROP2) 
is one of the key players in the ATF2 network, associated 
with de-adhesion and migration potential of cancer cells. 
The ATF2low/TROP2high expression status could be a suit-
able marker combination to stratify high-risk CRC patients.

Materials and methods

Human CRC cohort

This study was covered by ethic votes of the University Hos-
pital of the Friedrich-Alexander University Erlangen-Nürn-
berg (24.01.2005, 18.01.2012). Tissue microarrays (TMAs) 
were constructed as previously described [40, 41]. More 
details are given in the supplemental Material and Methods 
section. Detailed information for this patient cohort is given 
in Supplementary Table 1.

Cell culture

Cell line details, mycoplasma testing, authentication are 
given in the supplemental Material and Methods section.

Generation of stable ATF2 and TROP2 knockout cells

Details on CRISPR/Cas9 technique, transfection and vali-
dation are given in the supplemental Material and Methods 
sections.

NanoString gene expression analysis

Gene expression analysis was performed using the human 
nCounter® PanCancer Progression Panel (NanoString Tech-
nologies, Seattle, WA, USA) according to the manufacturer’s 
protocol with 100 ng of total RNA from HCT116, F9, and 
E5 cells. Details on data processing are given in the sup-
plemental Material and Methods sections.

Bioinformatics analysis

In silico analysis methods and data sets are given in the 
supplemental Material and Methods section.

Chorioallantoic membrane (CAM) assay

The CAM assay was conducted as previously described 
[29]. More details are given in the supplemental Material 
and Methods section.

Detection of disseminating tumor cells by Alu qPCR

The dissemination potential of tumor cells upon ATF2 loss 
was determined by Alu qPCR in chicken embryonic organs 
based on the CAM assay as previously described [42]. More 
details are given in the supplemental Material and Methods 
section.

RNA interference

Details on RNA interference-mediated gene silencing are 
given in the supplemental Material and Methods section.

Western blot

Cells pellets were collected and lysed, and western blot-
ting was performed as previously described [29, 43]. More 
details are given in the supplemental Material and Meth-
ods section. Primary antibodies are listed in Supplementary 
Table 8.

RT‑qPCR

Total RNA from cell pellets was extracted using QIAzol® 
Lysis Reagent (Qiagen) combined with RNeasy Mini Kit 
(Qiagen) according to the manufacturer’s instructions. Prim-
ers are given in Supplementary Table 9. More details are 
given in the supplemental Material and Methods section.
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Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed 
using the ChIP-IT High Sensitivity Kit (Active Motif, Carls-
bad, CA, USA) according to the manufacturer’s protocol. 
More details about reagents, controls and data evaluation 
are given in the supplemental Material and Methods section. 
Primers are listed in Supplementary Table 10.

Wound healing migration assay

Cells of HT29 and ATF2-KO clone B5 were transfected with 
TROP2-specific (si) or non-targeting (scr) RNAi for 48 h as 
described in the methods section “RNA interference”. More 
details are given in the supplemental Material and Methods 
section.
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Fig. 1   Colorectal cancer (CRC) patients with low ATF2 expression 
present increased intratumoral heterogeneity and poor prognosis. 
A Kaplan–Meier plot of overall survival in CRC patients (n = 332) 
grouped into high and low according to their median ATF2 pro-
tein levels (median = 198, P = 0.003, log-rank test). B ATF2 IHC 
score of patients with primary CRC presenting no metastasis (cM0, 
n = 260), solitary organ metastasis (cM1a, n = 41), multiple metasta-
sis without (cM1b, n = 5) or with (cM1c, n = 26) peritoneal involve-
ment (*P < 0.05, **P < 0.01, Mann-Whitney test). C ATF2 RNA 

expression in metastatic (n = 25) versus non-metastatic primary CRC 
(n = 65) as extracted from the GSE2109 dataset. The line shows the 
median (*P < 0.05, **P < 0.01, Welch’s t test). D Representative 
heatmaps and corresponding ATF2 IHC staining of CRC samples 
(n = 20). Heatmap, scale: 2 mm; IHC overview, scale: 200 µm; insert, 
scale: 20  µm. Color scale: red to green color, high to low staining 
intensity. Numbers 1–3: staining intensity; holes: positions of TMA 
punches; red arrowheads: ATF2-negative cells.



	 K. Huebner et al.

1 3

423  Page 4 of 17

3D tumor spheroid migration assays

The spheroid migration and invasion assay was performed 
as previously described [29]. More details are given in the 
supplemental Material and Methods section.

Immunofluorescence

Details on immunofluorescent stainings and filopodia quan-
tification are given in the supplemental Material and Meth-
ods section.
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Fig. 2   ATF2 loss results in the upregulation of the metastasis driver 
TROP2. A Western blot of CRISPR/Cas9-mediated ATF2-KO cells 
and their corresponding parental HCT116 and HT29 cells. ATF2-
KO was determined using N- and C-terminal ATF2 antibodies. Rep-
resentative blots of at least two independent experiments are shown. 
B Heatmap of the HCT116 ATF2-KO gene signature of 26 differen-
tially expressed genes (adjusted P < 0.01 and absolute (log2(FC) > 1)) 
identified by NanoString gene expression analysis (n = 3). Heatmap 
scale: low (blue) to high (red) relative gene expression. C Volcano 
plot for differential expression analysis of HCT116 ATF2-KO versus 

WT cells. Only genes with an absolute (log2(FC)) < 10 are shown 
in the plots; red dots: signature of 26 differentially expressed genes 
(adjusted P < 0.01 and absolute (log2(FC) > 1)) with the top five 
most deregulated genes indicated. D RT-qPCR analysis of TROP2 
mRNA levels in parental HCT116 and HT29 cells and their ATF2-
KO clones normalized to GAPDH and relative to the corresponding 
WT controls. Data of three independent experiments are shown as 
mean ± SEM (***P < 0.001, Mann‐Whitney test). E Western blot of 
TROP2 in HCT116, HT29, and ATF2-KO cells. Representative blots 
of at least two independent experiments are shown
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Fig. 3   Primary tumors and liver metastasis reveal high intratumoral 
heterogeneity for ATF2 and TROP2. A Representative images of 
TROP2-stained whole human CRC sections (n = 55). Scale: 100 µm. 
B Representative images of ATF2- and TROP2-stained whole human 
CRC sections (n = 55). Overview image, scale: 200 μm; insert, scale: 
20  μm. C Representative heatmaps for ATF2- and TROP2-stained 
whole human CRC sections (n = 20). Scale: 2  mm. Holes: posi-

tions of TMA punches. Color scale: red to green color, high to low 
staining intensity. D H-score of ATF2- and TROP2-stained whole 
human CRC sections (n = 20). ATF2- (E) and TROP2-stained (F) 
whole human CRC sections of primary tumors (PT) and liver metas-
tasis (liver met; n = 19) and corresponding immunoscore evaluation 
(**P < 0.01, Wilcoxon test). Scale: 100 µm



	 K. Huebner et al.

1 3

423  Page 6 of 17

Immunohistochemical staining and analysis

Details are given in the supplemental Material and Meth-
ods section. Antibodies used are listed in Supplementary 
Table 11.

Lentiviral vector preparation and cell transduction 
for luciferase‑labeled cell lines

Details of lentiviral preparation and transduction are given 
in the supplemental Material and Methods section.
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Subcutaneous murine xenograft model and IHC 
analysis

Mouse experiments were conducted in accordance with 
institutional guidelines of the Institute of Molecular Genet-
ics, Czech Academy of Science, and approved under the pro-
ject license PP63-2018. Thirteen- to fifteen-week-old, male, 
immuno-deficient mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) 
were purchased from The Jackson Laboratory [44, 45] and 
housed under specific-pathogen-free conditions with daily 
12 h light and 12 h dark cycles. More details are given in the 
supplemental Material and Methods section.

Micro‑CT imaging

Details of Micro-CT imaging are given in the supplemental 
Material and Methods section.

JNK pathway modulation

Next, 2.0 × 106 cells were seeded and treated on the next 
day with JNK inhibitor SP600125. JNK inhibitor treatment 
(10 µM, in DMSO, tlrl-sp60; InvivoGen, Toulouse, France) 
was performed for 24 h. Controls for JNK inhibition were 
treated with equivalent doses of DMSO.

Anchorage‑independent growth assay

To study anchorage-independent growth, 6-well plates 
were coated twice with polyhydroxyethylmetacrylate 
(poly-HEMA; Sigma Aldrich, P3932) (20 mg/ml, in 95% 
ethanol, sterile-filtered) and dried under flow cabinets at 
RT. Cells were seeded at low density (2.5 × 104 cells/well) 
in poly-HEMA-coated wells. Formation of aggregates was 

documented for up to 96 h by light microscopy (Leica DMi1, 
Leica Microsystems, Wetzlar, Germany) at 4× magnifica-
tion. Cell cluster sizes were evaluated in ImageJ software 
using a self-written macro. After 96 h of anchorage-inde-
pendent growth, HT29 and ATF2-KO cells were stained 
with 2 µM calcein (Thermo Fisher, Waltham, MA, USA) 
for 30 min at 37 °C, 5% CO2, and imaged by fluorescent 
microscopy (Nikon Eclipse Ti-S) at 4× magnification.

Results

Low ATF2 expression identifies a high‑risk subgroup 
of patients in CRC​

To investigate the role of ATF2 in CRC, we examined its 
protein expression levels on a tissue microarray (TMA) 
containing samples from 332 CRC patients using an ATF2 
score based on immuno-histochemical (IHC) staining (Sup-
plementary Table 1); a predominantly nuclear expression 
pattern was observed (Supplementary Fig. 1A).

Survival analysis revealed that patients with low ATF2 
expression had significantly worse overall survival (Fig. 1A). 
Although univariate Cox regression analysis identified ATF2 
and classical clinico-pathological parameters as prognos-
tically relevant, subsequent multivariate Cox regression 
analysis revealed the presence of only synchronous distant 
metastasis and lymphatic invasion as independent prognos-
tic markers (Supplementary Table 2). Notably, when the M 
status for CRC patients was considered unknown, ATF2 
could serve as an independent prognostic factor (P = 0.018) 
in multivariate Cox regression analysis. Interestingly, ATF2 
expression was lowest in primary tumors that developed 
multiple metastasis with or without peritoneal involvement 
at the time of primary diagnosis (Fig. 1B). In silico analysis 
of gene expression omnibus (GEO) series (GSE) revealed 
decreased ATF2 expression in metastatic tumors (Fig. 1C).

Whole tissue sections from our CRC cohort revealed 
strongly heterogeneous nuclear ATF2 expression levels, 
with few cell aggregates completely devoid of ATF2 expres-
sion (Fig. 1D, Supplementary Fig. 1B). The functional role 
of this minor ATF2-negative subpopulation is completely 
unknown.

ATF2 loss results in increased TROP2 expression

To identify the gene signature associated with ATF2 loss, 
we depleted ATF2 in the two heterogeneous CRC cell lines 
HCT116 and HT29 (Supplementary Table 3) [16–18] using 
CRISPR/Cas9, resulting in two ATF2-knockout (KO) clones 
per cell line (HCT116: F9, E5; HT29: B5, F10) (Fig. 2A, 
Supplementary Fig. 2A–C). Then, we conducted NanoString 
gene expression analysis of wildtype (WT) HCT116 and 

Fig. 4   TROP2 levels are regulated by ATF2 via the JNK pathway. A 
Left: Schematic illustration of the proposed JNK/ATF2/TROP2 path-
way indicating the loss of TROP2 repression upon JNK inhibition. 
Right: Western blot of HCT116 and HT29 cells treated with either the 
JNK inhibitor (JNKi) SP600125 (10  µM, in DMSO) or DMSO (−) 
for 24 h. Representative blots of at least two independent experiments 
are shown. B Illustration of the investigated ATF2- and AP1-binding 
sites in the TROP2 promoter. TSS: transcription start site. ChIP-
qPCR of HCT116 (C, E) and HT29 (D, F) cells treated with either 
DMSO or the JNK inhibitor (JNKi; 10 µM, in DMSO) SP600125 for 
24 h. Fold enrichment of ATF2 (C, D) and c-JUN (E, F) was deter-
mined over IgG control. Data of independent experiments are given 
as mean ± SEM (n = 2–3; *P < 0.05, **P < 0.01, ***P < 0.001, Mann–
Whitney test). ChIP-qPCR of HCT116 (G) and HT29 (H) cells and 
their corresponding ATF2-KO clones at the two consensus AP1-bind-
ing sites 4 and 5. Fold enrichment of c-JUN was determined over IgG 
control. Data of independent experiments are given as mean ± SEM 
(n = 2–3). I Western blot of HCT116 and HT29 cells after 48  h of 
treatment with either c-JUN-specific (si) or non-targeting (scr) RNAi. 
Controls (ctrls) remained untreated. Representative blots of two inde-
pendent experiments are shown

◂
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ATF2-KO cells. Of the 740 analyzed transcripts involved 
in various steps of cancer progression, we focused on genes 
that were significantly deregulated in both HCT116 ATF2-
KO clones compared to the wildtype (adjusted P < 0.01 and 
absolute (log2(FC) > 1)). These criteria resulted in a set of 
26 differentially expressed genes (Fig. 2B, C, Supplementary 
Fig. 2D, and Supplementary Table 4). STRING analysis, a 
biological database to predict protein–protein interactions, 
reflected limited experimental knowledge of the identified 
proteins (Supplementary Fig. 2E). DAVID analysis for func-
tional enrichment based on the 740 panel genes indicated 
that ATF2 is involved in morphogenesis, migration, and 
protein phosphorylation pathways (Supplementary Fig. 2F 
and Supplementary Table 5). Notably, real-time (RT)-qPCR 
verified the downregulation of the ATF2 target gene SOX9, 
stem cell and EMT-related genes CD44, TWIST1, protein 
kinase-encoding AKT3, and the DNA-binding inhibitor ID1 
(Supplementary Fig. 2G). Two other EMT-associated genes, 
ZEB1 and E-Cadherin, were not dysregulated in NanoString 
analysis (our GSE172488). Interestingly, we observed an 
upregulation of the ECM-interacting protein VCAN and the 
metastasis promoter TROP2 (Fig. 2D and Supplementary 
Fig. 2G). In addition, alterations in CD44, ID1, and TROP2, 
expression were also validated in the other CRC cell line, 
HT29 and its corresponding ATF2-KO clones (Fig. 2D and 
Supplementary Fig. 2G), with SOX9 being unchanged and 
VCAN and TWIST1 being undetectable. We selected TROP2, 

also known as TACSTD2, for further analysis because (i) 
its overexpression in CRC has been linked to poor prog-
nosis and high metastatic burden [19], and (ii) our in silico 
analysis identified several ATF2- and AP1-binding sites in 
the TROP2 promoter (Supplementary Table 4). Consistent 
with elevated TROP2 transcripts, TROP2 protein levels were 
increased in both CRC cell lines with ATF2-KO (Fig. 2E), 
thus supporting a possible novel link between TROP2 and 
ATF2.

Intratumoral heterogeneity in primary tumors 
and liver metastasis

Next, we investigated ATF2 and TROP2 expression in 
whole tissue slices of our CRC TMA cohort. Despite the 
high ITH of both markers (Figs. 1D and 3A–C, Supple-
mentary Fig. 3A), we could observe an inverse correlation 
between ATF2 and TROP2 expression in the majority of 
cases (Fig. 3B; additional cases are given in Supplementary 
Fig. 3A). When correlating each single ATF2 and TROP2 
probe with each other in a public data set GSE41258, we 
mostly observed a negative correlation, with some of the 
correlations being statistically significant (Supplementary 
Table 6). Addressing the ITH in more detail, heatmaps for 
TROP2-stained CRC sections were generated and compared 
with the ATF2 heatmaps (Figs. 1D, 3C). The H-score profile 
for ATF2 and TROP2 of the 20 cases is given in Fig. 3D, 
and patient-wise intensity profiles in Supplementary Fig. 3B, 
verifying the ITH and inverse correlation between both 
markers.

Interestingly, high ITH for ATF2 and TROP2 was also 
visible in liver metastasis (Fig. 3E, F and Supplementary 
Fig. 4A, B). Liver metastasis showed significantly lower 
ATF2 and rather diverse TROP2 expression compared to 
their primary tumors (Fig. 3E, F, Supplementary Table 7), 
whereas the expression levels of both markers in the 12 
available lymph node metastasis remained nearly unchanged 
(Supplementary Fig. 4C, Supplementary Table 7). The dif-
ference in our observations compared to Guerra et al. [20] 
who found an increase of TROP2 in metastatic lesions 
could be explained by the usage of different antibodies, the 
inclusion of a high number of rectal cancer, and the scoring 
approach. Otherwise, when analyzing the in silico dataset 
GSE41258 comparing the gene expression of TROP2 and 
ATF2 in non-paired 182 primary tumors and 47 liver metas-
tasis, both markers showed a probe-dependent high variance 
in gene expression scores in both cohorts (Supplementary 
Fig. 4D).

Fig. 5   TROP2 is localized in filopodia and mediates cell-to-cell 
adhesion. A Confocal imaging of phalloidin- and TROP2-stained 
HT29 and ATF2-KO cells showing irregular cell patterning and 
TROP2 localization in filopodia (arrowheads) upon ATF2 loss. 
Scale: 20  µm. Representative images of two independent experi-
ments are shown. B Phalloidin staining of HCT116 and ATF2-KO 
cells after 48 h of treatment with either TROP2-specific (si) or non-
targeting (scr) RNAi. Scale: 20  µm. Representative images of three 
independent experiments are shown. C Quantification of filopodia 
in the HCT116 and ATF2-KO clones after 48 h of TROP2 silencing 
(n = 3; TROP2si: 75–96 images, TROP2scr: 83–95 images, with more 
than 450 cells per condition and cell line). Percentages of filopodia 
are presented relative to the number of analyzed cells as mean ± SEM 
(***P < 0.001: si vs. scr, ###P < 0.001: ATF2-KO scr vs. ATF2-WT 
scr; two-way ANOVA). D Confocal imaging of Paxillin-stained 
HCT116 WT, ATF2-KO (F9/E5), and ATF2-/TROP2-KO (F3) cells 
showing the localization of Paxillin in the adherens junctions in 
TROP2low (HCT116) and TROP2-KO cells (F3). Overview, scale: 
20 µm; insert, scale: 10 µm. E Anchorage-independent growth assay 
after TROP2 silencing in HCT116 and ATF2-KO cells. Cells were 
untreated (ctrl) or treated with either TROP2si or scr for 48 h under 
attached conditions and further cultured for 72  h under anchorage-
independent conditions. Scale: 500 µm. Representative images of two 
independent experiments are shown. F Quantification of aggregate 
size of TROP2-silenced HCT116 and ATF2-KO cells under anchor-
age-independent growth (***P < 0.001, Mann–Whitney test). Data 
from two independent experiments are presented as median
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The JNK‑ATF2 axis regulates TROP2 expression

To determine whether ATF2 regulates TROP2 expression, 
we aimed to modulate the upstream mitogen-activated pro-
tein kinase JNK, which not only regulates ATF2 but also its 
AP1 dimerization partner c-JUN [21]. Treatment of HCT116 
and HT29 cells with JNK inhibitor SP600125 simultane-
ously reduced p-ATF2Thr71 and p–c-JUNSer73 levels, result-
ing in increased TROP2 protein levels (Fig. 4A). Similarly, 
JNK inhibition increased TROP2 expression in all ATF2-KO 
clones (Supplementary Fig. 5).

Since the TROP2 promoter harbors several ATF2- and 
AP1-binding sites (Fig.  4B), we investigated whether 
ATF2/c-JUN heterodimers directly repressed TROP2 tran-
scription. Chromatin immunoprecipitation (ChIP) against 
ATF2 and c-JUN in HCT116 and HT29 cells after JNK 
inhibition revealed significantly reduced binding of ATF2 
to the TROP2 promoter (Fig. 4C, D), whereas the decrease 
in c-JUN binding was less pronounced and even partly below 
the IgG controls (Fig. 4E, F). Notably, ChIP for endogenous 
c-JUN did not show any differences in c-JUN binding at the 
two consensus AP1 sites between ATF2-WT and -KO cells 
(Fig. 4G, H), suggesting that c-JUN-mediated transactiva-
tion efficiency cannot explain the remarkable differences in 
TROP2 expression. Consistently, transient c-JUN silencing 

in HCT116 and HT29 cells did not affect TROP2 protein 
expression (Fig. 4I).

ATF2 loss leads to characteristic 
cytoskeleton‑associated growth pattern in vitro

To further assess the functional consequences of elevated 
TROP2 levels, we investigated the growth pattern of ATF2-
KO cells in vitro. HCT116 (Supplementary Fig. 6A) and 
HT29 cells (Fig. 5A) reflected the typical cobblestone-like 
morphology of epithelial cells with pronounced cortical 
F-actin accumulation between adjacent cells and at cellular 
rims, indicating tight cell–cell adhesion. In contrast, HT29 
ATF2-KO clones developed TROP2-enriched filopodia-like 
protrusions (Fig. 5A, and for HCT116 ATF2-KO clones 
Supplementary Fig. 6A), suggesting a close association 
between TROP2 and the cytoskeleton. TROP2 silencing in 
both HCT116 ATF2-KO clones reduced filopodia number 
and length, and re-established an epithelial-like phenotype 
(Fig. 5B, C and Supplementary Fig. 6B). TROP2 has been 
previously shown to displace focal adhesion kinase (FAK) 
[22]. To further evaluate the impact of TROP2 on the spa-
tial distribution of cytoskeleton proteins, we evaluated the 
expression of Paxillin by immunofluorescence in HCT116 
WT cells, in the two HCT116 ATF2-KO clones F9 and 
E5, and in a CRISPR/Cas9-generated TROP2-KO clone of 
F9 (F3) (Fig. 4D, Supplementary Fig. 6C, D). Indeed, we 
detected an accumulation of Paxillin in the adherens junc-
tions of these double ATF2/TROP2-KO cells (Fig. 4D). The 
cytoskeleton marker E-Cadherin did not show any changes 
in protein expression (Supplementary Fig. 6E, F).

Next, we performed anchorage-independent growth 
assays and observed that both HCT116 and HT29-derived 
ATF2-KO clones formed significantly smaller, but viable 
cell clusters compared to their parental cell lines as shown 
in PARP Western blot and Calcein staining, respectively 
(Fig. 5E, F and Supplementary Fig. 6G-I). TROP2 silencing 
under de-adhesive conditions (Supplementary Fig. 6 J) in 
HCT116 and their ATF2-KO cells led to significantly larger 
cell aggregates (Fig. 5E, F), suggesting a role for TROP2 in 
tumor cell adhesion.

Reduced ATF2 levels promote 2D and 3D tumor cell 
migration in vitro

First, we evaluated TROP2-overexpressing ATF2-KO clones 
in a 3D spheroid migration assay and showed their enhanced 
migratory potential (Supplementary Fig. 7A, B). This effect 
was further confirmed in a 2D wound healing assay (Sup-
plementary Fig. 7C). To validate a potential TROP2 depend-
ency, we performed a transient TROP2 silencing in HT29 

Fig. 6   ATF2 loss enhances invasion in different xenograft models. 
A Representative images of HCT116 and ATF2-KO-derived CAM 
ovografts stained for HE, ATF2, and TROP2 (HCT116: n = 10; F9: 
n = 9; E5: n = 11). Overview images, scale: 500 µm; enlarged images, 
scale: 50 µm. (B) Quantification of TROP2-positive cells in HCT116 
and ATF2-KO-derived ovografts. Data are presented as mean ± SEM 
(HCT116: n = 10; F9: n = 9; E5: n = 11; ***P < 0.001, Mann‐Whit-
ney test). C Relative amount of disseminating tumor cells in the liver 
(HCT116: n = 10; F9: n = 9; E5: n = 11) and brain (HCT116: n = 4; 
F9: n = 9; E5: n = 11) of chicken embryos assessed by Alu qPCR 
on day five post-engraftment. Data are presented as mean ± SEM 
(**P < 0.01, Mann–Whitney test). Dashed line presents the cut-off for 
metastasis detection at 0.5. D Representative images of HCT116 and 
ATF2-KO-derived murine subcutaneous xenografts stained for HE, 
ATF2, and TROP2 (HCT116: n = 7; F9: n = 6; E5: n = 6). Overview 
images, scale: 500 µm; detailed images, scale: 100 µm; M muscle; T 
tumor; dotted line: pushing front margin. E Quantification of TROP2-
positive cells in murine subcutaneous xenografts derived from 
HCT116 and ATF2-KO cells. Data are presented as mean ± SEM 
(HCT116: n = 7; F9: n = 6; E5: n = 6; ***P < 0.001, Mann‐Whitney 
test). F Invasion pattern of murine subcutaneous xenografts derived 
from HCT116 and ATF2-KO cells. Invasion was classified as “clear” 
(distinct border between muscle and tumor), “clear > focal” (more 
clear borders than areas with focal invasions), “focal > clear” (more 
focal invasions than clear borders), or “invasive” (no clear borders). 
Percentages of each category are given. Only samples with sufficient 
surrounding muscle tissue were evaluated (HCT116: n = 7; F9: n = 5; 
E5: n = 5). G Micro-CT analysis of HCT116 and ATF2-KO-derived 
subcutaneous xenografts. Segmentation of 3D datasets discriminat-
ing between tumor (blue) and muscle (yellow) was performed on one 
representative mouse per group (n = 3). Arrowheads indicate muscle 
invasion. Scale: 2.5 mm
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Fig. 7   Upregulation of TROP2 expression in CRC is associated with 
enhanced tumor aggressiveness and predicts poor patient survival. 
A TROP2 in normal (n = 41) and tumorous colon tissue (n = 41; ** 
P < 0.01, *** P < 0.001, Welch’s t test). The line shows the median. 
Gene expression data were extracted from the TCGA RNA-seq 
database (https://​www.​cancer.​gov/​tcga). B TROP2 expression in 

metastatic (n = 25) versus non-metastatic primary (n = 65) CRC 
as extracted from the GSE2109 dataset. The line shows the median 
(**P < 0.01, Welch’s t test). Kaplan–Meier plots for overall survival 
in the TCGA CRC cohort grouped according to their optimal TROP2 
(C), ATF2 (D) and combined TROP2/ATF2 (E) expression (n = 394, 
log-rank test). HR hazard ratio, CI confidence interval
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Fig. 8   Working model illustrating the ATF2-dependent transcriptional regulation of TROP2 and its impact on tumor invasiveness. Created with 
BioRender.com

https://www.cancer.gov/tcga
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WT (moderate TROP2 levels) and ATF2-KO clone B5 (high 
TROP2 levels). TROP2 silencing did not affect the migra-
tion of HT29 WT cells, but showed a significant decrease in 
clone B5 (Supplementary Fig. 7C).

Since transient TROP2 silencing was not suitable for a 
long-term spheroid assay, we generated TROP2-KO cells 
using CRISPR/Cas9 for HT29 WT and its ATF2-KO clone 
F10 (Supplementary Fig. 7D, E). We confirmed our find-
ings from the 2D experiment in all previous conditions and 
could show that again the ATF2/TROP2 double KO was 
accompanied by a reduced migratory potential (Supplemen-
tary Fig. 7F). Finally, these findings support previous reports 
from literature showing a pro-migratory role for TROP2 [20, 
23, 24].

Reduced ATF2 levels trigger tumor cell invasion 
in vivo

To evaluate a potential TROP2 dependency on hallmarks 
of tumor aggressiveness, we performed the chicken chorio-
allantoic membrane (CAM) assay as an in vivo xenograft 
model pursuing the ethical responsibility to replace, reduce, 
and refine (3R) animal experiments. Our tumor cell line sets 
were grafted onto the CAM and their in vivo growth pat-
terns were compared based on hematoxylin/eosin (HE) and 
IHC staining (Fig. 6A and Supplementary Fig. 8A). We 
detected the typical microsatellite-unstable tumor pattern 
in the ovografts of HCT116 cells, with a dense tumor mass 
and a clearly defined pushing front at the invasive border 
(Fig. 6A). In contrast, HCT116 ATF2-KO clones displayed 
more loosely arranged tumor masses lacking a clear pushing 
front (Fig. 6A). A shift in the growth pattern upon ATF2 
loss was also observed in HT29-KO cells (Supplemen-
tary Fig. 8A, B), suggesting that tumor cell de-adhesion 
is increased when ATF2 is lost. CAM experiments with a 
lower number of HCT116 cells demonstrated that the dif-
ferences in the growth pattern of HCT116 ATF2-KO clones 
were not due to biologically relevant differences in prolifera-
tion (Supplementary Fig. 8C) as also shown by staining with 
the proliferation marker Ki67 (Supplementary Fig. 8D, E). 
All cell lines developed highly proliferative tumors in vivo 
(median > 70%).

All ATF2-KO ovografts revealed upregulation of TROP2 
expression (Fig. 6A, B and Supplementary Fig. 8A, B), 
further supporting a suppression of TROP2 when ATF2 
is expressed. In addition, ATF2KO/TROP2high tumor cells 
showed increased invasion into chicken embryonic organs, 
as determined by human-specific Alu-PCR (Fig. 6C). The 
presence of disseminating ATF2-KO tumor cells in the brain 
of chicken might underline the potential of ATF2-KO cells 
to spread to multiple and more unusual sites.

The invasive behavior of ATF2-KO cells was further 
investigated in subcutaneous mouse xenografts using 

luciferase-labeled HCT116 and ATF2-KO cells (Fig. 6D, 
E, and Supplementary Fig. 8F, G). These xenografts do 
not constitute a metastasis model; rather, they allowed us 
to examine the invasive growth pattern, a prerequisite for 
metastasis. Indeed, tumors of HCT116 ATF2-KO cells were 
highly TROP2-positive (Fig. 6D, E) and presented primar-
ily deeper invasion toward the muscle layer (Fig. 6D-F) as 
supported by micro-CT analysis (Fig. 6G). In contrast, the 
majority of HCT116-derived tumors had a predominantly 
cohesive pushing front that clearly segregated tumor cells 
from the surrounding muscle layer with only minor focal 
invasions (Fig. 6D and F), suggesting that the loss of ATF2 
remarkably alters the invasion pattern.

TROP2 is a suitable prognostic marker in CRC​

Based on our data, TROP2 can be considered as a marker 
of tumor aggressiveness in CRC cell lines. To evaluate 
the clinical relevance of our findings, we performed sev-
eral in silico analyses based on gene expression data. First, 
TROP2 expression was significantly upregulated in tumors 
compared to matched normal colon tissue (Fig. 7A). Next, 
we found that primary tumors with metastasis showed an 
upregulation of TROP2 expression in comparison to primary 
tumors without metastasis (Fig. 7B). When performing sur-
vival analysis for TROP2 in the TCGA CRC cohort applying 
the commonly used median expression score, we did not find 
any significant prognostic relevance in Kaplan–Meier plots. 
However, using an optimal score for dichotomizing patients 
with TROP2high and TROP2low tumors, that considers the 
best patient separation by survival using the survminer algo-
rithm, high TROP2 levels were associated with shortened 
overall survival (hazard ratio [HR] 2.1) (Fig. 7C). ATF2 
in TCGA without optimal score using median separation 
showed that ATF2low expressing tumors had a worse progno-
sis than ATF2high expressing ones (HR 1.6). In the next step, 
we adapted the Kaplan–Meier analysis for ATF2 using the 
optimal score approach and this even reinforced the hazard 
ratio to 3.0. In the case of ATF2, the optimal separation 
defined a threshold of 11% for patients who had the high-
est ATF2 expression (Fig. 7D). This optimal score was not 
suitable for IHC analysis in our TMA cohort since remark-
ably more than 11% of patients showed ATF2high expressing 
tumors. Next, we tested a combined TROP2/ATF2 optimal 
score. This approach revealed an increased hazard ratio 
(HR = 2.3) compared to TROP2 alone (HR = 2.1) and was 
associated with a remarkably reduced overall survival in 
patients with ATF2low/TROP2high status (Fig. 7E). Transla-
tionally, these findings suggest that a patient diagnosed with 
a TROP2high tumor with concomitant ATF2low expression is 
under high risk for invasion/metastasis (Fig. 8).
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Discussion

In this study, we have systematically investigated the role 
of ATF2 in CRC invasion. We suggest that the presence of 
an ATF2-negative tumor cell population is associated with 
a higher de-adhesion, migration, and invasion potential of 
tumors. The cancer driver TROP2 has been identified as a 
novel transcriptional repressive target of ATF2. Although 
ATF2 loss constitutes a disease-associated condition, ATF2 
per se is a rather unsuitable therapeutic target in CRC. 
Instead, we uncovered TROP2 as a potential novel thera-
peutic target to inhibit the first step in the metastatic cascade 
in CRC.

We observed a high intratumoral heterogeneity (ITH) 
for ATF2 protein expression by immunohistochemistry in 
our CRC tissue cohort. Possibly, such ITH might be a rea-
son why genes deemed as “non-interesting” have not been 
deeply investigated in the context of CRC aggressiveness. 
Such ITH might mask and decisively impact not only the 
experimental outcomes but similarly also the metastatic 
spread and consequently patient prognosis. Our findings that 
ITH might be preserved in liver metastases of colon tumors 
let us suggest that the existence and the degree of ITH is 
not random, rather this is a well-orchestrated cellular mech-
anism to develop the full aggressiveness of a tumor. The 
monoclonal expansion approach of CRISPR/Cas9-mediated 
ATF2-KO cells allowed us to abrogate ITH and capture, at 
least partly, the genetic diversity in the tumor, leading to 
the identification of a novel regulatory axis between ATF2 
and TROP2.

We found that ATF2/AP1 repressed the expression of 
TROP2 by directly binding to CRE and TRE motifs in the 
TROP2 promoter. ChIP experiments revealed that ATF2 
homo-/heterodimers were decisive for TROP2 transcription 
with a negligible role of c-JUN in TROP2 promoter bind-
ing. This molecular mechanism is a rare example that cor-
roborates the role of the ATF2/AP1 complex in target gene 
repression. However, given that c-JUN can form AP1 dimers 
with other bZIP family members such as FOS, and that dif-
ferent AP1 dimers can bind to DNA with different affinities 
and transactivation efficiencies [25], we cannot fully exclude 
such interactions at the TROP2 promoter.

TROP2 is known to be an important cancer driver and 
therapeutic target [26]. It functions as a transmembrane gly-
coprotein and is overexpressed in numerous solid cancers 
[27]. TROP2 was assessed as an independent prognostic 
marker correlating with poor patient prognosis in CRC [26, 
28] and was linked to tumor budding, a marker of increased 
tumor aggressiveness [29]. Accordingly, a pro-migratory 
role has already been ascribed to TROP2 in various solid 
tumor types [30–32]. Our study reveals a novel and impor-
tant mechanism for the regulation of TROP2 expression via 

ATF2, mechanistically explaining the increased invasive 
potential of ATF2-deficient tumor cells.

Additionally, we have revealed a potentially more deci-
sive function of TROP2 in de-adhesion of cancer cells as the 
starting point of metastasis. TROP2 was localized in long 
cell protrusions interspersing ATF2-negative cell aggregates, 
linking its function to the cytoskeleton machinery as recently 
described [33]. Such filopodia act as sensors for signals, 
such as chemo-attractants or nutrients. Interestingly, meta-
static cells are rich in filopodia-like structures [34]. Recently, 
TROP2-interacting proteins were linked to matrix degrada-
tion, cell shape, motility, and invasion in CRC cells [35]. We 
found that under adhesion blockade, ATF2-KO cells built 
only vital single cells or small aggregates, and that transient 
TROP2 silencing attenuated this de-adhesive effect, which 
was accompanied by a loss in cell–cell protrusions. Focus-
ing on focal adhesion kinase (FAK), Trerotola et al. showed 
that prostate cancer cells silenced for TROP2 accumulated 
FAK at focal adhesion sites together with α5β1 integrin 
[22]. Thus, we studied Paxillin, which is important for the 
formation of functional adherens junctions, in CRISPR/
Cas9-generated TROP2-KO cells of HCT116 ATF2-KO 
clone F9. Indeed, we observed a clear accumulation of 
Paxillin in the adherens junctions when TROP2 was lost. 
Since epithelial proteins E-Cadherin or EpCAM were not 
altered in their levels, we suggest that it is rather the spatial 
dysregulation of the TROP2 complex members at the cell 
membrane than a TROP2-mediated alteration in protein 
amounts of the complex partners. Correspondingly, in vivo, 
TROP2-overexpressing xenografts grew as loosely packed 
tumors and a disturbed pattern of cellular contacts was fur-
ther reflected by the deregulation of the adhesion molecules 
MCAM and ICAM in a NanoString analysis. Interestingly, 
the higher migration and invasiveness in TROP2-overex-
pressing ATF2-KO cell lines were not associated with robust 
EMT signs as already shown in three different tumor enti-
ties by Remsik et al. for breast and prostate cancer [36], and 
Guerra et al. for colorectal cancer [20]. In the NanoString 
analysis, EMT markers, such as CD44 and TWIST1, were 
even down-regulated, and ZEB1, SNAI2, and E-Cadherin 
levels were unchanged, supporting the findings of Guerra 
et al. who described an EMT-less invasion in their TROP2-
overexpressing metastatic cells [20]. Thus, we suggest that 
ATF2 loss seems to reinforce the epithelial differentiation.

Using our own and public clinical datasets incorporating 
both RNA sequencing and IHC data, we have shown that low 
ATF2 expression could significantly predict high-risk CRC 
patients. Moreover, TROP2high human tumors that were con-
comitantly ATF2low could further increase the hazard ratio 
suggesting that a combination of ATF2low/TROP2high could 
serve as a suitable biomarker for susceptibility to highly 
invasive tumors. The use of the survminer algorithm to opti-
mally separate between the prognostic groups might be more 
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reliable than the separation by the median score allowing a 
more robust comparison between different studies.

Our observations have high clinical relevance. Unrave-
ling the basic mechanisms of the first steps in the metastatic 
process, i.e., the de-adhesion and invasion of cancer cells, 
can open up novel therapeutic approaches for successful 
interventions in CRC. Considering several ongoing clinical 
trials [37] and the recently FDA-approved drug sacituzumab 
govitecan-hziy, which combines a TROP2-directed antibody 
and a topoisomerase inhibitor [38, 39], TROP2 holds prom-
ise as a marker for tumor aggressiveness in CRC patients.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00018-​022-​04445-5.
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