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Swine influenza viruses (SIVs) can unforeseeably cross the species barriers and directly infect humans, which pose huge challenges
for public health and trigger pandemic risk at irregular intervals. Computational tools are needed to predict infection phenotype
and early pandemic risk of SIVs. For this purpose, we propose a feature representation algorithm to predict cross-species infection
of SIVs. We built a high-quality dataset of 1902 viruses. A feature representation learning scheme was applied to learn feature
representations from 64 well-trained random forest models with multiple feature descriptors of mutant amino acid in the viral
proteins, including compositional information, position-specific information, and physicochemical properties. Class and
probabilistic information were integrated into the feature representations, and redundant features were removed by feature
space optimization. High performance was achieved using 20 informative features and 22 probabilistic information. The

proposed method will facilitate SIV characterization of transmission phenotype.

1. Introduction

The influenza A virus (family: Orthomyxoviridae) genome
contains eight segmental RNAs [1]. The hemagglutinin
(HA) gene is located in the fourth segment, and the neur-
aminidase (NA) gene is in the sixth segment. According to
the antigenic characteristics of HA and NA, the influenza
A virus has 18 HA subtypes and 11 NA subtypes [2-4].
Besides the fast mutation rates of viral genes, segmental reas-
sortments of viral genomes facilitate the occurrence of novel
virus with the changes of host barriers [5, 6]. The 1957 pan-
demic was caused by an influenza A (HIN1) virus, which
has a genome that contains segments 2, 4, and 5 from the
avian influenza virus, whereas the 1968 pandemic was
caused by an influenza A (H3N2) virus, which has a genome
that contains segments 2 and 4 from the avian influenza
virus [1].

Swine influenza virus (SIV) is an influenza A virus that
causes acute respiratory infectious disease of swine [7].
There are three main SIV subtypes circulating worldwide
(HIN1, HIN2, and H3N2), and these subtypes can be subdi-
vided into different genotypes, including the classical HIN1,

avian-like HIN1, human-like H3N2, reassorted H3N2, and
HIN2 subgroups [8-10]. SIV genotypes are diverse, and its
gene pool in nature is heterogeneous. SIV can cross the spe-
cies barriers unforeseeably and directly infect humans. The
2009 HIN1 pandemic killed more than 18,000 people, and
the viral pathogen during the pandemic was a novel SIV that
was produced by genome reassortment between genome-
reassorted swine viruses from America and Europe [11-13].
H3N2 variant viruses (H3N2v), which have segment 7 from
the 2009 HIN1 pandemic virus in their genomes, were identi-
fied in swine in 2010 and first detected in people in 2011 [14].
Clinical cases of HIN1 variant viruses (HIN1v) and HIN2
variant viruses (HIN2v) were also been reported after 2011
[15]. SIVs are a huge challenge for human public health and
may trigger pandemic risk.

Computational bioinformatics tools are needed to pre-
dict transmission phenotype and pandemic risk of SIVs.
For this purpose, machine-learning methods may be ideal
tools [16-18]. Machine learning techniques have great
potential for virus screening because they can use viral pro-
tein sequences as input without the need for prior knowl-
edge. In this paper, we propose a feature representation
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algorithm to predict cross-species infection of SIVs. The
algorithm includes the sequence-based feature descriptors
to build a comprehensive predictive model with sufficient
information from different aspects. Sequence-based features
with class information or probabilistic information are
learnt from well-trained random forest (RF) classifiers that
can learn a set of features. The dimension of the feature space
was reduced using the minimum redundance maximum
relevance (mRMR) method to obtain the most informative
features and distinguish SIVs with different transmission
phenotypes.

To identify SIVs capable of interspecies transmission, we
constructed a predictor with two predictive models that were
trained using 20 features based on class information or 22
features based on probabilistic information under the RF
classifier. The predictor with the feature representation
learning achieved a high prediction performance. This study
provides an important tool in predicting cross-species infec-
tion of SIVs for public health.

2. Materials and Methods

2.1. Data. Viral sequences of influenza viruses isolated from
swine and human were downloaded from the GISAID EpiFlu
public database (http://platform.gisaid.org/epi3/frontend) [2,
3]. GISAID deposits high-quality genomic sequences along
with their clinical information in the database. Since sequence
redundancy was very high and genome coverage varied
greatly, raw data were filtered using public bioinformatics
tools and algorithms (Table S1).

We obtained 5860 SIVs and 44,623 human influenza
viruses from the GISAID database on 21 March 2019. The
dataset included all of the 11 influenza virus proteins (PB2,
PB1, PBI-F2, PA, HA, NP, NA, M1, M2, NS1, and NEP)
encoded in eight genome segments. Strains without any of
the 11 protein sequences or without subtype information
were excluded. Amino acid positions in the 11 proteins were
determined using the multiple sequence alignment tool
MUSCLE [19]. Strains with more than three amino acids
missing at the terminal ends of the viral proteins were
removed, and if there were only a few missing residues,
they were added according to those in viral proteins with
highest identity. We used the fast-clustering algorithm of
the CD-Hit tool to reduce the redundancy in the dataset
[20]. Ambiguous amino acid residues, such as X and B,
were likely caused by sequencing error and were replaced
by those in viral protein with highest identity. Strains with
large numbers of ambiguous residues in viral protein were
also removed.

The final dataset for predicting cross-species infection
contained two categories of viruses: (1) 769 viruses isolated
from human (positive sample; HIN1, HIN2, H2N2, and
H3N2 subtypes); (2) 1133 influenza viruses isolated from
swine (negative sample; HIN1, HIN2, and H3N2 subtypes).
The positive samples were composed by seasonal human
influenza virus, 2009 pandemic swine virus, and variant
swine virus isolated from human. Since these viruses could
be also isolated from swine [1], they were excluded from
the negative samples according to the similarity of genome
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sequence. Information about the 1902 strains is summarized
in Table S1.

2.2. Signature Amino Acid Positions Based on Entropy. Most
of the amino acid residues in the viral proteins were con-
served. To reduce the computing complexity, amino acid
residues were filtered by the entropy measure at each posi-
tion of the 11 viral proteins. For a given position i, the

entropy value was computed using the formula [21]: E; = —
212'31})1‘,]‘ log (P;;), where P, is the observed probability of

amino acid j at position i. High entropy values indicate high
amino acid mutation rates at the corresponding position.
We set the threshold of entropy difference as 1.5 and
obtained 36 signature positions, and therefore, each strain
was represented by a list of 36 amino acid residues in the

screened positions.

2.3. Representation of Signature Amino Acid Set. Mutations
in the viral proteins determine the pathogenicity or virulence
of SIVs [1]. After obtaining the entropy ranking for each
position, 36 significant amino acids were screened. Six
encoding algorithms for compositional information,
position-specific information, and physicochemical proper-
ties of amino acids were used to explore the key information
required for high-quality predictions [16]. The encoding
algorithms for the signature amino acid set to transform
SIV into fix-length vectors are detailed below.

2.3.1. Amino Acid Composition. The amino acid composi-
tion (AAC) is a 20-dimension vector as usual. Because the
gaps (deletion or insertion) in viral proteins occurred fre-
quently during the evolution of SIV, we defined the AAC
as a 21-dimension vector to represent the frequency of the
20 amino acid residues and one gap in the 36 signature posi-
tions of the viral proteins. For example, if the amino acid
type i occurs #; times in the amino acid set of a specific virus,
the frequency of i is denoted as f(i)=mn;/36. A 21-
dimensional feature vector that represents the frequencies
of the 20 different amino acids and one gap was obtained
for each strain.

2.3.2.  Parallel Correlation-Based  Pseudo-Amino-Acid
Composition. Parallel correlation-based pseudo-amino-acid
composition (PC-PseAAC) method was used to compute
the parallel correlation of any two amino acids in the 36 sig-
nature amino acid positions in the viral protein sequences
[22]. For a virus D, the PC-PseAAC feature vector was
defined by

PC~PseAAC= [py, . Py Py =Pl > (1)

where

fu
A bl
YESi+ 0.05)7,6;
pu= (2)
0.0, _,,
5 > 21+1<u<21+A,
Yicafi+0.0527,6;

1<u<?2l,
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where u is an integer, fi (1 <i<21) represents the normal-
ized occurrence frequency of the 20 amino acids and one
gap in virus D, A is the highest tier of the correlation along
D, and 0j is the correlation function that measures the j
-tier sequence-order correlation between all the j-th most
contiguous residues along D. The 6; function is given as

0= 56 252 Haldu) ~HuA). ©)

i=1

where Hm (Ai)(m=1,2,3,4,5) represents the five amino
acid factors that correspond to the i-th amino acid Ai in
virus D, respectively [23]. If i+ j is >36, then i+ j equals i
+ j — 36. The five factors for gap (deletion or insertion) were
simply set to zero.

2.3.3. G-Gap Dipeptide Composition. The G-gap dipeptide
composition (GGAP) is the dipeptide composition coupled
with local order information of any two interval residues
among the 36 amino acid residues of the 11 viral proteins
for each virus. The GGAP is commonly used feature descrip-
tor for sequence analysis and model construction. In this
paper, GGAP is a 441-dimension vector that represents the
frequency of dipeptide comprising 20 amino acid residues
and one gap. It is defined as

GGAP(g) = (p{p3> -+ Piur)> (4)
where p is the occurrence frequency of the i-th
(i=1,2,---,441) G-gap dipeptide, which is defined as

OQ
p;‘] Z441 Og (5)

where O is the occurrence number of the i-th G-gap dipep-
tide in the 36 signature amino acid residues. The dimension
of the GGAP feature vector is 21 x 21 =441. Deletion or
insertion is also computed.

2.3.4. Twenty-Bit Features. Position-specific information and
physicochemical properties were used to encode the 36
amino acid residues for each virus. Five physicochemical
property descriptors of the standard amino acids were con-
structed, namely, polarity, secondary structure, molecular
volume, codon diversity, and electrostatic charge [23]. For
each descriptor, the standard amino acid alphabets were
classified into three groups, and the deletion/insertion
(indel) was regarded as the fourth group. Representation of
20 standard amino acids and one indel was according to
the five physicochemical properties. Each residue was
encoded as a 20-bit vector comprising 0/1 elements, where
the position of the bit was set to 1 if the residue belongs to
the corresponding group; otherwise, it was 0. Given the
amino acid augment approach, the top k residues with the
highest entropy values were selected. The dimension of the
feature vector was 20 x k.

2.3.5. Twenty-One-Bit Features. Twenty-one-bit feature was
like a one-hot encoding. In this algorithm, each amino acid
residue is transformed into a 21-bit 0/1 vector. (e.g., Ala by
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; indel by 0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1). Given the amino acid augment
approach, each strain with the top k residues was repre-
sented by a 21 x k dimensional feature vector.

2.3.6. Overlapping Property Features. This algorithm divided
the 20 standard amino acids and one gap (indel) into 11 dif-
ferent groups according to physicochemical properties. The
distribution of the 20 stranded amino acids in the 10 groups
can overlap [24]. The 10 amino acid groups were aromatic
={F,Y,W,H}, negative={D,E}, positive={K, H,R},
polar={N,Q,S,D,E, C, T,K,R, H, Y, W}, hydrophobic = {
A,G,CT,LV,LK,HFY,W,M}, aliphatic={LV,L},
tiny = {A, S, G, C}, charged={K, H,R, D, E}, small = {P,N
,D,T,C,A,G,S,V}, and proline = {A, S, G, C}. Indels form
the 11th group. Each amino acid residue was represented by
an 11-dimensional 0/1 vector. The position of the vector was
set to 1 if the residue belongs to the physicochemical prop-
erty group; otherwise, it was 0. Given the amino acid aug-
ment approach, the top k residues with the highest entropy
values were selected. The amino acid augment was encoded
with an 11 x k feature vector.

2.4. Framework of Feature Representation Learning. The
framework of the feature representation learning algorithm,
which includes two main steps, feature representation learn-
ing and feature representation optimization, is shown in
Figure 1. Firstly, feature representations from a set of feature
descriptors are generated using the RF classifier systems.
Secondly, the feature representations learnt from the first
step are optimized to yield informative feature subsets. The
two-step feature representation learning procedure was as
follows [16].

2.4.1. Feature Representation Learning. The six feature
encoding algorithms were AAC, PC-PseAAC, GGAP, 20-
bit features (BIT20), 21-bit features (BIT21), and overlap-
ping property features (OLP), all of which are described
above. A feature pool was built to generate as much informa-
tion as possible in the predicting models with different
parameters. For example, k is a common parameter for
BIT20, BIT21, and OLP. Because the 36 significant amino
acids were screened after the entropy ranking was obtained,
we set k as 4-36 by step 4. The maximum k value was set as
36 because there were 36 signature positions, and therefore,
a total of 27 feature descriptors are obtained for BIT20,
BIT21, and OLP. A similar procedure was used for PC-
PseAAC and GGAP. With the use of different parameters,
a total of 64 feature descriptors were in the feature pool.
Information about all the feature descriptors is provided in
Table 1.

Before the optimization of feature representation, two
types of predictions were used to fulfill the learning. All
the 64 descriptors in the feature pool were used to train
and predict with the RF models, and two types of predictions
were achieved. The first prediction type was the class label
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FiGure 1: Flowchart of representation learning of amino acid features. After data cleaning, 36 signature amino acid positions based on
entropy were screened. Six encoding algorithms with the change of parameter were used to explore the key information. All the 64
descriptors in the feature pool were used to train and predict with the RF models, and two types of predictions were achieved to be
further optimized. Each swine virus was eventually represented by two optimized feature vectors, “class” and “prob.” Finally, the

predictive models were built and compared.

(positive or negative): positive samples (swine viruses with
the phenotype of cross-species infection) were marked as 1,
and negative samples (swine viruses without the phenotype
of cross-species infection) were marked as 0. The second
prediction type was the pseudo probability that a sample
belongs to a certain class (positive or negative). For each pre-
diction type, all 64 outputs computed by the 64 RF models
were concatenated as a new feature vector. Each swine virus
was eventually represented by two 64-dimensional feature
vectors, which were marked “class” and “prob,” respectively.
Feature vector “class” comprised the class information learnt
from the original feature pool, and feature vector “prob”
comprised the probabilistic information. Fast speed for com-
putation was expected for the first type models while high
performance for prediction accuracy was expected for the
second type models.

2.4.2. Feature Representation Optimization. The two predic-
tion types were further optimized to improve their feature
representation ability. A well-known feature selected
method, mRMR, was used to rank the features of the “class”
and “prob” information [25]. The mRMR method uses the
mutual information to maximize the mutual information
between the joint distribution of the selected features and
the class labels and minimizes the redundancy between the
selected features. The mRMR method was used to optimize
the feature representations and obtain the feature list ranked
by their importance scores. The sequential forward search
(SES) strategy was used to increase the features from the
ranked feature list one by one [16]. After training the RF
classifier, the feature subset with the best performance was

considered as the optimal subset. We obtained 20 optimal
features for “class” and the 25 optimal features for “prob.”

2.5. RF Algorithm. An RF algorithm was used to obtain two
types of feature vectors and construct models of prediction
for cross-species infection of SIVs. RF machine-learning
algorithms are robust and have been used widely to model
biology data [4]. The RF behaves like an ensemble algorithm
and proposes a set of decision trees by random feature selec-
tion. We used the RF algorithm in the R environment in this
study [26]. All the experiments were done using version
3.5.0 of R with the default parameters (tree number = 500).

2.6. Evaluation Metrics. We used four commonly used met-
rics to evaluate the model performance, namely, sensitivity
(SN), specificity (SP), accuracy (ACC), and Mathew’s corre-
lation coefficient (MCC) as follows:

SN x 100%,

TP
" TP +EN
1IN
" TN +FP
TP +TN
TP+ TN+ FP + FN
TP x TN + FP x FN

/(TP + EN) (TP + FP) (IN + FN) (IN + FP)

SP x 100%,

ACC= x 100%,

MCC= x 100%,

(6)

where TP indicates true positive, the number of correctly
predicted true strains with the phenotype of human
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TaBLE 1: Summary of feature descriptors and their corresponding feature number.
Descriptors Type Number Descriptors Type Number
1 AAC 20 33 GGAP (g =13) 441
2 PseAAC (A=1) 21 34 GGAP (g = 14) 441
3 PseAAC (1 =2) 22 35 GGAP (g = 15) 441
4 PseAAC (A =3) 23 36 GGAP (g=16) 441
5 PseAAC (A=4) 24 37 GGAP (g=17) 441
6 PseAAC (L =5) 25 38 BIT20 (k = 4) 80
7 PseAAC (A =6) 26 39 BIT20 (k= 8) 160
8 PseAAC (A=7) 27 40 BIT20 (k = 12) 240
9 PseAAC (A =8) 28 41 BIT20 (k = 16) 320
10 PseAAC (A=9) 29 42 BIT20 (k =20) 400
11 PseAAC (A =10) 30 43 BIT20 (k =24) 480
12 PseAAC (A=11) 31 44 BIT20 (k =28) 560
13 PseAAC (A =12) 32 45 BIT20 (k= 32) 640
14 PseAAC (A =13) 33 46 BIT20 (k = 36) 720
15 PseAAC (A = 14) 34 47 BIT21 (k=4) 84
16 PseAAC (A =15) 35 48 BIT21 (k=38) 168
17 PseAAC () = 16) 36 49 BIT21 (k=12) 252
18 PseAAC (A =17) 37 50 BIT21 (k= 16) 336
19 PseAAC (A =18) 38 51 BIT21 (k= 20) 420
20 GGAP (g=0) 441 52 BIT21 (k =24) 504
21 GGAP (g=1) 441 53 BIT21 (k=28) 588
22 GGAP (g=2) 441 54 BIT21 (k =32) 672
23 GGAP (g=3) 441 55 BIT21 (k = 36) 756
24 GGAP (g=4) 441 56 OLP (k=4) 44
25 GGAP (g=5) 441 57 OLP (k=8) 88
26 GGAP (g=6) 441 58 OLP (k=12) 132
27 GGAP (g=7) 441 59 OLP (k=16) 176
28 GGAP (g=38) 441 60 OLP (k =20) 220
29 GGAP (g=9) 441 61 OLP (k=24) 264
30 GGAP (g = 10) 441 62 OLP (k=28) 308
31 GGAP (g=11) 441 63 OLP (k=32) 352
32 GGAP (g=12) 441 64 OLP (k = 36) 396
TABLE 2: Amino acid set for predicting SIVs.
Num Pro’ Pos® Entropy Num Pro Pos Entropy Num Pro Pos Entropy
1 HA 9 1.57 13 HA 163 1.56 25 HA 401 1.51
2 HA 53 1.74 14 HA 169 1.65 26 NA 42 1.75
3 HA 78 1.56 15 HA 173 1.62 27 NA 43 1.78
4 HA 82 1.51 16 HA 189 2.17 28 NA 52 1.61
5 HA 131 1.59 17 HA 192 1.58 29 NA 93 1.77
6 HA 135 1.67 18 HA 193 1.63 30 NA 332 1.65
7 HA 137 1.57 19 HA 196 1.76 31 NA 344 1.55
8 HA 140 1.68 20 HA 199 1.62 32 NA 369 1.87
9 HA 142 1.90 21 HA 219 1.65 33 NA 385 1.74
10 Ss 144 2.15 22 HA 261 1.76 34 NA 400 1.72
11 HA 156 1.75 23 HA 269 1.54 35 NA 435 1.69
12 HA 159 1.65 24 HA 276 1.62 36 PB1-F2 21 1.52

'Viral protein. *Position of amino acid residue as H3 subtype numbering,
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FIGURE 2: Feature representation optimization with the mRMR algorithm. (a) The SFS curves for ACC of “class” and “prob” feature. The
feature number (1-64) and the accuracy were represented by the x- and y-axis. (b) The SFS curves for MCC of “class” and “prob”
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infection; TN indicates true negative, the number of cor-
rectly predicted true strains without the phenotype of
human infection; FP indicates false positive, the number of

strains without the phenotype of human infection predicted
to be strains with the phenotype of human infection; and FN
is false negative, the number of strains with the phenotype of
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FIGURE 3: Performance of the optimal features: (a) performances of the optimal “class” features and the top 6 individual descriptors; (b)
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top 6 individual descriptors; (d) ROC curves of the optimal “prob” features and the top 6 individual descriptors.

human infection predicted to be strains without the pheno-
type of human infection. The sensitivity and specificity met-
rics measure the predictive ability of a model in positive and
negative cases, respectively. The other two measures, ACC
and MCC, were used to evaluate the overall performance
of the models. For these four metrics, high scores indicate
high performance of the models.

The receiver operating characteristic (ROC) curve,
which is used to evaluate the overall performance of a binary
classifier system [27], was also used in this study. The ROC
curve is generated by plotting the true positive rate against

the false positive rate under different classification thresh-
olds. We also calculated the area under ROC curve (AUC)
to evaluate the predictive performance of the models. AUC
values range from 0.5 to 1.

2.7. Tenfold Cross-Validation Method. The 10-fold cross-
validation method was used to evaluate the predictive per-
formance of the models. The models were trained on 692
positive samples and 1019 negative samples that were
selected randomly from the cleaned dataset. The remaining
10% of samples (77 positive and 114 negative) were used
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TaBLE 3: Results of feature representations using class information and probabilistic information.
Features ACC SE SP MCC TP N FP FN
Class features 95.22 92.72 96.91 90.05 713 1098 35 56
Probabilistic features 95.95 93.24 97.79 91.59 717 1108 25 52
Optimal class features 95.69 93.50 97.18 91.03 719 1101 32 50
Optimal probabilistic features 96.37 94.54 97.62 92.46 727 1106 27 42
TABLE 4: Performance of feature representation learning and ensemble learning.
Learning strategies ACC SE SP MCC TP TN FP FN
Class information 95.69 93.50 97.18 91.03 719 1101 32 50
Probabilistic information 96.37 94.54 97.62 92.46 727 1106 27 42
Major voting 94.37 90.51 97.00 88.31 696 1099 34 73
Probability averaging 94.48 90.77 97.00 88.52 698 1099 34 71

as an independent test dataset to assess the performances of
the classifiers. This process was repeated 10 times, and the 10
results are averaged to obtain the final evaluation of predic-
tion performance.

3. Results and Discussion

3.1. Signature Position of SIV. After elimination of redun-
dancy and other necessary cleaning of viral data from the
GISAID database, the final dataset for the prediction of
cross-species infection contained two categories of viruses:
769 viruses isolated from human and 1133 viruses isolated
from swine. The 769 human viruses were considered as pos-
itive samples because they were verified to have the ability of
infection among humans. The 1133 swine viruses were con-
sidered as negative samples. Information about these virus
strains is summarized in Table SI.

To screen the signature position, the entropies in each
position of the 11 viral proteins were calculated, respectively.
As shown in Table 2, the HA protein contained the highest
number of selected amino acid residues (25/36), which is
consistent with the known role of HA mainly in receptor-
binding and fusion activity for cross-species infection of
SIVs. Positions HA102-HA290 are located in or close to
the host receptor binding region [28, 29], and HA163 and
HA189 are related to the specificity of receptor binding
[30, 31]. The signature positions were verified to be related
with the mechanism of interspecies transmission or high
efficiency of transmission among humans, which would
rationalize the model and benefit predicting accuracy.

3.2. Optimal Feature Representations. The mRMR feature
ranking algorithm was used to select the 64-dimensional fea-
ture vector, which comprised the predictions from the 64 RF
models (Figure 1). A ranked feature list for the 64 features
was generated after sorting their importance scores from
the mRMR algorithm. The sequential forward search strat-
egy was proposed to explore the optimal feature representa-
tions from the ranked list of 64 features. The features were
increased one by one according to the sequence in the list,
and the RF classifiers were trained. The influenza virus data

were tested with the 10-fold cross-validation method. The
sequential forward search curves for the ACC and MCC
metrics were drawn to find the optimized feature
(Figure 2). For the class features, the RF classifier performed
best with maximum ACC and MCC of 95.69% and 91.03%,
respectively, when the feature number 20 was selected
(Figures 2(a) and 2(b)). This result indicates that the first
20 features from the ranked feature list had the optimal rep-
resentation ability to distinguish swine viruses with the abil-
ity of cross-species infection. For the probabilistic features,
the RF classifier performed best with the first 25 features
(ACC of 96.37% and MCC of 92.46%; Figures 2(a) and
2(b)). The screened 20 class and 25 probabilistic features
were used to build the predictive classifiers of cross-species
infection.

3.3. Comparison of Optimal Feature Representations with
Individual Descriptors. Using the class feature, optimal rep-
resentation vectors with 20 dimensions were obtained from
20 individual feature descriptors. The predictive perfor-
mance of the optimal feature was compared with the six
top individual descriptors to evaluate the learning ability of
the feature representation. The 10-fold cross-validation tests
were fulfilled based on the dataset.

The performances of the optimal class features and the
compared individual features are illustrated in Figure 3(a),
and the ROC curves were shown in Figure 3(b). The optimal
features gave the best predictive performance with maxi-
mum ACC and MCC of 95.68% and 91.03%, respectively,
which are higher than the values obtained with the second-
best feature descriptor BIT20 (k=4) (Figure 3(a)). The
AUC (0.97) obtained using our feature descriptor was better
than that of BIT20 (k=4; AUC=0.91). Notably, only 20
features were used for optimal feature, whereas BIT20
(k=4) used 80 features. Moreover, the 25 optimal feature
representations based on probabilistic information were
compared with the individual feature descriptors. The perfor-
mances of the optimal probabilistic features and the compared
individual features are shown in Figure 3(c), and the ROC
curves are shown in Figure 3(d). The results were consistent
and indicated that the probabilistic feature representations
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FiGure 4: Comparison of traditional classifiers: (a) performances of the optimal “class” features with traditional classifiers; (b) ROC curves
of the optimal “class” features with traditional classifiers; (c) performances of the optimal “prob” features with traditional classifiers; (d)

ROC curves of the optimal “prob” features with traditional classifiers.

outperformed the other six feature descriptors. The optimal
features gave the best predictive performance with maximum
ACC and MCC of 96.37% and 92.46%, respectively, which
are higher than those of the six individual features.

3.4. Comparison of Class and Probabilistic Information.
Influenza viruses were represented by class and probabilistic
information, and their feature vectors comprised the predic-
tions of the 64 RF models to encode signature positions of 36
amino acids. The performance of different information to
predict cross-species infection of swine influenza virus was
evaluated. As shown in Table 3, the feature vector using
probabilistic information outperformed the feature vector

using class information. The overall performance based on
probabilistic information had ACC and MCC values of
95.95% and 91.59%, respectively, whereas the overall perfor-
mance based on class information had ACC and MCC
values of 95.22% and 90.05%, respectively. The perfor-
mances of the two optimal feature vectors also are shown
in Table 3. The overall 64-dimensional feature vectors
encoded with class and probabilistic information were com-
pared with the optimal features. After ranking by the mRMR
algorithm, the performance based on the optimal probabilis-
tic information increased from 95.95% to 96.37% for ACC
and from 91.59% to 92.46% for MCC, and the performance
based on class information increased from 95.22% to 95.69%
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for ACC and from 90.05% to 91.03% for MCC. These results
confirmed that the probabilistic feature identified infection
better than the class feature. However, both feature types
had predictive power for cross-species infection and were
used to construct predictive models.

3.5. Comparison of Feature Representation Learning with
Ensemble Learning. Traditional ensemble learning methods
combine predicting results from multiple models to make
decisions and for classification. The feature representation
learning used and optimized the predictions of the 64 RF
models to obtain a predicting model that was similar to tra-
ditional ensemble learning models. Two types of feature rep-
resentation learning (class information learning and
probabilistic information) were compared with two classical
ensemble learning methods (majority voting and probability
averaging). Majority voting considers the majority predic-
tions of the 64 RF models and makes predictions according
to the majority rule. Probability averaging simply computes
the probabilistic values of the 64 RF models and makes pre-
diction based on the threshold. As shown in Table 4, both
types of feature representation learning gave better perfor-
mances than the two traditional ensemble learning methods.
With the probabilistic information, the feature learning
strategy had maximum ACC and MCC of 96.37% and
92.46%, respectively. The ACC and MCC obtained with
our strategy were about 2% and 3% higher, respectively, than
those obtained with the ensemble strategies. Based on class
information, the feature learning strategy had the maximum
ACC and MCC of 95.69% and 91.03%, respectively. The
ACC and MMC obtained with our strategy were about 1%
and 3% higher, respectively, than those obtained with the
ensemble strategies. Notably, our feature learning strategy
achieved a remarkable improvement, even though ensemble
learning is considered an effective way to improve predictive
performances.

3.6. Comparison of Our Predictor with Classical Classifiers.
We used the RF algorithm and class or probabilistic infor-
mation to construct predictor for SIVs. To evaluate the pre-
dictive performance of the RF method, we compared our
predictor with the traditional classifiers, Support vector
machine (SVM), Naive Bayes (NB), and K-nearest neighbor
(KNN), on our dataset with 10-fold cross-validation. The
parameters for these classifiers were the same with those in
the references [4] and [32]. The results showed that the RF
method gave the best overall predictive performance based
on the class information with maximum ACC and MCC of
95.69% and 91.03%, which were 1.32% and 2.71% higher,
respectively, than those obtained with the NB method
(Figures 4(a) and 4(b)). Our AUC (0.97) was better than that
of KNN (k =4; AUC =0.95). We also compared our predic-
tor with the traditional classifiers based on probabilistic
information. The probabilistic feature representation out-
performed the other three classifiers. The RF method gave
the best overall predictive performance based on the proba-
bilistic information with maximum ACC and MCC of
96.37% and 92.46%, which were 2.58% and 5.38% higher,
respectively, than those with the NB method (Figures 4(c)
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and 4(d)). Our AUC (0.98) was better than that of NB
(AUC = 0.96). Overall, the results show that the RF method
produced better predictions of infection than the support
vector machine, NB, and KNN methods.

4. Conclusions

A model for predicting cross-species infection of SIVs was
described in the paper. The major contribution of this pre-
dictor was the set of informative features of viral proteins
that were learned from a total of 64 feature descriptors,
including compositional, position-specific, and physico-
chemical information. A feature representation learning
scheme was proposed. We integrated class and probabilistic
information into our feature representations and removed
redundant and irrelevant features by feature space optimiza-
tion to improve the feature representation ability. The ten-
fold cross-validation results showed that a high predictive
performance was achieved using 20 informative features
and 22 probabilistic information. We compared the feature
representation learning scheme with those of different learn-
ing strategies and confirmed that feature representation
learning scheme gave better predictions. We anticipate that
our method will be a powerful tool for large-scale identifica-
tion of swine influenza viruses and will facilitate the charac-
terization of their transmission phenotype and accelerate
their applications in virology.

Data Availability
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platform.epicov.org/epi3/frontend#5aa0ce) and with the
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