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Censoring due to a limit of detection or limit of quantification happens quite
often in many medical studies. Conventional approaches to deal with censoring
when analyzing these data include, for example, the substitution method and
the complete case (CC) analysis. More recently, maximum likelihood estimation
(MLE) has been increasingly used. While the CC analysis and the substitution
method usually lead to biased estimates, the MLE approach appears to perform
well in many situations. This article proposes an MLE approach to estimate the
association between two measurements in the presence of censoring in one or
both quantities. The central idea is to use a copula function to join the marginal
distributions of the two measurements. In various simulation studies, we show
that our approach outperforms existing conventional methods (CC and substi-
tution analyses). In addition, rank-based measures of global association such
as Kendall’s tau or Spearman’s rho can be studied, hence, attention is not only
confined to Pearson’s product-moment correlation coefficient capturing solely
linear association. We have shown in our simulations that our approach is robust
to misspecification of the copula function or marginal distributions given a small
association. Furthermore, we propose a straightforward MLE method to fit a
(multiple) linear regression model in the presence of censoring in a covariate
or both the covariate and the response. Given the marginal distribution of the
censored covariate, our method outperforms conventional approaches. We also
compare and discuss the performance of our method with multiple imputation
and missing indicator model approaches.
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1 INTRODUCTION

In clinical trials involving vaccination efficacy evaluation or in studies investigating the immunity of a (specific) popula-
tion to a (particular) disease, antibody titers to specific antigens are of primary interest. It is quite common that there is
a limit of quantification (LOQ) or limit of detection (LOD) present in a test sample. The LOD is defined as the “smallest
measured concentration of an analyte from which it is possible to deduce the presence of the analyte in the test sample with
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acceptable certainty”,1 while the LOQ is defined as the “smallest measured content of an analyte above which the determi-
nation can be made with the specified degree of accuracy and precision”.1 Consequently, antibody titers below a specified
threshold (usually provided by the manufacturers) are only known up to the LOQ or LOD. The LOD and LOQ can be
similar, but the LOD can also be at a much higher concentration than the LOQ.2 In addition to left censoring, one might
encounter right or interval censoring, which makes the analysis and inference more complicated. An observation is
right-censored if its value is not known exactly but it is quantified to be above a certain threshold. Right censoring might
occur in cases of extremely high antibody response. Last, interval censoring is present if one cannot determine the exact
value of the variable of interest but one only knows that it falls into a certain interval. In this article, we illustrate the
proposed method for left-censored data, and we note that the method can be used to deal with right and interval censoring.

While reporting results from vaccine trials, authors have focused on comparing geometric mean concentrations
(GMCs) of antibody titers derived from serum samples collected at the same time point between different study groups.
The GMC is calculated by taking the nth root of the product of all individual values (n being the number of subjects in
the trial). For the GMC results to be interpreted correctly, researchers rely on the assumption that the data on a log-scale
are symmetrical.3-5 The question is whether assuming that antibody titers exhibit a log-normal distribution is always
appropriate, or whether other distributions for a nonnegative random variable should be used instead.

When censoring is present due to actual values falling below the LOD (or LOQ), investigators often impute censored
observations using the LOD (or LOQ), LOD/2 (or LOQ/2), or LOD/

√
2 (LOQ/

√
2).6 They then perform analysis on the

imputed dataset (substitution method). Another conventional approach is to remove censored observations and analyse
data without censoring (complete case analysis, abbreviated as CC analysis). While the CC analysis might lead to biased
estimates and loss of efficiency,7 the performance of a substitution method depends on the setting under consideration.
Nonetheless, generally speaking, the imputation method tends to be biased as well.8-10 Shaarawi and Esterby8 derived the
formulae to calculate the large sample bias for the mean as a function of the true geometric standard deviation (GSD),
GMC, the true percentage of censoring, and the sample size. When the sample size increases, the bias asymptotically
approaches a fixed value. Furthermore, the substitution approach has no theoretical foundation.9 In addition to these two
conventional approaches, maximum likelihood estimation (MLE) and the nonparametric method (NP) are frequently
used. The MLE method is based on maximizing the likelihood function calculated from the probability density of a given
distribution, while taking into account the proportions of censored and noncensored data to estimate the sample GMC
and GSD. The NP approach recommended by Schmoyeri et al11 is based on the application of the Kaplan-Meier method
to estimate the sample mean when there is censoring present in the data. The MLE method was shown to perform well
in many circumstances. On the other hand, the NP approach performed better than the substitution method, but still did
poorly when compared with the MLE method, at least in the field of microbial risk assessment.9

This article focuses on two aspects: (a) estimating the association between two variables under the presence of censor-
ing in one or both variables and (b) estimating the coefficients of a linear regression model in the presence of censoring
in one covariate and/or the response using the MLE approach. Concerning the first aspect, the MLE method based on
the assumption of an underlying distribution is commonly used. For example, Lynn,12 Lyles et al13,14 proposed their MLE
methods on the basis of the bivariate normality assumption. More specifically, Lynn12 proposed an MLE approach with the
assumption of a bivariate normality of the two measurements (HIV RNA concentrations) on a log scale. Similarly, Lyles
et al,13,14 and Benning et al15 proposed a bivariate normal distribution to quantify the association between two measure-
ments when one or both of them was subject to left censoring. Both approaches relied on the normality assumption, and
their performance with nonnormal data has not been investigated. Furthermore, these authors studied only the Pearson
product-moment correlation, which is a measure of linear association. To relax the normality assumption, Song et al16 pro-
posed a generalized estimating equations approach to estimate the Pearson’s correlation coefficient. The authors showed
the robustness of their method to departures from the normality assumption. This approach, however, is only applicable
in cases of censoring in one variable. The extension to data with censoring in both variables is not obvious. In this arti-
cle, we propose a parametric approach employing a bivariate copula to join the two marginal distributions. The method
allows for the simultaneous estimation of both the association and the two marginal distributions while accounting for
censoring. Our method aims at estimating the association in a general setting. Depending on the copula used, the asso-
ciation can be described using Pearson’s correlation coefficient, Spearman’s rho, or Kendall’s tau. Additionally, we study
the robustness of the proposed method under misspecification of the copula function, or the marginal distribution(s).

The second objective of this article is to make appropriate inferences for a linear regression model in the presence
of censoring in one covariate and/or the response. When there is censoring in the response, one can utilize a modi-
fied regression model to account for censoring (eg, Tobit regression proposed by Tobin17) to provide unbiased estimates.
With regard to the case of censoring in one covariate, Tsimikas et al18 proposed a quasi-score based method that relied
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on an estimating function for fitting a generalized linear regression model. The method did not require the specifica-
tion of a parametric distribution for the response. For linear regression, the method implied the employment of mean
imputation of the censored regressor. Recently, Atem et al19 introduced the idea of combining the imputation and survival
regression methods to deal with randomly censored covariates. Multiple imputation (MI) has been used and investigated
in many settings, see, for example, Lyles et al,14 Wei et al,20,21 Stekhoven and Bühlmann22 among others. Besides the
aforementioned methods, many authors have adapted the missing indicator approach (MID) as proposed by Jones23 to
account for a censored covariate(s). The idea of the MID approach is to introduce a binary variable indicating whether
the explanatory variable is observed and include it as a covariate in the model. For example, Chiou et al24 made use of
the MID approach to deal with censored covariates due to the LOD in logistic regression models. Overall, few studies
devote attention to methods dealing with censoring in both response and covariate(s). Recently, Jones25 nominated a
pseudo-likelihood approach utilizing plug-in estimators of lower-level parameters (the variance-covariance matrix and
mean vector) to estimate higher-level parameters (ie, the regression coefficients) in the context of left censoring that is
present in both the covariate and response. We, however, propose a relatively straightforward MLE approach for fitting
a regression model with censoring in both the response and covariate variables. In our approach, one assumes that the
underlying distribution of the covariate with censoring is known. Under censoring, the likelihood contribution can be
obtained by relying on the cumulative distribution function of the censored covariate.

This article is organized as follows: We first introduce our motivating examples in Section 2. In Section 3, the proposed
methodology is described in detail. Next, a simulation study is performed to evaluate our proposed method in different
scenarios (Section 4). In Section 5, we show the results of applying the new method to the data applications introduced
in Section 2. We formulate conclusions and potential avenues for further research in Section 6.

2 MOTIVATING EXAMPLES

2.1 Pertussis data from Thailand

Two datasets from two clinical trials inspired the work in this article. The first trial is a prospective, randomized, con-
trolled clinical trial that examined the effect of maternal Tdap (tetanus, diphtheria, acellular pertussis) vaccination on
the humoral immune response of infants to acellular pertussis (aP) and whole-cell pertussis (wP) vaccines. The trial
was conducted in Bangkok, Thailand. Investigators offered a Tdap vaccine to participating women who were between 26
and 36 weeks of gestation. Study staff collected blood samples from the pregnant women at delivery. In infants, blood
samples were taken at birth, at month two (right before the first vaccine dose), and at month seven (1 month after the
primary series of three doses of a hexavalent pertussis-containing vaccine). Antibody titers against pertussis (IgG anti-PT,
IgG anti-FHA, and IgG anti-PRN) were measured “to assess the influence of vaccine-induced maternal antibodies on the
humoral immune response after the administration of different pertussis-containing vaccines to the infant”.26

More details regarding the study design, study laboratory, and various results of this study can be found in Wanla-
pakorn et al.26,27 The GMCs of antibody titers at different time points were calculated to study the differences between both
infant groups (aP and wP). Moreover, investigators were also interested in investigating which demographic and clinical
factors might influence antibody titer concentrations. Based on the protocol, possible confounders could be birth weight,
length at birth, feeding (bottle versus breastmilk), age of the mother, gestational age at the time of vaccination, time from
vaccination to delivery, and recent pertussis vaccination of the women. Since there is no recent recommendation to vac-
cinate adults or pregnant women with a pertussis-containing vaccine in Thailand, we excluded the last confounder from
the analysis.

There is an LOD of 5 IU/mL for all three types of antibodies leading to left-censored observations. In the initial analysis,
the substitution method with LOD/2 was considered. The analysis was then performed on the imputed data. Here, we will
reexamine the association between antibody titers in the cord and at month two, as well as fit a linear regression model
to investigate factors affecting the antibody titers in infants at month two using the proposed methods. We compare the
proposed methods’ results with the CC analysis, substitution method, MI, and MID approaches.

2.2 Varicella-zoster virus data from Belgium

The second dataset was collected in a prospective multicenter study of pregnant women aged between 18 and 40 years and
their offspring. One of the key research objectives was to study the kinetics of maternal antibodies against varicella-zoster
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virus (VZV) in infants. VZV is a human alpha-herpesvirus causing varicella (chickenpox) by the first infection, then
becoming latent in the human body. Later on, VZV can become reactivated and cause many neurologic diseases such
as herpes zoster, postherpetic neuralgia in people with a decline in cell-mediated immunity, or people with a weakened
immune system.28 The trial was conducted in Antwerp (Belgium) from 2006 to 2008. Details on the study design, data col-
lection, and initial analysis are published in Leuridan et al.29 Briefly, blood samples were taken in both pregnant women
and their infants to measure antibody titer concentrations with regard to varicella, among other pathogens. In infants,
blood samples were collected at 1, 3, and 12 months of age and randomly at either 6 or 9 months of age. The antibody
concentrations were expressed in mIU/mL. There was an LOD of 50 mIU/mL, implying that values below 50 were con-
sidered to be left-censored. In this article, we estimated the correlation between antibody titers against VZV at month 9
and month 12 of age in infants since there was a large percentage of censoring in these two measurements.

3 MATERIALS AND METHODS

We propose to join the two marginal distributions of the variables using a copula function and thereby estimate the
association between them. Hence, in this section, we first introduce the bivariate copula function used throughout this
article. Next, we briefly discuss the approach for relating two continuous variables while accounting for (left) censoring
in one or both variables. Last, we elaborate on a method to fit a (simple) linear regression model when there is (left)
censoring in the covariate or both covariate and response.

3.1 Copula functions

A function  ∶ [0, 1] × [0, 1] → [0, 1] is called a copula function when it has the following properties:

(i) For every u, v∈ [0, 1]: (u, 0) = (0, v) = 0 and (u, 1) = u and (1, v) = v.
(ii) For every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2: (u2, v2) − (u2, v1) − (u1, v2) + (u1, v1) ≥ 0.

From these properties, we note that the bivariate copula function  is the joint (cumulative) distribution function of
a two-dimensional random vector (U, V) on the unit cube [0, 1]× [0, 1] with uniform margins. Furthermore, from Sklar’s
theorem,30 it follows that for any continuous random vector (X , Y ) with joint distribution H and respective marginals F
and G, there exists a unique copula function  such that for all x, y∈R,

H(x, y) = [F(x),G(y)].

Several families of copulas have been described in the literature. Among them, Gaussian and Archimedean copulas are
quite popular and widely used in real-life applications, see, for example, Shih and Louis,31 Bárdossy and Li,32 Danaher
and Smith,33 de Leon and Wu,34 Song et al,35 Frahm et al,36 Shi and Yang.37 The bivariate Gaussian copula function takes
the form:

(u1,u2; 𝜌) = Φ2[Φ−1(u1),Φ−1(u2)].

with Pearson product-moment correlation−1 ≤ 𝜌 ≤ 1 among the marginal random variables. Here,Φ2(⋅)denotes the joint
cumulative distribution function of a bivariate normal distribution with correlation 𝜌 and Φ(⋅) denotes the cumulative
distribution function of a standard normal distribution. In addition, the Archimedean copula family is one of the most
popular copula families for modeling bivariate survival data. A bivariate Archimedean copula can be represented by:

(u1,u2; 𝜗) = 𝜙𝜗[𝜙−1
𝜗
(u1) + 𝜙−1

𝜗
(u2)],

where 0 ≤ 𝜙𝜗(⋅) ≤ 1, 𝜙𝜗(0) = 1, 𝜙′
𝜗
(⋅) < 0, and 𝜙′′

𝜗
(⋅) > 0 (see, eg, Reference 30).

Some famous members of the Archimedean copula family are the Clayton, Gumbel, Joe, and Frank copula.31 Inter-
ested readers are referred to Web Appendix A (Supplementary Materials) for more details regarding these copula
functions.
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3.2 Estimation of the association and marginal distributions

In the following, we will focus on distributions for nonnegative random variables in the context of our data applica-
tion, even though our proposed methods apply to any real-valued random variables. Let X and Y denote the antibody
titer measurements (for either pregnant women or infants) at a specific time point. In the literature, antibody titers are
usually assumed to follow a log-normal distribution and are typically summarized in terms of GMC and its 95% confi-
dence interval. The log-normal distribution is commonly used to model antibody titers in clinical trials that involve the
evaluation of vaccine efficacy, see, for example, References 38,39. It has been claimed that generalized linear models
assuming a log-normal distribution and a gamma distribution to analyse antibody titers are interchangeable. How-
ever, Wiens40 showed, via a case study, that log-normal and gamma models can lead to different results. Consequently,
here, we consider not only a log-normal but also a gamma distribution while modeling antibody titer data. We denote
X and Y the two nonnegative variables following two distributions with cumulative distribution functions F and G
where special attention is directed towards log-normal and gamma distributions. Without loss of generality, we let
X ∼ LN(𝜇, 𝜎) (LN denotes a log-normal distribution with 𝜇 and 𝜎 being the mean and standard deviation of the data
on a log-scale), and Y ∼ Γ(𝛼1, 𝛼2) (𝛼1 and 𝛼2 denote the shape and scale parameters). This parameterization implies that
E(X) = exp(𝜇 + 𝜎2∕2),Var(X) = exp(2𝜇 + 𝜎2)[exp(𝜎2) − 1], and E(Y ) = 𝛼1𝛼2,Var(Y ) = 𝛼1𝛼

2
2 .

Let u=F(X) and v=G(Y ) denote the cumulative distribution functions for X and Y . Then, 0≤u, v≤ 1. We assume
further that there is a copula joining the two marginal distributions. That is H(X ,Y ) = (F(X),G(Y )) = (u, v). Suppose
that one is interested in measuring the association between two variables in the presence of censoring. We denote the
total sample size by N. Those X values less than xcens and Y values less than ycens are (left-)censored. The whole dataset is
divided into four subsets comprising different censoring patterns. The first subset contains observations with censoring
in X only (sample size n1). The second subset includes observations with censoring in Y only (sample size n2). The third
subset consists of observations with censoring in both X and Y (sample size n3). Finally, complete observations belong to
the fourth subset with the sample size being equal to N −n1 −n2 −n3.

We rely on the MLE approach to estimate all parameters of interest. For the set of (N −n1 −n2 −n3) complete observa-
tions, the density of the bivariate distribution is given by f (x, y)= c(F(x), G(y))f (x)g(y), where c(F(x), G(y)) is the bivariate
copula density function. For the set of n1 (left-)censored observations in X , we have: fX≤x,Y (xcens, y) = ∫ xcens

0 f (x, y)dx.
Similarly, for the set of n2 (left-)censored observations in Y , we have: fX ,Y≤y(x, ycens) = ∫ ycens

0 f (x, y)dy. And finally, the
log-likelihood contribution for the n3 (left-)censored observations in both X and Y is given by fX≤x,Y≤y(xcens, ycens) =∫ xcens

0 ∫ ycens
0 f (x, y)dxdy.Hence, we can write down the log-likelihood function as follows:

LLa =
N−n1−n2−n3∑

i=1
log[f (xi, yi)] +

n1∑
j=1

log
[
∫

xcens

0
f (x, yj)dx

]

+
n2∑

k=1
log

[
∫

ycens

0
f (xk, y)dy

]
+ n3 log

[
∫

xcens

0 ∫
ycens

0
f (x, y)dxdy

]
. (1)

The log-likelihood function in case of censoring in a single variable can be obtained as a special case of Equation (1).

3.3 Regression analysis

Sometimes, the primary interest lies in fitting a regression model to make inference about the relationship between two
variables or to construct a prediction model for individual predictions of the mean outcome conditional on specific covari-
ate information. Here, we demonstrate the method to fit a linear regression model where there is (left) censoring in either
covariate (X) or both covariate and response (X and Y ) making use of the marginal distribution of the censored covariate X .

Suppose that we want to investigate the linear relationship between Y and X , that is, to estimate the coefficients 𝛽0 and
𝛽1 in which Y |(X = x) ∼  (𝛽0 + 𝛽1x, 𝜎2). We group the dataset into four subsets according to (X , Y )’s censoring profiles
similar to what has been done in Section 3.2. The log-likelihood function is given by:

LLr =
N−n1−n2−n3∑

i=1
log

{
1√
2𝜋𝜎

exp
[
−
(yi − 𝛽0 − 𝛽1xi)2

2𝜎2

]}
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+
n1∑

j=1
log

{
1

FX (xcens) ∫
xcens

0

1√
2𝜋𝜎

exp
[
−
(yj − 𝛽0 − 𝛽1x)2

2𝜎2

]
fX (x)dx

}

+
n2∑

k=1
log[P(y ≤ ycens|X = xk))]

+
n3∑

l=1
log

{
1

FX (xcens) ∫
xcens

0
P(y ≤ ycens|X = x)fX (x)dx

}
. (2)

Readers are referred to Web Appendix A (Supplementary Materials) for the details of the log-likelihood contributions
of different components corresponding to distinctive subset groups of data. When censoring is present in the covari-
ate only, the log-likelihood function can be obtained as a particular case of this setting. Moreover, the proposed method
can be extended for use in a multiple linear regression model. Note that, although the specification of the distribu-
tion of X is unnecessary in a classical linear regression approach, the distributional choice thereof is required in our
method.

4 SIMULATION STUDY

To gain deeper insights into the proposed methodology’s performance, we conducted an extensive simulation study gov-
erning different simulation scenarios. We used the methods described in Sections 3.2 and 3.3 to analyse the simulated
data. Simulation results with respect to the estimation of the association measure were compared across the existing
methods, that is, CC analysis, and substitution by LOD/2 and LOD, and our approach.

For linear regression, we contrasted the proposed method’s outputs with the two conventional approaches as well as
with the MID and MI methods. Details regarding the MID can be traced back to the work of Jones.23 Briefly speaking,
in the case of a simple linear regression setting with a censored covariate, the linear regression model is specified as
Y |(X = x,Δ = 𝛿) ∼  (𝛽0 + 𝛽1x(1 − 𝛿) + c𝛿, 𝜎2). Here, Δ is the censoring indicator, taking value 𝛿 = 1 if censored and
𝛿 = 0 otherwise. Under this model specification, c is a nuisance parameter. When censoring is present in both covariate
and the response, we incorporate the Tobit adjustment to the aforementioned model. On the subject of the MI approach,
we proposed a method to impute censored covariate based on the assumption that X ∼F(.). In the current simulation
setting, X values were generated from the truncated gamma distribution at the LOD such that x ≤LOD. However, to
assure the relationship we observed between X and Y , we reordered the values of X to preserve the (negative/or positive)
association between them. The number of imputed datasets was equal to the percentage of censoring present in the data.
The proposed imputation method provides valid inference under censoring at random.

4.1 Simulation: (left) censoring in one variable

4.1.1 Estimating the association

In the first simulation setup, we generated bivariate (X , Y ) values from a Gaussian copula and two marginal gamma
distributions: X ∼ Γ(𝛼1 = 4, 𝛼2 = 0.8), Y ∼ Γ(𝛽1 = 24, 𝛽2 = 1). Here, the gamma distributions were specified in terms of
the shape and scale parameters as defined in Section 3.2. A small correlation (𝜌 = 0.2) and a large one (𝜌 = 0.8) were
considered together with various percentages of censoring in X ranging from very small (approximately 10%) to moderate
(30%), medium (50%), and large (75%). For each scenario, 500 datasets were simulated with a sample size of n= 240
observations each. This sample size was motivated by the small to moderate sample sizes in our data applications.

The simulation results are shown in Table 1. In all scenarios, the CC and substitution methods provided biased esti-
mates for 𝛼1, 𝛼2, that is, the distributional parameters associated with the marginal distribution of X (ie, the variable for
which censoring is present) as well as for the association parameter. Generally, compared with the LOD substitution,
the LOD/2 substitution method gave less biased estimates, at least for moderate to large censoring percentages. The esti-
mates for 𝛽1 and 𝛽2, that is, the parameters associated with the distribution of Y , are essentially unbiased when using
the substitution approach but are biased in the CC analysis. Generally, our proposed method gave unbiased estimates for
all parameters. In addition, these estimates were very similar to those obtained when we analyzed all data (data without
censoring). The MSE values were highest in the CC analysis irrespective of the parameters under study. The substitution
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method provided MSE values that were higher than those obtained using our method, at least for parameters associ-
ated with the distribution of X . Apparently, the estimation of 𝛼1, 𝛼2 appears to be better than those of 𝛽1, 𝛽2 in terms of
bias. However, this observation is likely because the true values for 𝛽 parameters are larger than those for 𝛼 parameters.
Indeed, the relative bias values (bias divided by the true value) in Web Table 1 (Supplementary Materials) confirmed that
the estimation of 𝛼 parameters was not better than those of 𝛽 parameters.

To see the consequence of underestimating or overestimating one or both parameters of a specific gamma dis-
tribution, we looked at the corresponding means and variances of X and Y given that E(X) = 𝛼1𝛼2,E(Y ) = 𝛽1𝛽2 and
Var(X) = 𝛼1𝛼

2
2 ,Var(Y ) = 𝛽1𝛽

2
2 (see Web Table 2 in the Supplementary Materials). As expected, our proposed method pro-

vided estimates that were close to the true values (with small biases) for the mean and variance of the two variables.
The CC and substitution analyses gave small to large bias depending on the scenarios. The results above hold when we
correctly specify the copula function and the two marginal distributions. However, in a real data application, it is chal-
lenging to select the right copula function or marginal distributions. Hence, in the subsequent analysis, we investigated
how misspecification of the copula function or marginal distribution(s) affected the parameters’ estimates.

In order to assess the robustness of our proposed method against the misspecification of the copula function, we
reanalyzed the simulated datasets using two correctly specified gamma marginal distributions and a misspecified copula
function. More specifically, we used a Frank, Clayton, Gumbel, or Joe copula instead of a Gaussian copula. Web Figure
1 (Supplementary Materials) shows boxplots of empirical estimates for all parameters across 500 simulated datasets. The
model with a Frank copula function performed reasonably well compared with the correctly specified model for all cen-
soring percentages under a small association scenario. In approximately 37% of the runs (small association), and 2% of
the simulations (large association), the Akaike information criteria (AIC) values obtained using the correctly specified
model were higher than those of the model using a Frank copula function. On the other hand, models using a Clayton,
Gumbel, or Joe copula function gave good estimates for the parameters of the two marginal distributions, but not for
the association measure when the association was small. When the association was large, the misspecified copula model
produced biased estimates. The bias was least in the model using the Frank copula model among all.

The subsequent sensitivity analysis was conducted to examine the performance of our approach under the misspecifi-
cation of one or both marginal distributions. Instead of specifying two gamma marginal distributions, we used a marginal
log-normal distribution for either the variable with censoring, the variable without censoring, or both variables (see Web
Table 3 in the Supplementary Materials). When one marginal distribution was misspecified, the proposed method still
provided estimates that were very close to the true values regarding the other marginal distribution and the association
parameter. When both marginal distributions were misspecified, our approach still performed well in estimating the
association between the two variables.

4.1.2 Linear regression

To evaluate the performance of our proposed method in the case of linear regression, a simulation study was performed
where X ∼ Γ(24, 2) and Y |(X = x) ∼  (24 + 1.5x, 𝜎2) with 𝜎2 = 1.44, the variance of the random noise generated from a
normal distribution with mean 0. The percentage of censoring was varied from small to large. The results were reported
based on 500 simulated datasets in terms of mean estimate (and corresponding empirical standard errors), bias, and MSE
for all parameters (𝛽0, 𝛽1, 𝜎). Moreover, the coverage probabilities for 𝛽0, 𝛽1, and Type II error rates for 𝛽1 (the probabilities
of incorrectly not rejecting 𝛽1) were shown as well.

Table 2 shows the simulation results. Regarding the level of bias, our method performed well in all scenarios with dif-
ferent censoring percentages. The two substitution methods provided biased estimates for all parameters, which occurred
even with a small percentage of censoring. The bias was more severe when the censoring fraction increased. The perfor-
mance of the CC analysis was reasonable in all scenarios. More specifically, this approach gave estimates close to the true
values, which is not surprising since the CC analysis, though less efficient, provides unbiased estimates when censoring
is noninformative (ie, when the censoring does not depend on Y ).41 The MI and MID approaches, in comparison with our
method, performed equally well in terms of bias (except for the estimate of 𝜎 where the MID approach gave larger bias).
With respect to coverage probabilities, the MI method’s performance was comparable to our approach while the MID
provided higher coverage probabilities for both 𝛽0 and 𝛽1 in all scenarios. However, the SE and MSE values under MI and
MID were consistently higher than those of the proposed method. When looking at the widths of confidence intervals
produced under MI, MID, and our approach, the proposed method induced the smallest numbers (see Web Figures 3 in
the Supplementary Materials). Although the CC analysis provided reasonable estimates for c, the MSE values were larger
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in the CC analysis than those from MI, MID, and our approach due to loss of information. The difference increased when
the percentage of censoring increased. Regarding the Type II error rates for 𝛽1, all methods performed well. We observed
no cases where the null hypothesis H0 ∶ 𝛽1 = 0 was not rejected.

4.2 Simulation: (left) censoring in both variables

4.2.1 Estimating the association

In the second simulation setup, we generated bivariate censored (X , Y ) values from a Gaussian copula (𝜌 = 0.2 or 𝜌 = 0.8)
with two marginal gamma distributions and four different censoring percentages as previously mentioned in Section 4.1
(see Table 3). The CC and substitution methods in all scenarios provided biased estimates for all parameters. Similar
to what we observed in the case of censoring present in X , the LOD/2 substitution method gave less biased estimates
as opposed to the LOD substitution. Again, in all scenarios, our proposed method produced unbiased estimates for all
parameters.

Web Table 6 in the Supplementary Materials shows the mean estimate, empirical SE, and MSE for the expected values
and variances of the two variables under the different simulation settings. Only our approach produced estimates close
to the true values (with small biases) and small MSE values. Depending on the percentage of censoring, other methods
yielded moderate to large biases. The results of the sensitivity analysis are shown in Web Figure 2 in the Supplementary
Materials. Here, the proposed method was quite robust against the misspecification of the copula function when the
association is small. Given a large association and the copula function’s choice, there might be moderate bias in the
parameter estimates. The higher the censoring percentage in the data, the more biased were the estimates. In the case
where we misspecified one of the two marginal distributions or both marginal distributions, our proposed method still
performed well in estimating the association parameter.

4.2.2 Linear regression

A similar simulation procedure as specified in Section 4.1 was considered where we imposed censoring in both X and Y
(see Table 4). One can observe the same behavior as in the case of censoring in only the covariate with respect to the level
of bias. More specifically, the CC analysis, MI, MID, and our approach provided approximately unbiased estimates for
all parameters, while the substitution method gave mildly to severely biased estimates when the percentage of censoring
increased. The MSE values using our approaches were the smallest among all methods. The higher coverage probabilities
of the CC, MI, and MID analyses were likely due to their larger uncertainties around parameter estimates as visualised
by comparing the confidence widths (Web Figure 4 in the Supplementary Materials). While the CC analysis suffered
from loss of efficiency due to loss in the number of observations, the MID approach needs to estimate one extra nuisance
parameter.

Additional simulation results with a smaller (n=120) or larger sample size (n=1000) were reported in Web Tables
4 and 7 (measuring association scenarios) and Web Tables 8 and 9 (linear regression analysis) in the Web Appendix
B (Supplementary Materials). In general, similar conclusions, as obtained from the main simulation study, were
drawn.

5 CASE STUDIES

5.1 Pertussis data from Thailand

In this section, we reanalyzed the data from the pertussis clinical trial in Thailand using our proposed method and we
compared its performance with others. The aim was to analyse antibody titer concentrations in the cord and at 2 months
of age in infants. There were 158 infants randomized into the aP group and 157 infants in the wP group. We performed
separate analyses for the aP infant group and the wP infant group, although this is theoretically not necessary since before
month two, no vaccine was given to infants, and therefore we expected to see no difference between the two groups of
infants.
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F I G U R E 1 Scatter plots between cord antibody titers (x-axis) and antibody titers at month two (y-axis) on a log-scale: anti-PT (left),
anti-FHA (middle), and anti-PRN (right) [Colour figure can be viewed at wileyonlinelibrary.com]

5.1.1 Association of antibody titers in the cord and at month two in infants

Scatter plots between antibody titers in the cord and at month two (on the natural log-scale) are given in Figure 1. There
is a clear linear association between cord antibody titers and antibody titers at month two, especially for anti-FHA and
anti-PRN. Generally, if cord antibody titers are high, one expects to see high antibody titers at month two. We presented
in this article the results of analyzing anti-PT data. The results of analyzing anti-PRN data are shown in Web Appendix
D (Supplementary Materials). Anti-FHA data contain only one censored observation in antibody titers at month two and
hence were not considered for analysis. There are 0.4%, 5.1%, and 2.1% of censored observations in cord anti-PT antibodies,
antibodies at month two, and both, respectively.

Since antibody titer data are of interest, log-normal and gamma distributions are two sensible starting points for the
marginal distributions of the two measurements. All five copula functions mentioned in Section 3 were used. The AIC
was utilized to perform model selection (see Table 5). In the aP group, the model with a Frank copula function and two
log-normal marginal distributions had the lowest AIC, while in the wP group, the model with a Gaussian copula function
and two log-normal marginal distributions gave the smallest AIC. The correlation (expressed by Kendall’s tau) between
anti-PT IgG titer in the cord and at month two (aP group) using the best model was 0.7002. The Kendall’s tau using the
substitution method (both LOD and LOD/2) was 0.6736, while the CC analysis gave a Kendall’s tau value of 0.6639. In
the wP group, Kendall’s tau was 0.7364 (for both substitution methods), 0.7032 (CC analysis), and 0.7198 (our proposed
method). There was a small difference between various methods due to a limited number of observations below the LOD.
In real applications with larger percentages of censoring, it is important to use an appropriate method to obtain a good
estimate for the association parameter.

T A B L E 5 Akaike information criteria of different fitted models for various choices of copula functions to measure the association
of anti-PT IgG antibody titers (data in Thailand) at the cord and month two (using the method for censoring in both X and Y )

aP infant group wP infant group

Gaussian Frank Clayton Gumbel Joe Gaussian Frank Clayton Gumbel Joe

copula copula copula copula copula copula copula copula copula copula

Gam-Gam 2191.009 2103.344 2116.287 2202.699 2233.166 1718.619 1728.062 1914.64 1723.269 1762.811

LN-LN 2078.675 2034.153 2086.067 2065.195 2091.499 1672.701 1683.837 1699.557 1845.015 1845.015

LN-Gam 2173.159 2094.762 2132.758 2175.758 2201.149 1703.376 1706.337 1714.848 1716.937 1748.023

Gam-LN 2099.275 2053.909 2083.434 2108.912 2138.833 1715.209 1683.837 1699.557 1845.015 1845.015

http://wileyonlinelibrary.com
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The best models indicated that the log-normal assumptions for cord and month two antibody titers were
reasonable. More specifically, XaP ∼LN(4.1918, 0.8268), Y aP ∼LN(2.9810, 0.7726) and XwP ∼LN(4.0151, 0.7233),
Y wP ∼LN(2.8435, 0.7495) where X and Y denote the random variables representing cord antibody titers and antibodies
at month two. There was no difference between the groups, despite the fact that a Gaussian copula was chosen for the
wP group, and a Frank copula performed best for the aP group. Therefore, all data were pooled together and reanalyzed
with two log-normal marginal distributions. Based on the AIC value, the bivariate Frank copula function performed
best. The two marginal distributions were estimated to be X ∼LN(4.1271, 0.8073) and Y ∼LN(2.9347, 0.7948), and this
marginal distribution of X was used for the linear regression model in the following section.

5.1.2 Linear regression model

One of the main objectives of this study was to understand which effects might be important to explain the observed
antibody titers in infants at month two (after being born and right before the first dose of the vaccination against pertussis).
The primary interest was to see how antibody titers at cord (antiPTCord) might help to predict antibody titers at month
two (antiPTM2). Other important factors, as specified in the protocol, are the group of infants (group A includes aP infants
and group B consists of wP infants), the gestational age at vaccination (ga_vacc), the duration between vaccination and
delivery (dur_vd), infant birth weight (bw, recorded in kilograms) and birth length (bl, measured in centimeters), age
of the mother when giving birth, and feeding manner. Unfortunately, the information regarding feeding (bottle versus
breastmilk) was not available. Moreover, since ga_vacc and dur_vd might give the same information, we decided to include
only the ga_vacc variables in the analysis. Antibody titer data on a log-scale were used, that is, we define Y = log(antiPTM2)
and X = log(antiPTCord). First, the random forest method42,43 was used to investigate which factors were important to
predict the level of antibody titers at month two. Web Figure 5 (Supplementary Materials) shows the dotchart of variable
importance measured by a random forest analysis. Generally, besides the cord antibody titers, the infant birth weight and
birth length were important factors. The results of the random forest approach using data with LOD/2 substitution were
reported. However, the output using LOD substitution and CC data pointed in the same direction.

Consequently, in the next step, a linear regression model with three covariates, namely, cord antibody titers (on a
log-scale), infant birth weight (bw), and birth length (bl) standardized around their means was considered. The statistical
model is specified as y = 𝛽0 + 𝛽1x + 𝛽2bw + 𝛽3bl + 𝜀, where 𝜀 ∼ N(0, 𝜎2). Since there are small percentages of censoring
in our dataset, all methods gave quite comparable results (see Table 6). In details, the CC analysis, our approach, and
MI analysis provided similar outputs. In conclusion, only cord antibody titers affected antibody levels at month two in
infants. The weight and length of infants at birth were not statistically significant.

Sensitivity analysis:
This analysis aims to investigate how the results varied when the percentage of censoring increased. More specifi-

cally, a larger LOD value (“new LOD”) was imposed to enlarge the number of left-censored observations in the dataset.
Three “new LODs” values of 10, 20, and 50 (IU/mL) were chosen leading to higher percentages of censoring in both
cord antibody titers and antibody titers at month two (more details in Web Table 10). When the percentage of censoring
increased, our proposed method and the MI analysis gave quite consistent results, while the substitution method and the
CC analysis produced varying estimates and SE values depending on the scenarios. More specifically, the estimates of
the intercept under LOD and LOD/2 substitution switched sign and significance when the new “imputed” LOD was 20

T A B L E 6 Parameter estimates
with SEs (in brackets) using
different approaches

Parms 𝜷0 𝜷1 𝜷2 𝜷3

CC −0.465 (0.156)* 0.831 (0.038)* 0.017 (0.036) 0.025 (0.036)

LOD −0.080 (0.141) 0.739 (0.035)* 0.037 (0.039) 0.033 (0.039)

LOD/2 −0.276 (0.147) 0.780 (0.037)* 0.037 (0.043) 0.048 (0.043)

Our approach −0.425 (0.162)* 0.818 (0.040)* 0.031 (0.040) 0.035 (0.040)

MI −0.932 (0.175)* 0.934 (0.043)* 0.024 (0.043) 0.042 (0.043)

MID −0.446 (0.160) 0.823 (0.039)* 0.030 (0.040) 0.035 (0.040)

Note: *indicates significant results with a P-value below .05.
Abbreviations: CC, complete case; LOD, limit of detection; MI, multiple imputation; MID, missing indicator.



3756 TRAN et al.

T A B L E 7 Sensitivity analysis: Parameter estimates with SE(s) (in brackets) using different approaches

Parms Scenario 𝜷0 𝜷1 𝜷2 𝜷3

CC Original data −0.465 (0.156)* 0.831 (0.038)* 0.017 (0.036) 0.025 (0.036)

LOD = 10 −0.110 (0.206) 0.765 (0.047)* −0.007 (0.039) 0.031 (0.038)

LOD = 20 0.901 (0.360)* 0.583 (0.075)* −0.073 (0.059) 0.043 (0.052)

LOD = 50 2.323 (1.350) 0.380 (0.244) −0.028 (0.224) 0.170 (0.323)

LOD Original data −0.080 (0.141) 0.739 (0.035)* 0.037 (0.039) 0.033 (0.039)

LOD = 10 0.337 (0.136)* 0.655 (0.034)* 0.030 (0.035) 0.024 (0.035)

LOD = 20 1.408 (0.122)* 0.458 (0.030)* 0.005 (0.029) 0.019 (0.029)

LOD = 50 2.888 (0.099)* 0.255 (0.023)* −0.122 (0.016) 0.026 (0.016)

LOD/2 Original data −0.276 (0.147) 0.780 (0.037)* 0.037 (0.043) 0.048 (0.043)

LOD = 10 −0.262 (0.167) 0.763 (0.042)* 0.047 (0.048) 0.043 (0.048)

LOD = 20 0.349 (0.158)* 0.623 (0.039)* 0.061 (0.043) −0.008 (0.043)

LOD = 50 2.208 (0.110)* 0.295 (0.028)* −0.025 (0.028) 0.055 (0.028)

Our approach Original data −0.425 (0.162)* 0.818 (0.040)* 0.031 (0.040) 0.035 (0.040)

LOD = 10 −0.636 (0.201)* 0.863 (0.048)* 0.027 (0.044) 0.038 (0.044)

LOD = 20 −1.075 (0.343)* 0.945 (0.075)* 0.035 (0.059) 0.004 (0.056)

LOD = 50 −0.707 (0.748) 0.860 (0.140)* −0.050 (0.112) 0.150 (0.117)

MI Original data −0.446 (0.160)* 0.823 (0.039)* 0.030 (0.040) 0.350 (0.040)

LOD = 10 −0.680 (0.198)* 0.873 (0.047)* 0.026 (0.044) 0.037 (0.043)

LOD = 20 −1.111 (0.341)* 0.953 (0.074)* 0.034 (0.058) 0.004 (0.055)

LOD = 50 −1.240 (0.785) 0.965 (0.146)* −0.042 (0.106) 0.138 (0.109)

MID Original data −0.932 (0.175)* 0.934 (0.043)* 0.024 (0.043) 0.042 (0.043)

LOD = 10 −2.157 (0.271)* 1.186 (0.064)* 0.022 (0.056) 0.042 (0.056)

LOD = 20 −3.886 (0.534)* 1.481 (0.116)* 0.097 (0.087) −0.037 (0.083)

LOD = 50 −8.007 (1.920)* 2.123 (0.351)* −0.034 (0.179) 0.226 (0.179)

Note: *indicates significant results with a P-value below .05.
Abbreviations: CC, complete case; LOD, limit of detection; MI, multiple imputation; MID, missing indicator.

and 50, respectively. The MID approach produced reasonably consistent results for 𝛽2, 𝛽3 but not for 𝛽1 and the intercept.
The antibody in the cord’s effect was statistically significant in all scenarios except for the CC analysis when LOD = 50.
While the estimates of 𝛽1 in the CC, substitution, and MID analyses varied considerably between different scenarios, our
proposed method and MI gave close estimates across all scenarios (Table 7).

5.2 VZV data from Belgium

Here, we report the correlation estimate between antibody titers against VZV at month 9 and month 12 in infants. There
was 88.57%, 88.57%, and 84.29% of censoring in antibody titers at month 9 (marginally), at month 12 (marginally), and
both variables, respectively. We assumed that antibody titers followed either a log-normal distribution or a gamma distri-
bution. The AIC values for different model fits with various choices of copula functions are shown in Table 8. All models
performed comparably. The model with a log-normal marginal distribution for antibody titers at month 9 and gamma
marginal distribution for antibody titers at month 12 joining by a Joe copula function showed the smallest AIC value. The
Kendall’s tau given by this model was 0.382, while Kendall’s tau value using the two substitution methods was 0.553. This
result is not unanticipated since the substitution method implies that the correlation given by 84.29% of the observations
is one. Hence, the substitution method, in this case, clearly overestimates the association.
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T A B L E 8 Akaike information criteria values of different
fitted models with regard to various choices of copula
functions to analyse the association of antibody titers against
VZV (data in Belgium) at month 9 and month 12 (using the
method for censoring in both X and Y )

Gaussian Frank Clayton Gumbel Joe

Gam-Gam 165.257 165.381 165.725 164.553 164.226

LN-LN 166.283 166.205 166.595 165.520 167.348

LN-Gam 165.254 165.253 165.553 164.437 163.966

Gam-LN 166.495 166.446 166.89 165.926 167.912

6 DISCUSSION AND CONCLUSION

In this article, we proposed methods to analyse data for which left censoring is present. The first objective is to account
for (left) censoring in one or two variables, while the main interest lies in estimating their marginal distributions and
association. To do this, we introduced a copula model approach in which we used a copula function to join the two
marginal distributions of the two variables. Within this article, the focus is on the MLE framework, although a Bayesian
approach could be employed. Our work has derived the likelihood function in the cases of left censoring for either one
measurement or both. However, one might modify the proposed approach to deal with right-censored or interval-censored
data. Moreover, the proposed method can be extended to cope with higher-dimensional problems, making use of a copula
function to join three or more marginal distributions. Note, however, that when moving away from a two-dimensional
problem, the computational burden potentially increases.

The simulation study showed that our approach outperformed the CC analysis, as well as the substitution method for
all scenarios with percentages of censoring varying from low (10%) to high (80%) given that the two marginal distribu-
tions and the copula function were correctly specified. For a misspecified copula function, our approach still produced
reasonable estimates for all parameters of two marginal distributions given a small association. The bias appeared neg-
ligible, except for the association parameter. On the other hand, a low level of bias was not guaranteed if the copula
function was not correctly specified under a large association scenario. The substitution method should only be used
when a small percentage of censoring is present in the data (as in our data application). Otherwise, this method will
produce biased estimates. Nevertheless, in our simulation, the substitution method with LOD/2 performed relatively
well even when there was more than 50% of censored observations. That result can be partly explained by the fact
that, in these simulations, the LOD/2 values were quite close to the values of E[X|X <LOD] and E[Y |Y <LOD]. It
has been shown before by Lynn12 that the substitution method by E[X|X <LOD] ranked among the best-performing
methods.

Throughout this article, we focused on gamma and log-normal marginal distributions, although other distributions
can also be considered. Note that these two distributions are appropriate for describing antibody titers in humans, which
is inspired by our motivating examples. As mentioned previously, our method is quite attractive in the sense that it can
capture any association between two measurements in terms of Kendall’s tau. The method does not limit itself to Pearson’s
correlation coefficient, which only captures linear associations (see, eg, the work of References 12,14). Moreover, using
our method, one does not need to assume normality of the data (on a log scale) or bivariate normality as in Lynn,12 Lyles
et al.13 We nonetheless assume some parametric forms for the two marginal distributions and a copula function to join
them. However, as pointed out in the sensitivity analysis, our method was quite robust against the misspecification of
marginal distributions and the choice of copula function.

The second aim of this article is the MLE method to account for censoring within a linear regression context. When
the censoring is uninformative, the CC analysis gave valid inference for the linear regression model. By contrast, the sub-
stitution method leads to biased estimates (for a percentage of censoring larger than 10%) and hence, should be used only
in a limited amount of censoring. Our proposed approach produced unbiased estimates, and the coverage probabilities
were close to nominal coverage levels. The method can be adapted to account for right censoring, or interval censoring by
changing the lower and upper bounds for the integrals in the likelihood functions. The extension towards the inclusion
of interaction effects is straightforward. This extension only implies that the mean structure (linear predictor) is slightly
more complicated. Interested readers are invited to the Web Appendix A.2.2 to have a thorough look at the log-likelihood
function if we take interaction into account.

Next to our proposed method, the MI and MID approaches also attained good performance. Diverse imputation tech-
niques have been proposed in the literature (see, eg, Atem et al,44 Wei et al,20,21 among others). A recent article reviewed
comprehensively many imputation frameworks and concluded that the MI method using predictive mean matching
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(PMM-MI) ranged in the most optimal approaches.45 Due to the problem with perfect correlation, we could not perform
PMM-IM in our simulation setting. Nevertheless, the suggested MI approach performed reasonably well compared with
our proposed method. This result is not unexpected since our proposed imputation scheme is based on the same underly-
ing assumption on the knowledge of the marginal distribution of the censored covariate. Similarly, the MID analysis has
demonstrated good performance. This result has been shown before in the logistic regression setting with two censored
covariates.24 In terms of biasedness, the MID and our approaches were comparable, but ours provided a slightly smaller
bias. On the other hand, the MID approach exhibited consistently higher coverage probabilities with the cost of wider
confidence widths. To the best of our knowledge, only theoretical asymptotic properties for linear regression have been
derived under MID.23 In the future, it is interesting to compare the performance of our proposed method and MID for
general link functions, as well as in the case of informative censoring.

A common feature of interest in the MLE framework is model selection. In our data applications, the selection of
marginal distributions and the copula function as well as model selection, in general, was performed using AIC. In
contrast to standard linear regression in which no distributional assumption with regard to the distribution of covari-
ates is required, such an assumption is required in the proposed methodology in case of censoring present in that
covariate. Therefore, we assume the marginal distribution of the censored covariate to be known. Having said that, we
propose first to perform model selection to pick up the most “reasonable” distribution for that censored covariate (by
fitting either a gamma or a log-normal distribution to the antibody titers at the cord, as in our data application), and
then using that information to continue with (multiple) linear regression analysis. In a general setting, one can fit uni-
variate distributions to continuous, censored data using available built-in packages and perform goodness-of-fit check
by means of histograms and theoretical densities comparison, empirical and theoretical cumulative distribution func-
tions comparison, Q-Q and P-P plot (see, eg., Delignette-Muller et al46). Variable selection is an important feature of
any multiple regression analysis. Since our proposed method is parametric under the MLE framework, one can also
apply the idea of penalized regression, such as regression shrinkage via the Lasso.47,48 Following this idea, researchers
can extend the specified log-likelihood functions to incorporate a penalty term for nonzero coefficients. This can be
done by adding a penalization term consisting of the sum of the absolute values of the coefficients. However, model
selection when censoring is present in the data is currently beyond the scope of this article and will be considered in
further research.

In our first data application, investigators collected antibody titers in infants from birth, before, and after the primary
vaccination series, and before and 1 month after the booster dose at month 18. In the current analysis, we concentrated
only on a pairwise analysis. When the interest lies in the kinetics of antibody titers in infants over time, one might consider
fitting a nonlinear mixed effect model to pool all information together; see, for example, Maertens et al,49 Tran et al.50

Within this framework, the censored observations could be dealt with by applying the idea of Tobit regression given
that there is censoring present only in the response. In other data applications, when there is censoring present in both
covariate and response in a linear mixed model context, one can extend our proposed method to account for this given that
the marginal distribution of the censored covariate is known or can be estimated. However, the computational burden in
such analyses might become challenging since we need to integrate over the random effects as well. This research area
could be a promising domain for further examination.

The article proposes methods to deal with censoring while estimating the association parameter in the copula model
and the regression approach. Indeed, there is an explicit link between the Pearson product-moment correlation coeffi-
cients, as a measure of linear association, between covariate X and dependent variable Y , and the ordinary least square
estimators for the regression coefficients in a linear regression model. For different copula functions, depending on
the association parameter, this link is less straightforward. For instance, in the case of Archimedean copulas such as
the Clayton, Frank, or Gumbel copula, the association between the two random variables is more naturally expressed
in terms of Kendall’s tau, a rank-based association measure. Often, a closed-form expression for the linear Pearson
product-moment correlation coefficient in terms of the association parameter is absent. Some work has been done with
regard to NP robust inference in a linear regression setting with estimators for the regression parameters based on
Kendall’s rank correlation tau (see, eg, the Theil-Sen or Kendall-Theil estimator for the regression line in robust regres-
sion based on the seminal work by Sen,51 Theil52). However, an extension towards the application of linear regression
with censored covariate and response data is considered beyond this article’s scope and is an exciting research feature in
future work.

Last but not least, our proposed methods are applicable when the limits of detection are known, that is, xcens and
ycens have been defined prior to the data analysis since it involves integral calculations with the limits equal to the
LOD values (for left censoring). In the two data applications, these limits were known upfront and provided by the
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antibody tests’ manufacturer. Although the LOD values were equal for all study subjects, the method can be read-
ily extended to accommodate individual-specific limits (or censoring times, in other applications). In case the LOD is
unknown, the censoring distribution needs to be modeled as well, and the censoring time (in our current application,
the LOD) becomes a random variable. This random variable could follow a degenerate distribution at an unknown value.
However, in general, a marginalization over the censoring distribution is necessary. In contrast to the survival context
where independent censoring assumption (no relation between the parameters in the censoring and event time distribu-
tions) can be relied upon, in our settings, the censoring distribution cannot be ignored. This is because the distribution
of the censored covariate information depends clearly on the censoring distribution. Consequently, the extension of
the proposed approaches to the situation with unknown limits is not straightforward. Hence, we consider developing
methods to handle censored data in the event of unknown detection limits, a promising avenue to explore further in
future work.
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