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Cold exposure promotes fat oxidation and modulates the energy metabolism in adipose
tissue through multiple mechanisms. However, it is still unclear about heat-generating
capacity and lipid mobilization of different fat depots without functional mitochondrial
uncoupling protein 1 (UCP1). In this study, we kept finishing pigs (lack a functional UCP1
gene) under cold (5-7°C) or room temperature (22-25°C) and determined the effects of
overnight cold exposure on fatty acid composition and transcriptional profiles of
subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). And the plasma
metabolomes of porcine was also studied by LC-MS-based untargeted metabolomics.
We found that the saturated fatty acids (SFAs) content was decreased in SAT upon cold
exposure. While in VAT, the relative content of lauric acid (C12:0), myristic acid (C14:0)
and lignoceric acid (C24:0) were decreased without affecting total SFA content. RNA-seq
results showed SAT possess active organic acid metabolism and energy mobilization
upon cold exposure. Compared with SAT, cold-induced transcriptional changes were far
less broad in VAT, and the differentially expressed genes (DEGs) were mainly enriched in
fat cell differentiation and cell proliferation. Moreover, we found that the contents of organic
acids like creatine, acamprosate, DL-3-phenyllactic acid and taurine were increased in
plasma upon overnight cold treatment, suggesting that cold exposure induced lipid and
fatty acid metabolism in white adipose tissue (WAT) might be regulated by functions of
organic acids. These results provide new insights into the effects of short-term cold
exposure on lipid metabolism in adipose tissues without functional UCP1.

Keywords: cold exposure, pigs, adipose tissue, fatty acid metabolism, transcriptome, metabolome
INTRODUCTION

The global epidemic of metabolic syndrome has become the major health hazard of the modern
world (1). The syndrome is mostly driven by excess energy intake and concomitant obesity (2). To
control the ongoing obesity epidemic, both active lifestyle and new treatment approaches to induce
weight loss are required. Homeothermic animals exposed to low ambient temperatures activate
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adaptive thermogenesis, including shivering and facultative
thermogenesis, to increase mobilization of energy to maintain
body temperature. The most important heat source from cold
exposure is facultative thermogenesis, which increases metabolic
reactions by activating BAT function and browning of WAT
through the activation of b adrenergic signaling in both humans
and mice (3, 4). As a process of heat generation, cold exposure
enhanced the cycle using and removing free fatty acid (FFA)
from blood to disrupt energy accumulation in adipose tissues (3).
In the past decades, targeting the activity of BAT and browning
of WAT to increase energy expenditure is a promising strategy to
combat obesity.

Most studies on cold induced BAT activation have been
conducted in rodents and few human trials exist to illuminate
functions of BAT upon cold exposure (5). And the volume of
active BAT in adult humans is highly variable with each
individual, which is associated with gender, age, and body-
mass index (BMI) (5–7). Therefore, the contribution of BAT to
overall energy metabolism in individuals becomes unclear. In
recent years, studies have shown that inactivation of uncoupling
protein 1 (UCP1), the central element of heat production in
BAT, did not potentiate diet-induced obesity (8), and also not
require in long-term cold adaptation (9). Recent studies have also
confirmed the existence of multiple thermogenic mechanisms,
which are based on adenosine triphosphate (ATP) sinks and fatty
acid-mediated UCP1-independent leak pathways driven by the
adenosine diphosphate (ADP)/ATP carrier (8, 10, 11). On
account of the complicated in UCP1-dependent heat
generation, further studies are carried out in UCP1-KO models
to accurately measure the difference between UCP1-independent
and UCP1-dependent thermogenesis to better identify
pharmacological products that mimic the cold-induced heat
production on adipose tissues. Pig (Sus scrofa domesticus) is a
species with the absence of a functional UCP1 (12). Lack of
functional UCP1 makes modern pigs cold sensitive (13). Pig is a
human-sized omnivorous animal and closely related to humans
in terms of anatomy, genetics and physiology. As a major species
for livestock production for thousands of years, pig also extended
its use as a preferred model species for analyses of a wide range of
human physiological functions and diseases (14–16). Since
recent studies have focused on exploring cold-induced UCP1-
independent thermogenesis mechanism and improving
thermogenic capacity of piglets (17). Little attention has been
paid to the response of metabolized processes of finishing pigs
under cold stress. And the heterogeneity between subcutaneous
adipose tissue (SAT) and visceral adipose tissue (VAT) in pigs
upon cold exposure has not been described. Accordingly, cold-
induced physiological changes in porcine SAT and VAT have
referential value in drawing the mechanism of UCP1-
independent heat generating by dissipating stored chemical
energy on human adipose tissues, which may contribute to the
finding of new therapies for epidemic obesity treatment.

In this study, we kept finishing pigs upon cold or room
temperature and investigated the effects of overnight cold
exposure on triglyceride (TG) content, enzyme activity, fatty
acid composition, gene expression profiles in white adipose
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tissues (SAT and VAT) and metabolic changes in plasma. We
revealed that cold-induced alterations in fatty acid composition
and transcriptome profiles are depot-specific in porcine adipose
tissues. Moreover, combined with metabolome analyses, we
conclude that porcine SAT might retain part of heat-
generating capacity that could be driven by circulating
organic acids.
MATERIALS AND METHODS

Animals and Samples
Twelve DLY (Duroc × Landrace × Yorkshire) pigs at slaughter
weight (120~125 kg) were used to investigate the cold-induced
changes in fatty acid composition, gene expression profiles in
adipose tissues and metabolic profiles in blood. The experimental
design was performed as previously published methods (18).
Briefly, six pigs of one group were housed at cold condition
(COLD, 5-7°C), and six in the control group were housed at
room temperature condition (RT, 22-25°C) overnight (14 h)
without feed but free access to water. The SAT, VAT and blood
were sampled immediately after cold exposure and quickly
frozen in liquid nitrogen and stored at −80°C immediately for
subsequent analysis.

Backfat Thickness Measurement
Pigs were slaughtered by exsanguination after electric stunning
(90~100 V, 0.9-1.0 A, 50 Hz) then hoisted and followed by
bleeding, dehairing and eviscerating in a commercial abattoir.
The whole process was completed about 20 min post mortem.
Backfat thickness was determined by average scores of first- and
last-rib, and last-lumbar of the right carcass sides.

Hematoxylin-Eosin Staining
Hematoxylin-eosin (H&E) staining of SAT and VAT samples from
RT and COLD pigs were performed as previously publishedmethods
(19). Adipose tissues of pigs were fixed at room temperature in 10%
formalin for 24 h. Next, the tissues were embedded into paraffin,
blocked, and cut at 10 mm for staining. The adipose tissue sections
were deparaffinized, rehydrated, and stained with hematoxylin for 15
min. Then sections were rinsed in running tap water and stained with
eosin for about 5 min, dehydrated, mounted, captured.

Triacylglycerol (TG) and Total Cholesterol
(TCHO) Measurement
The left-half carcasses of SAT and VAT samples were used for
lipids content measurement. The contents of TG and TCHO
were measured as previously published methods (18).

Enzyme Activities Analysis
For oxidative stress indices measurement, sample were prepared
as previously published methods (18). The activities of total
antioxidant capacity (T-AOC), catalase (CAT), lactate
dehydrogenase (LDH) and peroxidase (POD) were measured
by using commercial kits (T-AOC, A015-2; CAT, A007-1; LDH,
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A020-2-2; POD, A084-1) bought from Nanjing Jian Cheng
Institute of Bioengineering (Nanjing, Jiangsu, China).

Fatty Acid Profiles Analysis
Free fatty acid mixtures were obtained from SAT and VAT after
extracted and hydrolyzed in 2 mL KOH-methanol. Fatty acid
profiles of SAT and VAT from RT and COLD were analyzed as
previously published methods (18).

RNA Isolation, Library Construction,
RNA-Seq and Quantitative Real-Time PCR
RNA extraction, library construction, RNA-seq analysis and
quantitative real-time PCR (qPCR) of SAT and VAT samples
from RT and COLD pigs were performed as previously published
methods (19). Primers used for qPCR are shown in Supplementary
Table 3.
Untargeted Metabolomics
Relative-Quantitative Analysis
Twelve plasma samples (6 RT and 6 COLD) were used for
metabolomics analysis. The plasma samples were thawed and
mixed with cold methanol/acetonitrile/H2O (2:2:1, v/v/v, 1mL)
and sonicated for 30 min (twice) then centrifuged at 14000 g for
20 min (operation at 4° C). The supernatant was dried in a
vacuum centrifuge.

For LC-MS analysis, the samples were re-dissolved in 100 ml
acetonitrile/water (1:1, v/v) solvent, then put in an automatic
sampler at 4°C during the experiment. Analyses were performed
using an UHPLC (1290 Infinity LC, Agilent Technologies)
coupled to a quadrupole time-of-flight (AB Sciex Triple TOF
6600) as published (20) with modifications in Shanghai Applied
Protein Technology Co., Ltd.

The raw MS data were converted to MzXML files by Proteo-
Wizard MS Convert then imported into freely available XCMS
software. After peak alignment and retention time correction, peak
area was extracted. Only the variables having more than 50% of the
nonzero measurement values were kept. Compound identification
of metabolites with an in-house database established with available
authentic standards. After normalized, the processed data were
imported into SIMCA-P (version 16.1, Umetrics, Umea, Sweden),
and subjected to Pareto-scaled principal component analysis
(PCA) and orthogonal partial least-squares discriminant analysis
(OPLS-DA). The robustness of the model was evaluated by 7-fold
cross-validation and response permutation testing. The variable
importance in the projection (VIP) value of each variable in the
OPLS-DAmodel was calculated. Metabolites with the VIP value >1
was further applied to Student’s t-test, the P values less than 0.05
were considered as statistically significant.
Pathway Enrichment Assay
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to identify
differentially expressed genes (DEGs) which were significantly
enriched in GO terms or metabolic pathways as previously
published methods (19). GO terms and KEGG pathways with
Frontiers in Endocrinology | www.frontiersin.org 3
false discovery rates P < 0.05 (the p-values were adjusted using the
Benjamini & Hochberg method) were considered as significantly
altered. Enriched terms and pathways were visualized by centupled
and metaplot function. KEGG pathway enrichment analyses was
performed to explore the impact of differentially expressed
metabolites. Analyses were applied based on the Fisher’ exact
test, considering the whole metabolites of each pathway as
background dataset. And only pathways with p-values under a
threshold of 0.05 were considered as significant.

Data Analysis
Data on TG contents, enzyme activities, fatty acid composition,
TPM level and relative mRNA expression level were presented as
the mean ± SEM. Data were analyzed by unpaired two-tailed
Student’s t-tests. Data visualization and statistical analyses were
performed using the GraphPad Prism 9.0.0 software package
(Monrovia, CA, USA) and R software (version 4.0.5). Differences
between groups were considered statistically significant at P < 0.05.
RESULTS

Cold Exposure Induced Depot-Specific
Response on Lipid Contents and Oxidative
Balance in Porcine Adipose Tissues
Twelve DLY pigs at slaughter weight were used to investigate the
cold-induced changes in different adipose tissues (Figure 1A).
The body weights (BW) of the pigs were similar (Figure 1B).
There were no significant differences in backfat thickness
between COLD and RT pigs (Figure 1C). Notably, an obvious
increase in angiogenesis of SAT was found upon cold exposure
(Figure 1D). And the TG and TCHO contents in porcine SAT
(Figure 1E) and VAT were measured (Figure 1F). We found
that TG content was not affected after overnight cold exposure in
SAT while TG level was significantly decreased after cold-treated
in VAT (Figure 1F). However, inconformity with the TG
content, an obvious decrease of adipocyte cell size was not
observed in VAT after cold treatment (Figure 1D). To explore
the changes of oxidative and anti-oxidative balance in SAT and
VAT upon cold exposure, we measured enzyme activities
associated with antioxidation, oxidative stress and lipid
oxidative (Figures 1G, H). TAOC, which is responsible for
antioxidant capacity, showed no change after cold exposure, in
SAT (Figure 1G) and VAT (Figure 1H). The biomarkers of
oxidative stress, CAT and LDH, had a decreasing tendency in
SAT (Figure 1G) of cold-treated pigs, but not in VAT
(Figure 1H). Moreover, the activity of POD, which associates
with lipid oxidative, was decreased in SAT after cold treatment
(Figure 1G). These data suggest that overnight cold exposure
increased triglyceride breakdown in porcine VAT and decreased
the oxidative stress and lipid peroxidation in SAT.

Alteration in Fatty Acid Profiles of SAT and
VAT Upon Cold Exposure
Next, we analyzed the fatty acid composition in adipose tissue of
COLD and RT pigs. Absolute proportions showed that overnight
February 2022 | Volume 13 | Article 827523
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cold exposure did not cause an extensive change of fatty acid
contents in porcine SAT (Supplementary Table 1) and VAT
(Supplementary Table 2). Notably, cold-treatment significantly
reduced relative stearic acid (C18:0) in SAT (Figure 2A). In
VAT, cold exposure induced reduction of the relative contents of
following fatty acids: lauric acid (C12:0), myristic acid (C14:0)
and lignoceric acid (C24:0). g-linolenic(C18:3n6) and
arachidonic acid (C20:4n6), which are known for threatening
human health, had a decreasing tendency (Figure 2B). Besides,
we calculated the percentages of SFAs, MUFAs, PUFAs and the
ratio of MUFAs: PUFAs n6-fatty acids: n3-fatty acids (n6: n3) in
SAT and VAT (Figures 2C–H). In line with decreasing stearic
acid content, the relative percentage of SFAs was significantly
decreased in COLD SAT (Figure 2C). Although it performed
more extensive influence on individual fatty acids content than
SAT, cold exposure did not affect fatty acid profiles in VAT
(Figure 2F). These results suggest that cold exposure reduced
total SFA content in SAT, while it tended to affect individual fatty
acid content in VAT.
Frontiers in Endocrinology | www.frontiersin.org 4
Cold Exposure Changed the
Transcriptome Profiles of SAT in Pigs
To further investigate the alteration of transcription profiles
following cold exposure, fat tissues from different depots,
including subcutaneous and visceral depots, were collected from
cold-treated and control pigs and subjected to RNA-seq tomap the
transcriptional changes. Volcano plots exhibited a broad overview
alteration in gene expression between these two groups. 1157DEGs
were identified in the COLD and RT group using the filter criteria
of Log2 (fold change) > 1 and p-value < 0.05, of which 536 were
increased, and 621were decreased in SAT after cold-treated
(Figure 3A). GO enrichment analysis (21) showed that overnight
cold exposure affected biological processes in SAT, including
carboxylic acid metabolic processes, organic acid biosynthetic
process, response to oxygen-containing compound and
monocarboxylic acid biosynthetic process (Figure 3B). The
cneplot showed that a huge amount of DEGs related to the
organic acid biosynthetic process was regulated, including early
growth response 1 (EGR1), solute carrier 2A4 (SLC2A4), solute
A B

D

E G

F H

C

FIGURE 1 | Effect of cold exposure on carcass characteristics, TG and TCHO contents and various enzymes activities. (A) Scheme of the experimental process.
(B) Body weight of pigs under RT (room temperature) or COLD (cold exposure) treatment. n=6 for each group. (C) Backfat thickness. (D) H & E staining of SAT and
VAT sections from RT and COLD pigs. Scale bars, 300 mm (n=3). (E) TG and TCHO contents in SAT. (F) TG and TCHO contents in VAT. (G) Changes of antioxidant
enzymes activities in SAT. (H) Changes of enzymes activities in VAT. Data are presented as mean ± SEM (n = 5). *P < 0.05, two-tailed Student’s t-test.
February 2022 | Volume 13 | Article 827523
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carrier 2A8 (SLC2A8), insulin-like growth factor 1 receptor
(IGF1R), neutralized E3 ubiquitin protein ligase 1 (NEURL1),
regulator of G-protein signaling 10 (RGS10) (Supplementary
Figure 1A). Functional enrichment analyses using the KEGG
pathways (22) enrichment analysis revealed that DEGs significant
enrichment in PI3K-Akt signaling pathway, adipocytokine
signaling pathway, apoptosis (Figure 3C) and immune response-
related pathways centered on the phagosome (Supplementary
Figure 1B). To further explore the processes of heat generation
and fatty acid oxidation in adipocytes under cold exposure, we
analyzed the genes related to thermogenesis and fatty acid
metabolism. The expression of genes encodes NADH-ubiquinone
oxidoreductase (NDUs), cytochrome C oxidase (COXs) and ATPs
were up-regulated in SAT of pigs upon cold exposure (Figure 3D).
They are essential for the function of mitochondrial oxidative
phosphorylation system. Expression levels of genes involved in
fatty acid metabolism associated pathways including fatty acid
elongation (ELOVL2, ELOVL4, HACD4), mitochondrial fatty acid
synthesis (MECR), long chain fatty acyl-CoA b-oxidation
(HADHA, HADHB), fatty acid b-oxidation (ACSL1, ACSL3,
ACSF3, ACADVL, ECHS1) and de novo fatty acid synthesis
(SCD, FASN, TCER) were given in Figure 3E. Besides, cold
Frontiers in Endocrinology | www.frontiersin.org 5
treatment influenced glucose uptake and gluconeogenesis, the
expression of glucose transporters (SLC2A1, SLC2A4) was up-
regulated, the expression of phosphoenolpyruvate carboxykinase
(PCK) was down-regulated (Figure 3F). Moreover, the expression
of apoptosis-related genes (GADD45b, CASP10, BCL2a) and
inflammation-linked genes (CTSB, CTSC, CTSZ, etc.) were
down-regulated after cold exposure (Figure 3G). In addition, we
found thatmTOR1-related genes ribosomal S6 kinase 1(S6K1) and
ribosomal S6 kinase 2 (S6K2) were up-regulated (Figure 3H), the
activation of mTOR signaling in adipose tissue could promote
mitochondrial biogenesis and browning reportedly (23). These
results suggest that overnight cold exposure enhanced the
carboxyl ic acid biosynthet ic process and oxidat ive
phosphorylation related genes but decreased the immune
response related genes in SAT.
Cold Exposure Regulated the Fatty Acid
Metabolism and Cellular Processes
Related Pathways in Porcine VAT
In VAT, 289 DEGs were identified in the COLD and RT group
using the filter criteria of | Log2 (fold change) > 1 and p-value <
A

B

D E F G HC

FIGURE 2 | Cold exposure changed the composition and proportions of fatty acids. Fatty acid composition analyses of SAT and VAT isolated from pigs maintained
at RT or in COLD for 14 hours. (A) The relative concentration of individual fatty acids in SAT from RT and COLD pigs. Fatty acids are divided into major, middle and
minor species based on abundance. Fatty acids are sorted by a degree of saturation. (B) The relative concentration of individual fatty acids in VAT from RT and
COLD pigs. (C) The percentages of total SFAs, MUFAs and PUFAs in SAT from RT and COLD pigs. SFAs, saturated fatty acids; MUFAs, monounsaturated fatty
acids; PUFAs, polyunsaturated fatty acids containing two or three to six double bonds. (D) The ratio of n6-fatty acids: n3-fatty acids (n6: n3) and (E) MUFAs: PUFAs
in SAT from RT and COLD pigs. (F) The percentages of total SFAs, MUFAs and PUFAs in VAT from RT and COLD pigs. (G) The ratio of n6-fatty acids: n3-fatty
acids (n6: n3) and (H) MUFAs: PUFAs in VAT from RT and COLD pigs. n = 5. Error bars represent S.E.M. *P < 0.05, **P < 0.01, two-tailed Student’s t-test.
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0.05, of which 136 were increased and 162 were decreased after
cold-treated (Figure 4A). GO enrichment analysis showed that
overnight cold exposure affected the expression of genes related
to the biological processes including fat cell differentiation and
regulation of cell proliferation in VAT (Figure 4B). The
transcription of cell proliferation relative genes including
vascular endothelial growth factor A (VEGFA), heparin-
binding epidermal growth factor (EGF)-like growth factor
(HBEGF), fibroblast growth factor 18 (FGF18) was increased
(Supplementary Figure 2A). The KEGG pathways enrichment
analysis revealed that DEGs were significantly enriched in TGF-
beta signaling pathway, PPAR signaling pathway, FOXO
signaling pathway (Figure 4C) and immune response related
pathways cored in rheumatoid arthritis (Supplementary
Figure 2B). Transcriptomic analysis yielded that the
expression of thermogenesis related genes COX5B、COX6B
and COX2 was up regulated in VAT after cold exposure.
Frontiers in Endocrinology | www.frontiersin.org 6
Contrary to COXs genes, the expression of NDUFs genes was
down-regulated upon cold exposure (Figure 4D). Heatmap
showed that overnight cold exposure has minimal effect on
fatty acid metabolism (Figure 4E). According to KEGG
enrichment analysis, the transcription of genes enriched in
TGF-b signaling pathway and FOXO signaling pathway were
almost inhibited in VAT after cold-treated (Figures 4F, G). In
addition, our RNA-seq analysis showed that the expression of the
adipose differentiation-related genes, including perilipin1
(PLIN1), perilipin4 (PLIN4) and lipid transport-related genes
apolipoprotein A1 (APOA1), apolipoprotein A5 (APOA5) was
decreased upon cold treatment (Figure 4H). Taken together, the
transcription of genes enriched in cell differentiation, cell
proliferation and immune response was partly enhanced
following cold exposure in VAT. Compared to SAT, the role of
cold exposure in transcriptome remodeling is more slightly
in VAT.
A B D

E

F G H

C

FIGURE 3 | The changes of transcriptome profile in porcine SAT after cold exposure. (A) Volcano plot of differently expressed genes (DEGs). Log2 fold changes in
exons of RNA-seq gene bodies in COLD versus RT pigs and the corresponding significance values displayed as log10 (P value). In total, 536 and 621 genes were
identified that had induced (red) or repressed (blue) expression levels by cold exposure, gray denotes genes with no significant changes. (B) Gene Ontology (GO)
enrichment analysis. (C) Functional enrichment analyses using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (D, E) Heatmaps of the TPM
expression values of selected thermogenesis, fatty acid metabolism regulated genes from the RNA-seq dataset. (F–H) KEGG results of the cold-induced enrichment
of genes involved in adipocytokine signaling pathway (F), apoptosis (G), PI3K-Akt signaling pathway (H).
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Short Term Cold Exposure Impaired the
Coherence of Heat-Production and Fatty
Acid Metabolism in Pig Adipose Tissues
Next, we confirmed the upregulated genes related tomitochondrial
oxidative phosphorylation by qPCR, which revealed by heat map
before, showed that COX5B and COX6B were upregulated by cold
exposure in SAT but notVAT (Figures 5A, B).Wedetected the co-
regulated genes between SATandVATunder cold exposure related
to fatty acid metabolism, and we found ELOVL2, ELOVL4 and
HADHA were uniquely upregulated in VAT (Figures 5C, D).
These results indicated that the oxidative phosphorylation of fatty
acids was out of step with its anabolism and catabolism in porcine
adipose tissue upon cold treated. Hence, we compared the cold-
induced transcriptional changes of key genes that contributed to
lipolysis and thermogenesis in SAT and VAT. Adipose triglyceride
Frontiers in Endocrinology | www.frontiersin.org 7
lipase (ATGL) and hormone-sensitive lipase (HSL), which
participate in lipolysis constitute, were not significantly altered in
COLD SAT (Figure 5E). While the expression of ATGL was
significantly altered by cold exposure in VAT (Figure 5E).
Thermogenesis activated by cold exposure depends largely on
UCP activity, we found that the mRNA expression level of UCP3
was higher in SAT than VAT upon cold treated (Figure 5F). These
results suggest that cold-induced transcriptional responses in
adipose tissues of pigs is depot-specific.

Over-Night Cold Exposure Changes the
Composition of Plasma Metabolites
To better determine the effects of blood metabolites on WAT
metabolic adaptation to cold exposure, we performed
metabolomics analyses on plasma samples collected from RT
A B D

E

F G H

C

FIGURE 4 | Cold exposure changed the transcriptome profile of VAT in pigs. (A) Volcano plot of differently expressed genes (DEGs) expression patterns were
illustrated. Red denotes upregulated genes in COLD VAT; blue denotes downregulated genes in COLD VAT; gray denotes genes with no significant changes.
(B) Gene Ontology (GO) enrichment analysis. (C) Functional enrichment analyses using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (D, E)
Heatmaps of the TPM expression values of selected thermogenesis, fatty acid metabolism regulated genes from the RNA-seq dataset. (F–H) KEGG results of
the cold-induced enrichment of genes involved in TGF-beta signaling pathway (F), FoxO signaling pathway (G), PPAR signaling pathway (H).
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and COLD pigs. We detected 568 metabolites, including 410
upregulated and 158 downregulated (Figure 6A). The PLS-DA
and OPLS-DA plot showed a separation of the RT and COLD
groups (Supplementary Figures 3A, B). A clear distinction was
noted between COLD and RT plasma for negative ion modes
presented in the permutation test plot (Supplementary
Figure 3C). With the functional gene classifications in the
KEGG database, the metabolome contents were organized by
grouping metabolites into pathways. The KEGG pathway
analysis showed that the metabolites were mainly enriched in
lipid metabolism pathways and amino acid metabolism pathways
(Figure 6B). The enrichment of plasma metabolites exists in
glycerophospholipid metabolism, fatty acid biosynthesis, a-
linolenic acid metabolism, biosynthesis of unsaturated fatty acids
and linoleic acid metabolism suggested that lipid metabolism in
porcine blood was active upon cold exposure (Figure 6B).
Changes in plasma metabolites of pigs after cold exposure were
presented in a clustered heat map (Figure 6C). In the heat map,
the rows represented single metabolites and the columns represent
the COLD or RT treated pigs. Significant decreasedmetabolites are
displayed in green, and significant increased metabolites are
displayed in red. The intensity of each color corresponds to the
magnitude of the difference when compared with the average
value. Supporting the combustion of stearic acid in SAT upon cold
exposure, the circulating stearic acid content was significantly
Frontiers in Endocrinology | www.frontiersin.org 8
decreased (Figure 6C). We also found a reduction of a-linolenic
acid in the plasma, a key PUFA promotes fatty acid remodeling
and thermogenic activation (Figure 6C). Cold exposure markedly
promoted the accumulation of organic acids (creatine,
acamprosate, DL-3-phenyllactic acid, taurine) in plasma of pigs
(Figure 6C). The heat map of Pearson correlation coefficients
showed that the expression of heat generation related genes
(RPS6KB2, CREB3L1, RPS6KB1, ATP5G1, NDUFV1,
NDUFA10) in COLD SAT were positively associated with the
contents of organic acids in COLD plasma (Figure 6D), but not
COLD VAT (Figure 6E). Taken together, these results indicate
that cold induced transcriptional changes in SAT and VAT might
drive by a metabolic modulation of the circulating cold-adaptation
machinery (Figure 6F).
DISCUSSION

It has been widely reported that cold exposure promotes the
oxidize of fatty acids in brown adipocytes and the related beige
adipocytes to generate heat through UCP1-dependent way in
rodents and human (24). In our study, we investigated cold
induced transcriptional and metabolic changes in subcutaneous
and visceral adipose tissues, two fat depots with distinct
metabolic phenotypes. And discovered the regulatory
A B

D

E F

C

FIGURE 5 | Cold exposure induced alterations in heat production processes. (A–D) qPCR validation of the expression of genes related to thermogenesis and fatty
acid metabolism in SAT and VAT from RT and cold-treated pigs (n = 5). (E, F) Transcripts per million (TPM) expression values of lipolysis markers (ATGL, HSL) and
cold-induced genes (UCP2, UCP3) of SAT and VAT from cold-treated and RT pigs were shown to estimate relative gene expression abundance (n = 3). Error bars
represent SEM. *P < 0.05, **P < 0.01, two-tailed Student’s t-test.
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mechanisms in these two depots upon cold exposure in the
absence of UCP1. Our results showed that cold exposure
promotes the combustion of SFA accompanied by activating
transcription process related to carboxylic acid metabolism in
SAT. VAT exhibits active fatty acid metabolism with decreasing
in several individual fatty acids upon cold exposure. Plasma
metabonomic results indicated that cold induced absorption and
consumption of stearic acid in SAT might drive by organic acids
(such as creatine and taurine) for compensatory heat generation.
Our results suggest that cold-induced change in adipose tissues
of pigs is depot-specific and more investigations should be
performed to uncover the regulatory mechanisms.

Cold exposure fuels combustion of triglyceride-derived fatty
acids for heat-generating in adipose tissues (25).Ourprevious study
Frontiers in Endocrinology | www.frontiersin.org 9
showed that cold induced alterations in the composition and
content of whole lipid profiles were considerable and with
significant changes in the acyl-chain composition of TGs (26).
Consistently, cold-treated UCP1 knock-in (KI) pigs also exhibited
an extensive alteration in lipidomic profiles and significant
reductions of total TG in inguinal white adipose tissue (iWAT).
We also observed stable TG content in cold-treated porcine SAT.
The content of TG was decreased in porcine VAT after cold
treatment but without obvious decreased of adipocyte cell size,
more experimental verification was needed for the change of TG
content in VAT after cold treatment. Alteration of triglyceride
storage leads to oxidative stress (27). We detected the markers of
oxidative stress includingTAOC,CAT,LDHandPOD,whichwere
assayed in the homogenates of the SAT and VAT. Though VAT
A B

D

E F

C

FIGURE 6 | Effect of cold exposure on metabolites of pigs. (A) Volcano plot of pairwise comparisons of all detected negative ions in plasma. The threshold (|log2-
fold change| > log2 1.5; P value < 0.05) was defined for each significantly changed metabolites. Red denotes upregulated metabolites in COLD plasma; green
denotes downregulated metabolites in COLD plasma; gray denotes metabolites with no significant changes. (B) KEGG pathway annotation of top 20 differential
metabolites. (C) A heatmap was drawn to show the differential expressed metabolites. Up-regulated expressed metabolites were shown in red; down-regulated
expressed metabolites were shown in green. Metabolites were selected from the metabolomics dataset. Only metabolites with P < 0.05 were displayed. (D) Heatmap
of Pearson correlation coefficients between differential expressed metabolites identified in plasma and thermogenesis relative DEGs in SAT upon cold exposure. Blue
denotes positive correlation, Red denotes negative correlation. (E) Heatmap of Pearson correlation coefficients between differential expressed metabolites identified in
plasma and thermogenesis relative DEGs in VAT upon cold exposure. Blue denotes positive correlation, red denotes negative correlation. (F) Working model of the
metabolic effects between blood and adipose tissues under cold exposure.
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exhibiteda depletionofTG, the balance betweenoxidative andanti-
oxidativewasmaintained inVATupon cold exposure. The levels of
oxidative- and antioxidative-associated substances (LDH, CAT,
POD) were decreased in SAT after cold exposure. The decreased
oxidative- and antioxidative level might related to inactive lipolysis
in SAT upon cold exposure.

Fatty acid composition mildly changed upon cold exposure in
both SAT and VAT. In particular, we found that cold exposure
decreased stearic acid (C18:0) contents in SAT, while decreased
lauric acid (C12:0),myristic acid (C14:0) and lignoceric acid (C24:0)
contents inVAT.Moreover, the contentsof SFA,MUFAandPUFA
were not altered in VAT, while a significant SFA depletion was
found in SAT. It was unclear if these fat-depots specific changes
reflect utilization or export of these fatty acids. Previous studies
shown that high-thermogenic adipose tissues, including BAT and
cold-induced UCP1-positiveWAT, exhibit cold-induced uptake of
non-esterified fatty acids (28, 29). While in porcine backfat, one of
so calledUCP1-negativeWAT, exhibits decreased SFA andMUFA
content under cold acclimation (30). Our results showed that both
SAT and VAT of pigs adapted to cold with a reduction in fatty acid
content. It suggested that UCP1might play an essential role in cold
induced lipid and fatty acids metabolism in adipose tissues.

SAT and VAT have different adipogenic potential and metabolic
characteristics has been known for decades (31). Our RNA-seq
results showed that SAT exhibited an extensive alteration in
transcriptional profiles with 1157 gene differentially expressed, 5
times as much as VAT with 289 DEGs upon cold exposure. GO
enrichment analysis revealed enhanced biological processes (such as
carboxylic acid biosynthetic process, organic acid biosynthetic
process) and weakened immune response in SAT upon cold
exposure, which might explain our finding that cold exposure
diminishes the antioxidant capacity of porcine SAT mentioned
above. While cold induced DEGs in VAT were enriched in
adipocyte differentiation and immune response. These findings
consistent with previous studies that cold-induced physiological
change is heterogeneous in different fat depots of mice (32, 33).
Besides, neither SAT nor VAT of cold-treated pigs exhibited
significant up-regulation of lipid metabolism, fatty acid
metabolism, lipid oxidation and fatty acid oxidation processes
based on GO analysis, in conformity to previous reports on mice
(34) and Tibetan piglets (35). These results demonstrated the
commonality and diversity of SAT and VAT upon cold stress.
Moreover, cold induced suppression of immune response in SAT
and VAT of pigs was consist with a previous study in cold-treated
mice (34), which indicated that downregulation of immune response
in cold treated adipose tissues is independent of functional UCP1.

KEGG enrichment analysis of RNA-seq results of cold treat
porcine SAT revealed that DEGs were abundant in pathways that
facilitate regulating body temperature and recruitment of
thermogenic capacity including PI3K-Akt, adipocytokine and
apoptosis signaling pathway (36–38). KEGG enrichment analysis
in VAT showed down-regulation of TGF1-b, PPAR, and FOXO
signaling pathways upon cold exposure, indicating less effect of
cold exposure on the browning (39)and adipogenesis (40) of
VAT. According to the KEGG analysis, it seems that SAT of pigs
takes more important part in heat generation than VAT. It has
Frontiers in Endocrinology | www.frontiersin.org 10
been revealed that cold exposure upregulates pathways related to
the oxidative phosphorylation (OXPHOS) process and fatty acid
b-oxidation to drive thermogenesis in SAT of mice (41, 42). We
found that the genes related to the OXPHOS (COX5B, COX6B)
were uniquely up-regulated in SAT and the genes related to fatty
acids metabolism (ELOVL2, ELOVL4 and HADHA) uniquely
up-regulated in VAT. Our data showed that ATGL, a key enzyme
in response to cold-induced hydrolysis of intracellular TAG
stores (43), was up-regulated in VAT after cold-treated. And
UCP3, which contributes to the evolution of cold resistance in
the Tibetan and Min pig (35), has higher expression in SAT after
cold treat. Our results suggest that these two fat-depots might
affect whole-body homeostasis upon cold exposure.

It iswell known that cold exposure activatesmetabolic processes
required to heat generation in plasma (44). KEGG enrichment
analysis of our metabonomic results revealed that differential
metabolites were abundant in lipid metabolism related processes
including glycerophospholipidmetabolism, fatty acid biosynthesis,
a-linolenic acidmetabolism, biosynthesis of unsaturated fatty acids
and linoleic acid metabolism suggested that lipid metabolism in
porcine blood was active upon cold exposure. According to a
previous study in piglets, concentrations of FFA were decreased at
24hours during cold exposure (45). In this study,we also observed a
significant decrease in stearic acid, a-linolenic acid and eicosenoic
acid in COLD plasma. Our recent study showed that cold exposure
induced extensive increases in myristic acid (C14:0), palmitic acid
(C16:0), linoleic acid (C18:2n-6c), eicosane acid (C20:1), a-
linolenic acid (C18:3n-3) and g-linolenic acid (C18:3n6) (18).
Compared with the dynamic changes of SAT, VAT and plasma
fatty acids in this study we mentioned above, it seemed that cold
exposure promotes the absorb of myristic acid, palmitic acid and
linolenic acid fromVATandPlasma toLDM.The content of stearic
acid was specific diminished in SAT and plasma of pigs upon cold
exposure. Stearic acid is a typical saturated fatty acid in the use as a
fuel substrate upon cold exposure (46). A recent human trial
declares that C18:0 intake causes mitochondrial fusion and
increased fatty acid beta-oxidation in vivo (24). Consist with the
up regulation of thermogenesis related genes in SAT, SAT
selectively increase the absorb and use of SFAs during
thermogenesis. In addition to activated lipid metabolism,
overnight cold exposure accumulated high levels of carboxylic
acids in pig plasma, including creatine, acamprosate, DL-3-
phenyllactic acid and taurine, especially creatine and taurine,
which promote heat generating in adipose tissues reportedly (47,
48). Connected with the upregulation of carboxylic acid
biosynthetic process in SAT based on GO enrichment analysis of
our RNA-seq results, we suggest that these carboxylic acids might
activate compensatory thermoregulatory reaction which turn to
saturated fatty acids as the main fuel in porcine reaction.
CONCLUSIONS

In conclusion, our study investigated cold induced UCP1-
independent effects of pig adipose tissues. We evaluated the
similarity and difference in fatty acid profiles and transcriptome
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profiles of SAT and VAT in response to overnight cold exposure
and performed plasma metabolome to explore the potential
mechanisms. Future studies should be performed to verify our
hypothesis and uncover the exact regulatory mechanism of the
none UCP1 adipose tissues upon cold exposure to facilitate the
development of new therapies for the treatment of epidemic obesity.
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