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Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its
beneficial effects on brain health and cognition. Our group has previously shown that a
water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal
models of aging and Alzheimer’s disease, including a dose-related effect of CAW on
memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to
elucidate the mechanisms underlying the effects of CAW in the brain by conducting a
metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing
concentrations of CAW. Tissue was collected from 8-month-old male and female
5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or
1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid
chromatography coupled to high-resolution mass spectrometry analysis was performed
and relative levels of 120 annotated metabolites were assessed in the treatment groups.
Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on
metabolite levels compared to wild-type mice, and variations in the metabolomic response
to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated
groups (5xFAD or wild-type, male or female), CAW (500mg/kg/d) significantly altered
metabolic pathways related to purine metabolism, nicotinate and nicotinamide
metabolism, and glycerophospholipid metabolism. The results are in line with some of
our previous findings regarding specific mechanisms of action of CAW (e.g., improving
mitochondrial function, reducing oxidative stress, and increasing synaptic density).
Furthermore, these findings provide new information about additional, potential
mechanisms for the cognitive-enhancing effect of CAW, including upregulation of
nicotinamide adenine dinucleotide in the brain and modulation of brain-derived
neurotrophic factor. These metabolic pathways have been implicated in the
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pathophysiology of Alzheimer’s disease, highlighting the therapeutic potential of CAW in
this neurodegenerative disease.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia
in the elderly population and is the sixth leading cause of death in
the United States (NIoA NIoH, 2020). The financial burden of
AD on US health care systems was estimated to be $305 billion in
2020, with an expectation that this number will increase to more
than $1 trillion by 2050 as the US population ages (Wong, 2020).
Due to the highly complex pathology of AD, development of
effective treatments has been difficult (NIoA NIoH, 2020). Prior
to the Food and Drug Administration’s recent approval of
aducanumab, the first beta-amyloid (Aβ) targeted therapy for
AD (Yang and Sun, 2021), only five medications had been
approved for AD, all of which offer only symptomatic relief
and do not influence disease progression (Alzheimer’s
Association, 2020).

The lack of effective treatments is in part due to the
multifaceted nature of AD pathophysiology. In addition to
characteristic Aβ plaques and tau pathology, recent research
suggests that disruptions in other fundamental biological
processes, including neuroinflammation (Heneka et al., 2015)
as well as mitochondrial and antioxidant pathways (Jiang et al.,
2016;Wojsiat et al., 2018;Wang et al., 2020), also play key roles in
the progression of the disease. Additionally, there is significant
crosstalk between each of these pathways. This has led to a
growing interest in identifying therapeutic interventions with
multiple biological targets for use in AD.

Herbal therapies offer promising therapeutic potential in AD
as natural sources of a diverse array of phytochemical
components and targets of action. The medicinal plant
Centella asiatica (L.) Urb. [Apiaceae], also known as gotu
kola, is one such example with a long history of use in
traditional Chinese and Ayurvedic medicine for its purported
effects on brain health (Gray et al., 2017a). Preclinical and clinical
evidence widely supports the cognitive-enhancing and
neuroprotective effects of Centella asiatica, though the
mechanisms underlying these effects are still in question (Gray
et al., 2017a). Our group has demonstrated the cognitive-
enhancing effects of a water extract of Centella asiatica
(CAW) in mouse models of aging and AD. (Soumyanath
et al., 2012; Gray et al., 2015; Gray et al., 2016; Gray et al.,
2018a; Gray et al., 2018b; Matthews et al., 2019; Zweig et al., 2021)
These effects were associated with increased antioxidant response
and improved mitochondrial function in the brain (Gray et al.,
2015; Gray et al., 2016; Gray et al., 2018a; Gray et al., 2018b;
Matthews et al., 2019; Zweig et al., 2021).

In a previous study, we examined the effects of increasing
concentrations of CAW in the 5xFAD mouse model of Aβ
accumulation (Matthews et al., 2019). CAW (0, 200, 500, or
1,000 mg/kg/d) was administered in the drinking water to eight-
month-old male and female 5xFAD mice and their wild-type

(WT) littermates for 5 weeks. A dose-dependent improvement in
memory was observed following CAW treatment for both sexes
and genotypes. Memory improvements were associated with
significant changes in antioxidant gene expression in both
5xFAD and WT mice, in the absence of a significant effect of
CAW on Aβ plaque burden in the 5xFAD mice.

The present study seeks to expand on the previous study in
5xFAD and WT mice by analyzing alterations in the brain
metabolome of those same animals to identify possible novel
mechanisms of action underlying the cognitive-enhancing effects
of CAW. Using high-performance liquid chromatography-high
resolution tandem mass spectrometry (HPLC-HRMS/MS), we
analyzed the metabolomic profile of cortical tissue collected from
the female and male 5xFAD mice and WT littermates and
investigated changes in 120 identified metabolites and their
related metabolic pathways.

2 MATERIALS AND METHODS

2.1 Production and Administration of CAW
CAWwas prepared from the dried aerial parts of Centella asiatica
herb (Lot # 170300206; Oregon’s Wild Harvest, Redmond, OR)
that was authenticated as described previously (Matthews et al.,
2019). A voucher sample of the original plant material is
deposited at the Oregon State University Herbarium (OSC-V-
258629). Several batches of a crude water extract (CAW a-θ) were
prepared as needed from the same lot of plant material using a
standardized extraction method described previously (Matthews
et al., 2019; Matthews et al., 2020); A voucher sample of each
batch is stored at −20°C in our laboratory. Targeted and
untargeted HPLC-HRMS/MS (Alcazar Magana et al., 2020)
was performed on a representative CAW batch (CAW-iota).
Results of targeted analysis of caffeoylquinic acids and
triterpenes in CAW iota are shown in Table 1, while
untargeted HPLC-HRMS/MS data has been archived at
Oregon State University. Animals were provided with CAW
(0, 2, 5, or 10 g/L) ad libitum in their water bottles for
5 weeks. We calculated dosing ranges based on the average
daily decrease in water volume and denoted these treatments
as 0, 200, 500, or 1,000 mg of CAW per kg of body weight per day.

2.2 Animals
All animal procedures were conducted in accordance with the
NIH Guidelines for the Care and Use of Laboratory Animals and
were approved by the Institutional Animal Care and Use
Committee of the Portland VA Medical Center (IACUC #:
3260-17). 5xFAD male mice were bred with a C57BL/6:SJL F1
female purchased from Jackson Laboratory (Bar Harbor, ME,
United States). Identification of 5xFAD progeny and WT
littermates was completed by polymerase chain reaction (PCR)
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of transgenic human amyloid precursor protein (hAPP) from
DNA tail samples. Animals were housed in a climate-controlled
environment with an alternating 12 h light–dark schedule. Male
and female 5xFAD and WT littermates (7.6 ± 0.6 months) were
treated with or without CAW (0, 200, 500, or 1,000 mg/kg/d) in
the drinking water for 5 weeks. Animals were fed PicoLab
Laboratory Rodent Diet 5L0D (LabDiet, St. Louis, MO,
United States). Food and water were provided ad libitum.
After 5 weeks of treatment, animals were sacrificed at
9 months of age. Brains were dissected and the left cortex was
used for metabolite extraction.

2.3 Metabolite Extraction
Methanol and water (LC-MS-grade) were purchased from EMD
Millipore (Burlington, MA, United States). Formic acid (certified
ACS reagent) was from Fisher Chemicals (Suwanee, GA,
United States). Labeled amino acid indole-3-acetic acid (D7)
was used as internal standard (Cambridge Isotope
Laboratories, Inc., MA, United States). For metabolomic
analysis, mice cortical tissue was extracted with a protocol
previously reported with some modifications (Kirkwood et al.,
2013). Briefly, the weight of one cortex from one hemisphere was
measured accurately and placed in a 2 ml homogenization tube
prefilled with ceramic beads (1.4 mm). A proportional amount
(20 µl/mg) of homogenization solvent [methanol: water solution
(8:2, v/v)] was added to each sample. Samples were spiked with
the deuterated amino acid (1 µM final concentration) to account
for sample degradation and homogenized using a Precellys™ 24
bead ruptor homogenizer (Bertin Technologies, MD,
United States) for three consecutive cycles of 20 s at 5,000 rpm
with 30 s of cooldown in between. Samples were placed at −20°C
for 1 hour and centrifuged (14,000 rpm, 10 min, 4°C) to collect
the supernatant. The resultant supernatant from each sample was
transferred to a HPLC vial (Microsolv, Leland, NC, United States)
for HPLC–HRMS/MS analysis. A quality control sample was
prepared by combining 5 µl of each sample in a single vial. Prior
to analysis, 3 µl of a 50 ng/ml solution of CUDA [12-

[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid] was
added to each sample to allow for platform stability and
injection volume correction.

2.4 HPLC-HRMS/MS Analysis
Untargeted HPLC–HRMS/MS analyses were performed using a
previously published method (Kirkwood et al., 2013; Housley
et al., 2018; Magana et al., 2020) with minor modifications.
Briefly, data-dependent acquisition in the positive ion mode
was conducted on an AB SCIEX TripleTOF® 5,600 mass
spectrometer (AB SCIEX, Concord, Canada) coupled to a
Shimadzu Nexera HPLC system. Chromatographic separation
was performed on an Inertsil Phenyl-3 column (4.6 × 150 mm,
100 Å, 5 μm; GL Sciences, Rolling Hills Estates, CA,
United States) held at 50°C. A gradient with two mobile
phases was used: (A) water (LC-MS grade) with 0.1% v/v
formic acid; (B) methanol (LC-MS grade) with 0.1% v/v
formic acid. After 1 min at 5% B, the linear elution gradient
was as follows: 1 min, 5% B; 11 min, 30% B; 20 min, 100% B;
25 min, 100% B; 30 min, 5% B; and 35 min, 5% B. The injection
volume was 6 μl with a flow rate of 0.4 ml/min. Samples were
analyzed in a fully randomized batch. The quality control pooled
sample was spiked with 5 µl of a 5-ppm solution in ethanol of the
drugs verapamil and verapamil-D3 (Cambridge Isotope
Laboratories, Inc., MA, United States), and analyzed every ten
injections after a methanol blank sample. The isotopic pattern
obtained for these internal standards was used to monitor for
platform stability along the run. The IonSpray voltage was set at
4,500 V and the source temperature was 500°C. Period cycle time
was 950 ms; accumulation time 100 ms; m/z scan range
100–1,400. The collision energy was set at 35 V with a
collision energy spread setting of 15 V. Mass calibration of the
time-of-flight (TOF) analyzer was performed automatically every
five injections.

2.5 Metabolomics Data Processing
Raw data was loaded to PeakView™ with XIC Manager 1.2.0
(ABSciex, Framingham, MA) for peak-picking, retention time
correction, and peak alignment. Metabolite identities were
confirmed as previously described by matching with an in-
house library comprising IROA standards (IROA Technology,
Bolton, MA) and other commercially available standards (650
total) (García-Jaramillo et al., 2020). The list of identified peaks
was exported toMultiQuant 3.0.2, and chromatograms integrated
to obtain peak area values for all the assigned metabolites. To
account for drift during the metabolomics run, and for potential
differences in the injection volume, the annotated metabolites
were normalized to the highest peak area measured for the
internal standard CUDA. A complete list of annotated
metabolites is provided in Supplementary Table S1.

2.6 Statistical Analysis
To compare the cortical metabolomic profiles of untreated WT
and 5xFAD transgenic mice, peak intensities of individual
metabolites were log2-transformed and mean-normalized by
dividing each value by the within-mouse average (across all
metabolites) and then scaling by the average of all values

TABLE 1 | HPLC-HRMS/MS quantification of phytochemicals in a representative
batch of Centella asiatica water extract (CAW).

Compound % w/w

Caffeoylquinic acids
1,3-dicaffeoylquinic acid 0.067
1,5-dicaffeoylquinic acid 0.064
Chlorogenic acid 0.525
Isochlorogenic acid A 0.229
Isochlorogenic acid B 0.360
Isochlorogenic acid C 0.264
Neochlorogenic acid 0.149
Total caffeoylquinic acids 1.657
Triterpenes
Asiatic acid 0.057
Asiaticoside 2.387
Madecassic acid 0.094
Madecassoside 1.864
Total triterpenes 4.401

% w/w (percent weight per weight).
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(across all metabolites and mice). Heatmaps of peak intensities
across all metabolites were created to descriptively assess for
differences in magnitude by sex and genotype. To identify
changes in the metabolomic profiles, a linear regression model
for the normalized log2 intensities was implemented with
indicator variables for sex, genotype, and the interaction
between sex and genotype. Within-sex and within-genotype
fold changes were back-transformed and reported, as well as
the marginal effects for sex and genotype. For all comparisons,
volcano plots were created with a horizontal line to indicate the
p-value cutoff for the Benjamini-Hochberg control of false
discovery rate, which was computed using an overall
significance level of 0.05.

The same normalization and descriptive analysis described
above were used for the CAW dose-response analysis. For
each sex and genotype combination, the normalized log2
intensities were plotted by dose then separate one-way
ANOVAs were conducted with dose as the independent
variable for each metabolite. The overall Benjamini-
Hochberg adjusted p-values from the ANOVAs were
reported. Pairwise t-tests for all possible comparisons were
conducted with a Benjamini-Hochberg p-value adjustment. In
addition, separate 3-way ANOVAs were conducted on the
normalized log2 intensities for each metabolite to determine if
a significant dose-response curve exists and whether it differs
by sex and genotype. The least squares slopes for the overall
dose-response, the marginal dose-response by sex and
genotype, and the within-sex-and-genotype dose-response
were computed and reported. The fold changes from a dose
of 0–1,000 were calculated using the slopes, and volcano plots
of the fold changes with the Benjamini-Hochberg FDR p-value
cutoff were generated. All analyses were conducted in StataSE
16.1 and R version 4.0.4. Partial least squares-discriminant

analysis and plots (PLS-DA) were generated with
MetaboAnalyst 5.0 (Pang et al., 2021).

2.7 Metabolomic Pathway Analysis
Metabolite data was imported into MetaboAnalyst 5.0 (Pang
et al., 2021) for pathway analysis to compare the metabolomic
profiles of WT and 5xFAD mice and to investigate the effects of
500 mg/kg/d CAW on metabolomic profiles in WT and 5xFAD
mice. A suitable match for the metabolite maleimide could not be
found in MetaboAnalyst and so 119 of 120 annotated metabolites
were included in the pathway analyses. A threshold of 0.1 was set
for the impact value and a raw p value ≤0.05 was considered
significant.

3 RESULTS

3.1 Cortical Metabolomic Profiles of
Untreated WT and 5xFAD Transgenic Mice
Cortical tissue from untreated (0 mg/kg/d CAW) male and
female WT and 5xFAD mice was collected and a PLS-DA
analysis was performed using 120 metabolites (Supplementary
Table S1) identified through methods described in Section 2.5.
As seen in Figure 1, there was separation between the WT and
5xFAD genotypes in both female (1A) and male (1B) mice,
though the separation was more clearly defined in female mice
than in male mice.

Statistically significant fold changes for metabolites were
determined for each sex using a full factorial per metabolite
model with a linear regression model estimator and Benjamini
and Hochberg false discovery rate corrections (Supplementary
Table S2). Relative changes in individual metabolites for male
and female 5xFADmice compared to WT littermates of the same

FIGURE 1 | PLS-DA plots of untreated female and male 5xFAD mice compared to untreated wild-type (WT) mice.
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sex are shown in Figure 2. While there were similarities between
male and female mice in the direction of change for most
individual metabolites resulting from transgenic status, there

were clearly observable sex-related differences in either the
magnitude of change or the direction of change for several
metabolites.

FIGURE 2 | Heatmap of changes in identified metabolites in male and female 5xFAD mice compared to male and female wild-type (WT) mice, respectively.
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Individual metabolites that were significantly altered in
5xFAD mice compared to WT mice can be seen in the
volcano plots for female (Figure 3A) and male mice
(Figure 3B). The experimental resolution used in the
statistical analysis was such that fold changes between 0.7 and
1.4 could not be distinguished from measurement nonlinearities.
Therefore, on the volcano plots, only metabolites outside of those
thresholds (indicated by vertical lines) and above the indicated
FDR cutoff (red horizontal line) can be considered statistically
significant. Overall, 12 metabolites (6 upregulated and 6
downregulated) were significantly altered by the transgene in

female 5xFAD mice, whereas there were five significantly altered
metabolites (2 upregulated and 3 downregulated) in male 5xFAD
(Figure 3). Of these, betaine and N-acetyl-D-mannosamine were
the only metabolites that were significantly altered in both male
and female 5xFAD mice compared to their sex-matched WT
littermates.

A metabolomic pathway analysis was performed using
MetaboAnalyst 5.0 to further compare WT and 5xFAD
transgenic mice. Results are presented in Table 2. The total
number of significantly altered pathways with an impact score
≥0.1 was eleven in 5xFAD females and two in 5xFAD males

FIGURE 3 | Volcano plots of metabolities that changed significantly in 5xFAD mice as compared to wild-type (WT) mice.

TABLE 2 | Pathway analysis comparing male and female 5xFAD mice to male and female wild-type (WT) mice, respectively.

Metabolic pathway Compounds Hits Raw p value Impact score

Male 5xFAD Female 5xFAD

Nicotinate and nicotinamide metabolism 15 4 0.467 0.005 0.639
Glycine, serine and threonine metabolism 34 9 0.349 0.006 0.591
Pyrimidine metabolism 39 13 0.170 0.016 0.493
Arginine biosynthesis 14 6 0.358 0.017 0.365
Arginine and proline metabolism 38 8 0.430 0.024 0.316
Purine metabolism 66 15 0.078 0.012 0.302
Tryptophan metabolism 41 3 0.648 0.026 0.262
Pentose and glucuronate interconversions 18 2 0.030 0.240 0.250
Amino sugar and nucleotide sugar metabolism 37 4 0.030 <0.001 0.186
beta-Alanine metabolism 21 7 0.237 <0.001 0.168
Aminoacyl-tRNA biosynthesis 48 14 0.224 0.026 0.167
Glycerophospholipid metabolism 36 4 0.361 0.028 0.103
Vitamin B6 metabolism 9 1 0.027 <0.001 0.078
Pantothenate and CoA biosynthesis 19 5 0.204 0.002 0.029
Lysine degradation 25 5 0.046 <0.001 0.005
Galactose metabolism 27 1 0.029 0.231 0.002
Biotin metabolism 10 1 0.015 <0.001 0
Ether lipid metabolism 20 1 0.419 0.013 0
Ascorbate and aldarate metabolism 10 1 0.029 0.231 0
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(Table 2). Amino sugar and nucleotide sugar metabolism was the
only metabolic pathway with an impact score ≥0.1 that was
significantly altered in both 5xFAD females (p < 0.001) and
5xFAD males (p � 0.027). Significantly altered pathways with the
highest impact scores in 5xFAD females included nicotinate and
nicotinamide metabolism (impact score � 0.639, p � 0.005),
glycine, serine, and threonine metabolism (impact score �

0.591, p � 0.006), and pyrimidine metabolism (impact score �
0.493, p � 0.016). Pentose phosphate and glucuronate
interconversion was also significantly impacted in 5xFAD
males (impact score 0.250, p � 0.03). Taken together, the
results of metabolomic analyses comparing untreated WT and
5xFAD mice indicate that there are significant metabolic
alterations associated with the 5xFAD transgene but there is

FIGURE 4 | PLS-DA plot comparing cortical metabolomic profiles of male and female 5xFAD and wild-type (WT) mice treated with CAW 0 (D1), 200 (D2), 500 (D3),
or 1,000 (D4) mg/kg.
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FIGURE 5 | Heatmap of changes in identified metabolites in the cortex of male and female 5xFAD and wild-type (WT) mice treated with CAW (200, 500, and or
1,000 mg/kg) compared to untreated animals of the same genotype and gender.
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variability in the number, magnitude, and direction of these
changes between female and male mice.

3.2 Dose-Response Effects of CAW on
Cortical Metabolomic Profiles
Male and femaleWT and 5xFADmice were treated with CAW in
their drinking water for 5 weeks at four different doses (0, 200,
500, and 1,000 mg/kg/d) and changes in cortical metabolomic
profiles were assessed. A PLS-DA analysis was performed for each
group using the same 120 identified metabolites (Supplementary
Table S1). The PLS-DA plots for WT females (Figure 4A),
5xFAD females (Figure 4B), WT males (Figure 4C) and
5xFAD males (Figure 4D) showed separation between control
and CAW-treated animals, particularly at the higher CAW
concentrations.

A heat map of the dose-response effects of CAW on the
cortical metabolomic profiles of male and female WT and 5xFAD
mice compared to genotype- and sex-matched control animals is
shown in Figure 5. While there were some similarities between
sexes and/or genotypes in response to different concentrations of

CAW, changes in individual metabolites were rarely consistent
across all four groups of animals (WT females, 5xFAD females,
WT males, 5xFAD males). Fold changes were calculated, and
statistical significance determined using a linear regression model
for each metabolite with log2 peak intensity as the outcome and
treatment dose as the independent variable. Pairwise t-tests for
the normalized metabolite intensities at each concentration of
CAW compared to genotype- and sex-matched control animals
were conducted using a Benjamini Hochberg FDR correction
(Benjamini and Hochberg, 1995) (Figure 6). Again, significantly
altered metabolites were those with fold changes outside of the
0.7–1.4 range with p values lower than the FDR correction limit
when compared to genotype- and sex-matched control animals
(Figures 6A–D).

Metabolite changes varied in response to different doses of
CAW and there were only a few examples of individual
metabolites that were significantly altered at all three doses of
CAW for any given genotype. In WT females, glycerol 2-
phosphate was significantly downregulated and adenosine 5′-
diphosphoribose was significantly upregulated at all three dose
levels (Figure 6A). In 5xFAD females, inosine and hypoxanthine

FIGURE 6 | Volcano plots of cortical metabolites female and male wild-type (WT) and 5xFAD mice treated with CAW (200, 500 or 1,000 mg/kg) compared to
untreated sex- and genotype-matched mice.
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were significantly downregulated at all three dose levels
(Figure 6B). In WT males, adenosine 3′,5′-cyclic
monophosphate and spermidine were significantly upregulated
at all three dose levels (Figure 6C). For 5xFAD males, there were
several metabolites that were significantly altered at each dose
level, but no single metabolite was significantly altered at all three
dose levels (Figure 6D). Across all genotypes and sexes (WT
females, 5xFAD females, WT males, 5xFAD males), we observed
that there were more significantly changed metabolites at the
500 mg/kg/d CAW dose level (24 metabolites total) than at the
200 mg/kg/d (20 metabolites) or 1,000 mg/kg/d (9 metabolites)
dose levels. In addition, there were four examples of metabolites
that were significantly altered in 5xFAD mice compared to WT

mice which were then significantly reversed by CAW treatment
(erythritol, nicotinamide adenine dinucleotide (NAD+),
nicotinamide hypoxanthine dinucleotide, spermine); these
changes all occurred only in 5xFAD females and only at the
500 mg/kg/d dose level (Figures 3A, 6B).

Based on these results, we conducted a metabolomic pathway
analysis for female and male 5xFAD and WT mice treated with
500 mg/kg/d CAW compared to genotype- and sex-matched
control mice. All metabolic pathways that were significantly
altered (raw p value <0.05) in at least one of the four groups
are presented in Table 3 with their corresponding impact scores.
Nine pathways were significantly altered in 5xFAD females,
followed by seven pathways in 5xFAD males, six pathways in

TABLE 3 | Pathway analysis in mice treated with CAW (500 mg/kg) vs. sex- and genotype-matched untreated controls.

Metabolic pathway Compounds Hits Raw p value Impact score

WT Female 5xFAD Female WT Male 5xFAD Male

Taurine and hypotaurine metabolism 8 4 0.520 0.039 0.063 0.925 0.714
Thiamine metabolism 7 3 0.686 0.019 0.282 0.133 0.667
Nicotinate and nicotinamide metabolism 15 4 0.098 0.010 0.027 0.007 0.639
Pyrimidine metabolism 39 13 0.227 0.131 0.131 0.015 0.493
Glutathione metabolism 28 8 0.089 0.047 0.021 0.352 0.419
Arginine biosynthesis 14 6 0.483 0.342 0.342 0.038 0.365
Arginine and proline metabolism 38 8 0.141 0.130 0.049 0.507 0.316
Purine metabolism 66 15 0.011 0.003 0.044 0.047 0.302
beta-Alanine metabolism 21 7 0.024 0.146 0.086 0.194 0.168
Aminoacyl-tRNA biosynthesis 48 14 0.041 0.659 0.490 0.695 0.167
Glyoxylate and dicarboxylate metabolism 32 4 0.306 0.018 0.436 0.683 0.148
Glycerophospholipid metabolism 36 4 0.050 0.012 0.099 0.033 0.103
Citrate cycle (TCA cycle) 20 2 0.994 0.008 0.533 0.552 0.102
Vitamin B6 metabolism 9 1 0.007 0.510 0.243 0.745 0.078
Panthothenate and CoA biosynthesis 19 5 0.290 0.323 0.224 0.004 0.029
Ether lipid metabolism 20 1 0.217 0.022 0.080 0.003 0
Biotin metabolism 10 1 0.008 0.987 0.173 0.608 0

FIGURE 7 | Fold changes in cortical metabolites related to purine metabolism in male and female 5xFAD or wild-type (WT) mice following treatment with CAW
(500 mg/kg) compared to sex- and genotype-matched untreated controls. *p < 0.05, **p < 0.005, ***p < 0.001.
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WT females, and four pathways in WT males. Three pathways
with an impact score ≥0.1 were found to be significantly altered in
at least three of the four groups (WT females, WT males, 5xFAD
females, 5xFAD males): purine metabolism, nicotinate and
nicotinamide metabolism, and glycerophospholipid metabolism.

Purine metabolism (impact score � 0.302; Table 3) was
significantly altered by CAW treatment (500 mg/kg/d) in all
four groups: 5xFAD females (p � 0.003), WT females (p �
0.011), 5xFAD male (p � 0.047) and WT males (p � 0.044).
Fifteen of the 120 annotated metabolites in the dataset were
involved in the purine metabolism pathway. Figure 7 shows the
purine metabolism pathway with box-and-whisker plots for
individual metabolites that significantly changed in at least one
of the four groups. Inosine and hypoxanthine were significantly
decreased by CAW treatment in both 5xFADmale (p � 0.026, p �
0.042, respectively) and female (p � 0.002, p � 0.006, respectively)
mice. Three metabolites (guanosine 5′-monophosphate (GMP),
urate, adenosine diphosphate (ADP)-ribose) were significantly
increased inWT females only (p � 0.031, p � 0.042, and p � 0.001,
respectively). Inosine 5′-monophosphate (IMP) was significantly

decreased in both 5xFAD females (p � 0.001) and WT females
(p � 0.013). Cyclic adenosine monophosphate (cAMP) was
significantly increased in WT males (p < 0.001) and
significantly decreased in WT females (p � 0.006).

Nicotinate and nicotinamide metabolism (impact score �
0.639; Table 3) was significantly altered by CAW treatment
(500 mg/kg/d) in 5xFAD females (p � 0.010), 5xFAD males
(p � 0.007) and WT males (p � 0.007), but not in WT females
(p � 0.098). Of the 120 identified metabolites used in the analysis,
four metabolites (NAD+, deamino-NAD+, nicotinamide, and
aspartate) were involved in the nicotinate and nicotinamide
metabolism pathway. As before, box-and-whisker plots in
Figure 8 show metabolites that were significantly changed in
at least one group. NAD+ was significantly increased in both
5xFAD males (p � 0.028) and 5xFAD females (p � 0.022). In
addition, deamino-NAD+ was significantly increased in 5xFAD
females (p � 0.026) and nicotinamide was significantly increased
in WT females (p � 0.032).

Glycerophospholipid metabolism (impact score � 0.103;
Table 3) was significantly altered by CAW treatment

FIGURE 8 | Fold changes in cortical metabolites related to nicotinate and nicotinamide metabolism in male and female 5xFAD or wild-type (WT) mice following
treatment with CAW (500 mg/kg) compared to sex- and genotype-matched untreated controls. *p < 0.05, **p < 0.005, ***p < 0.001.
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(500 mg/kg/d) in WT females (p � 0.050), 5xFAD females (p �
0.012) and 5xFAD males (p � 0.033), but not WT males (p �
0.099). Four of the 120 identified metabolites in our study
(choline, cytidine 5′-diphospho (CDP)-choline, choline
phosphate, and sn-glycero-3-phosphocholine) were involved in
glycerophospholipid metabolism. Box-and-whisker plots in
Figure 9 show metabolites involved in glycerophospholipid
metabolism that were significantly changed in at least one of
the four groups. The metabolite sn-Glycero-3-phosphocholine
was significantly increased in 5xFAD males (p � 0.008) and
5xFAD females (p � 0.029), while CDP-choline was
significantly increased in 5xFAD females only (p � 0.013).
Choline phosphate was significantly decreased in WT males
(p � 0.041).

4 DISCUSSION

Our group has previously reported that eight-month-old male
and female 5xFAD mice and WT littermates treated with CAW
(200, 500, or 1,000 mg/kg/d) in their drinking water for 5 weeks

displayed a dose-dependent improvement in memory in both
sexes and genotypes and without altering Aβ plaque burden in the
5xFAD mice (Matthews et al., 2019). To further investigate
potential mechanisms underlying these cognitive-enhancing
effects of CAW, a metabolomic analysis was performed on
cortical samples collected from the 5xFAD and WT mice used
in that prior study.

Cortical metabolomic profiles of untreated 5xFAD mice and
WT littermates showed variations between male and female mice
in the metabolites altered by the transgenic status (Figures 2, 3),
with a greater number of metabolites being significantly altered in
females. This finding may be related to other sex differences
observed in the 5xFAD transgene model of AD. Studies in 5xFAD
mice have found that female mice display greater molecular
pathology (Sadleir et al., 2015; Bundy et al., 2019), higher
levels of cerebral Aβ42 (Sadleir et al., 2015), and a greater Aβ
plaque burden than male mice (Bhattacharya et al., 2014; Reid
and Darvesh, 2015). Similar sex-related differences in pathology
have also been observed in other transgenic models of AD,
including the APP/PS1 (Li et al., 2016; Mifflin et al., 2021)
and 3xTg-AD (Carroll et al., 2010; Yang et al., 2018) models.

FIGURE 9 | Fold changes in cortical metabolites related to glycerophospholipid metabolism in male and female 5xFAD or wild-type (WT) mice following treatment
with CAW (500 mg/kg) compared to sex- and genotype-matched untreated controls. *p < 0.05, **p < 0.005, ***p < 0.001.
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A metabolomic pathway analysis comparing untreated male
and female 5xFAD mice to WT littermates similarly found
differences between sexes. In total, eleven metabolic pathways
with an impact score ≥0.1 were significantly altered in 5xFAD
females compared to WT females while only two pathways were
significantly altered in 5xFAD males compared to WT males.
Notably, several of the pathways altered in 5xFAD females,
including purine metabolism, pyrimidine metabolism,
glycerophospholipid metabolism, glycine, serine and threonine
metabolism, arginine and proline metabolism, are in agreement
with findings from previous metabolomics studies in other mouse
models of Aβ accumulation (González-Domínguez et al., 2014;
González-Domínguez et al., 2015; Dejakaisaya et al., 2021; Zhao
et al., 2021).

Next, the effects of three concentrations of CAW (200, 500 and
1,000 mg/kg/d) on cortical metabolomic profiles of male and
female 5xFAD mice and their WT littermates were examined. As
seen in Figures 5, 6, there was substantial variation between sexes
and genotypes in the direction and magnitude of change of
individual metabolites in response to CAW, with very few
metabolites being significantly altered at all three
concentrations of CAW.

A pathway analysis was conducted in male and female 5xFAD
andWTmice treated with 500mg/kg/d CAW compared to sex- and
genotype-matched controls. This dose of CAW was chosen because
it elicited the greatest total number of significantly altered
metabolites overall compared to the other two dose levels. The
500mg/kg/d CAW dose also reversed more of the significant
metabolite changes observed in untreated 5xFAD mice compared
to WT mice than did the other CAW doses. A pathway analysis
identified three pathways (purine metabolism, nicotinate and
nicotinamide metabolism, and glycerophospholipid metabolism)
that were all significantly altered by CAW in at least three of the
four groups: WT female, 5xFAD female, WT male, 5xFAD male
(Table 3). Evidence in the literature suggests that these three
pathways may be involved in the pathophysiology of AD and
therefore, these findings may provide new insight into the
mechanisms underlying the cognitive-enhancing effects of CAW
(Gray et al., 2018a; Matthews et al., 2019; Zweig et al., 2021).

Purine metabolism was significantly altered by CAW
(500 mg/kg/d) in WT males, 5xFAD males, WT females, and
5xFAD females (Table 3). Themagnitude and direction of change
for individual metabolites involved in purine metabolism varied
by treatment group (Figure 7). It is notable that purine
metabolism was significantly altered in untreated 5xFAD
females compared to WT females in our study, and that
dysregulation of purine metabolism has previously been
demonstrated in APP/PS1 (González-Domínguez et al., 2014;
González-Domínguez et al., 2015) and 3xTgAD (Esteve et al.,
2017; Zhao et al., 2021) mouse models of AD as well. These data
may have clinical significance since evidence of dysregulated
purine metabolism has been seen in the cerebrospinal fluid
(Kaddurah-Daouk et al., 2013) and post-mortem brain
samples collected from patients with AD (Ansoleaga et al.,
2015; Alonso-Andrés et al., 2018; Mahajan et al., 2020), with
evidence of disease stage- and brain region-dependent metabolite
changes.

The most notable changes in individual metabolites
involved in purine metabolism following CAW treatment
were inosine and hypoxanthine, both of which were
significantly decreased in 5xFAD males and 5xFAD
females. Inosine, a purine nucleoside produced through the
catabolism of adenosine (Teixeira et al., 2020), is increased in
various animal models of AD (González-Domínguez et al.,
2014; González-Domínguez et al., 2015; Esteve et al., 2017)
and in several brain regions in post-mortem brain samples
from patients with AD. (Alonso-Andrés et al., 2018) This
suggests that CAW may act by normalizing inosine levels,
though inosine was not elevated in untreated male and female
5xFAD mice in this study. Interestingly, there is also evidence
that treatment with inosine can improve cognitive deficits in
rodent models of aging and AD. (Ruhal and Dhingra, 2018;
Teixeira et al., 2020) In aged female rats, inosine significantly
improved cognitive function, while also showing antioxidant
and anti-inflammatory effects (Ruhal and Dhingra, 2018).
Similarly, in a rat model of streptozotocin (STZ)-induced
AD, inosine attenuated STZ-induced memory impairments,
reduced acetylcholinesterase activity, prevented alterations in
ion pump activities, and demonstrated antioxidant activity
(Teixeira et al., 2020). This apparent discrepancy may
potentially reflect an issue of inosine utilization. The
elevated levels previously reported in patients with AD and
transgenic mouse models of AD could suggest poor utilization
of inosine; our findings may therefore indicate that CAW
improves inosine utilization, resulting in lower inosine levels,
but accompanied by improved cognition.

Hypoxanthine is a purine derivative formed as a result of DNA
metabolism after apoptosis and cell lysis (Chouraki et al., 2017).
While there is evidence to suggest that hypoxanthine is
dysregulated in animal models of AD, the evidence is
inconsistent, which may reflect disease stage-, species-, and/or
brain region-specific changes (Esteve et al., 2017; Zhao et al.,
2021). The evidence from human studies is inconclusive as well.
One study found that hypoxanthine was significantly decreased in
the frontal cortex of patients with AD compared to healthy
controls, with no significant changes in the parietal or
temporal cortices (Alonso-Andrés et al., 2018). Conversely, a
metabolomics study of cerebrospinal fluid samples from patients
with AD and mild cognitive impairment (MCI) found that
hypoxanthine levels were unchanged in AD, but were
significantly increased in MCI compared to controls
(Kaddurah-Daouk et al., 2013). While there is ample evidence
to suggest that purine metabolism is dysregulated in AD, it is
difficult to attribute the changes in specific purine metabolites
(e.g., inosine and hypoxanthine) observed in this study to the
cognitive-enhancing effects of CAW without further targeted
experiments.

Treatment with CAW (500 mg/kg/d) significantly altered
nicotinate and nicotinamide metabolism in 5xFAD males,
5xFAD females, and WT males, but not WT females
(Table 3). The most interesting changes were seen for the
metabolite NAD+, an important coenzyme in the body that is
involved in a variety of reactions, including as part of several key
metabolic pathways (e.g., glycolysis, the citric acid cycle, and
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oxidative phosphorylation) (Xing et al., 2019). Studies in humans,
rodents, and other organisms have shown that NAD+ levels
decline in normal aging (Lautrup et al., 2019), and NAD+
depletion and disruption of NAD+-involved pathways have
been implicated in the pathophysiology of AD. (Lautrup et al.,
2019)

Dysregulated nicotinate and nicotinamide metabolism has
been observed in 5xFAD (Kim et al., 2020), PS1 (Trushina
et al., 2012), and 3xTgAD (Zhao et al., 2021) mouse models of
AD, although the specific metabolites as well as magnitude
and direction of changes varied depending on the age and
genotype. In the present study, nicotinate and nicotinamide
metabolism was significantly altered in untreated 5xFAD
females compared to WT females. Altered NAD+ levels
have also been observed in fibroblasts collected from
patients with late-onset AD. (Sonntag et al., 2017)
Therapeutic interventions that target the nicotinate and
nicotinamide pathways have likewise shown potential as
cognitive-enhancing agents. NAD+ (Xing et al., 2019) and
its precursors (nicotinamide (Green et al., 2008; Liu et al.,
2013), nicotinamide ribose (Gong et al., 2013; Hou et al., 2018;
Xie et al., 2019), and nicotinamide mononucleotide (Wang
et al., 2016)) have all been found to improve cognitive
performance in a variety of AD mouse models.

The implication of the nicotinate and nicotinamide pathway
for the mechanism of action of CAW is in line with our previous
work showing that CAW improves mitochondrial function,
reduces oxidative stress, and increases synaptic density (Gray
et al., 2015; Gray et al., 2017b; Gray et al., 2018a; Matthews et al.,
2019). These effects are similar to what has been observed in
mouse models following treatment with NAD+ or its precursors,
in which treatment was also associated with cognitive
enhancement (Liu et al., 2013; Long et al., 2015; Wang et al.,
2016; Hou et al., 2018; Kim et al., 2020). Therefore, the observed
upregulation of cortical levels of NAD+ by CAW could be
mediating the effects of CAW on mitochondrial function,
oxidative stress, and synaptic density, and thereby contributing
to its cognitive-enhancing effects.

Glycerophospholipid metabolism was also significantly
affected by treatment with CAW 500 mg/kg/d in 5xFAD
females, 5xFAD males, and WT females, but not WT males
(Table 3). Dysregulation of glycerophospholipid metabolism in
AD has previously been demonstrated in post-mortem brain
samples from AD patients (Nitsch et al., 1991) and in 2- and 6-
month-old 3xTgAD mice (Zhao et al., 2021).
Glycerophospholipid metabolism was also significantly altered
in untreated 5xFAD females compared to WT females in the
present study. Much of the research into glycerophospholipid
metabolism in AD has focused on choline-containing
phospholipids based on the observed decline in cholinergic
transmission present in AD. (Tayebati and Amenta, 2013)
Choline is an essential nutrient, a precursor of acetylcholine
(ACh), and a necessary component for many membrane
phospholipids, and it is hypothesized that the breakdown of
membrane phospholipids may play a role in the pathogenesis
of AD. (Tayebati and Amenta, 2013)

One potentially important finding from our study was that
CAW significantly increased cortical levels of the choline-
containing compound sn-Glycero-3-phosphocholine in both
male and female 5xFAD mice. Also known as
glycerophosphocholine (GPC) or choline alfoscerate, sn-
Glycero-3-phosphocholine is a derivative of
phosphatidylcholine and an ACh precursor (De Jesus Moreno
Moreno, 2003). In both in vitro and in vivo studies, GPC has
shown neuroprotective and cognitive-enhancing activities via
effects on levels of brain-derived neurotrophic factor (BDNF)
(Catanesi et al., 2020) and choline acetyltransferase (Lee et al.,
2017), the enzyme responsible for ACh synthesis. Promising
effects of GPC treatment on cognition (De Jesus Moreno
Moreno, 2003) and dementia-related behavior (Carotenuto
et al., 2017) have also been observed in patients with mild to
moderate AD.

In addition to the observed effects on GPC, CAW also
significantly increased the choline-containing metabolite
CDP-choline (also known as citicoline) in the cortex of
5xFAD females. Similar to GPC, citicoline has
demonstrated considerable potential as an adjunct therapy
for AD in pre-clinical and clinical studies (Secades, 2019;
Piamonte et al., 2020).

Based on the observed effects of CAW on
glycerophospholipid metabolism, one potential novel
mechanism of action underlying CAW’s cognitive benefits
may be BDNF modulation. Indeed, various Centella asiatica
extracts have been shown to upregulate BDNF expression in
animal studies (Ar Rochmah et al., 2019; Sari et al., 2019;
Sbrini et al., 2020). Observational studies have demonstrated
that patients with AD have lower serum levels of BDNF than
healthy controls (Ng et al., 2019) and it has been hypothesized
that this deficiency could play a role in the onset of AD
neurodegeneration (Giuffrida et al., 2018). BDNF is
currently being studied as a potential biomarker for early
detection of AD (Mori et al., 2021) and is being used as a gene
therapy in a phase I trial of patients with AD. (LaFee, 2021)

In conclusion, we found that the improvements in memory
seen in WT and 5xFAD mice treated with CAW in our
previous study were associated with modulation of several
key metabolic pathways known to be dysregulated in
Alzheimer’s disease: purine metabolism, nicotinate and
nicotinamide metabolism, and glycerophospholipid
metabolism. Modulation of these pathways and the
individual metabolites associated with these pathways may
represent novel mechanisms of action underlying the
cognitive-enhancing effects of CAW and may be related to
other targeted mechanisms we have previously reported in our
work with CAW (Gray et al., 2015; Gray et al., 2016; Gray
et al., 2018a; Gray et al., 2018b; Matthews et al., 2019; Zweig
et al., 2021). For each of these pathways, future studies
analyzing gene or protein expression of enzymes involved
in these pathways and/or co-treating with specific inhibitors
are needed to confirm their involvement in the cognitive
enhancing mechanism of CAW. Furthermore, modulation
of these pathways by CAW in humans will need to be
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confirmed potentially through biomarker analysis of plasma
or cerebrospinal fluid samples from clinical trial participants.
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