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Connexins (Cxs) are involved in the brain metastasis of lung cancer cells. Thus, it is
necessary to determine whether gap junction-forming Cxs are involved in the
communication between lung cancer cells and the host cells, such as endothelial cells,
forming the brain–blood-barrier, and cells in the central nervous system. Data from
multiple studies support that Cxs function as tumor suppressors during lung cancer
occurrence. However, recent evidence suggests that during metastasis to the brain,
cancer cells establish communication with the host. This review discusses junctional or
non-junctional hemichannel studies in lung cancer development and brain metastasis,
highlighting important unanswered questions and controversies.
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INTRODUCTION

The understanding of Connexin (Cx) channels in lung cancer brain metastasis is rather limited. In
the human genome, 21 Cxs are found (Figure 1) and in the mouse genome, 20 mCx genes are found
(3–6). A connexin hemichannel is also known as a connexon, and comprises a hemichannel
assembly with six connexin subunits formed on the cell membrane; two hemichannels from
neighboring cells dock together to form gap junctions (GJs) (7, 8). GJs are intercellular
communication junctions, important in the maintenance of homeostasis, and their disruption is
associated with pathology, particularly in carcinogenic processes (9, 10). GJs are responsible for
intracellular communication via the passing of small ions and hydrophilic metabolites less than 1
kDa in size. In addition to forming gap junctions, hemichannels provide unique cell permeability
between the intracellular and extracellular milieus in tissue function and affect tumorigenesis,
suppression of cancer growth, and metastasis (11, 12).
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Metastasis results in the dissemination of cancer cells to a new
organ. Over half of the brain metastases are derived from lung
adenocarcinoma. The dissemination of lung cancer cells,
especially to brain parenchyma and leptomeninges, causes high
morbidity; as this metastasis is primarily associated with the
central nervous system, it leads to a poor prognosis (13). Lung
cancer cells need to overcome several stages or barriers to
metastasize to the brain. First, the cells must grow at their site
of origin and detach from neighboring cells in the lung. Next,
they must intravasate to nearby blood vessels, penetrating blood
vessels, then cross the blood-brain barrier (diapedesis). Finally,
to establish itself as a metastatic cancer cell in the brain, the
cancer cells must undergo angiogenesis to form a new blood
supply (14). However, the understanding of the role of Cx-
channels in lung cancer brain metastasis is limited, and
necessitates further research.
CONNEXINS, GAP JUNCTIONS,
HEMICHANNEL, AND LUNG CANCER
TYPES

Different isoforms of Cx may have distinct functions in lung
cancer tissues and cell lines.

Non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) are the two foremost lung cancers; furthermore,
NSCLC has been classified into three subclasses: NSCLC-la (large
cell carcinoma), NSCLC-sq (squamous cell carcinoma), and
NSCLC-ad (adenocarcinoma). These subclasses normally stem
from the bronchioles, small alveoli, and alveoli (15).

Cx expression at the transcriptional and protein translation
levels have been observed in human lung cancer tissues, using
electrophysiology and dye uptake techniques, to identify Cx
Frontiers in Oncology | www.frontiersin.org 2
biomarkers for clinical prognosis. To date, 21 Cx mRNAs have
been detected in lung cancer tissues including in NSCLC-ad
and NSCLC-sq, with differential abundance compared to that
in normal healthy lung tissues (1). Although the mRNA levels
of these Cxs do not represent hemichannel functionality or gap
junction intercellular communication (GJIC), researchers have
demonstrated that high Cx mRNA levels are associated with
better survival, suggesting the association of Cx expression
with tumor-suppressive roles (1). Other indicators suggest that
Cxs may also function as tumor promoters, as their expression
correlates with poor survival (1). Therefore, information such
as cancer stage and cancer type is key (1). Cx26 significantly
correlates with poor prognosis and metastasis in NSCLC-sq
(2). The protein, hemichannel, and GJ functions of Cxs, such
as Cx43 (1) and Cx26 require further investigation (2)
(Figure 1).

An interesting link between Cxs and lung cancer brain
metastasis has been observed in the NSCLC-la cell line SK-
LuCi-6, derived from lung cancer brain metastatic tumors, which
present detectable levels of GJIC. However, other SCLC cell lines
(NCI-H209, SV-E, LD-T, and MO-A) derived from metastatic
carcinomas, lack GJIC (16). Similar to previous findings in
human lung cancer cells, these SCLC metastatic cell lines
typically exhibit low GJIC because of decreased Cx expression.
SK-LuCi-6 presents higher GJIC levels, suggesting different GJIC
functions in different subtypes of lung cancers.

Furthermore, different isoforms of Cxs have been directly
associated with tumor progression. Ectopic expression of Cx43 in
LH7 cell lines derived from the highly metastatic human
pulmonary giant cell carcinoma, indicates low levels of Cx43
enabling reestablishment of intracellular communication,
causing more normal characterization (17). Notably, in the
human NSCLC-ad cells lines, HCC827 and PC9, Cx26
expression triggered EMT (epithelial–mesenchymal transition)
FIGURE 1 | Connexins (Cxs) in human lung cancer tissue and its Cx-channels. In normal lung tissues, 21 connexin genes, mRNA, and protein have been detected
in the human genome, junctional hemichannel, and hemichannels (1, 2).
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involving the PI3K/Akt signaling pathway (18). Rodent lung
cancer models have also provided valuable information on
Cx association with lung cancer metastasis. In mouse lung
cancer tissue, altered expression of mCx26, mCx32, mCx37,
mCx40, mCx43, and mCx45 mRNA is observed during
lung tumorigenesis compared to normal lung tissue (19). These
mCx proteins are known to be engaged in GJIC in lung
cancer. Rat Cx26 mRNA expression was reduced in lung
adenocarcinomas and induced in rats using N-nitrosobis(2-
hydroxypropyl)amine, suggesting rCx26 involvement in tumor
development (20).

Therefore, the functional roles of Cxs are largely influenced by
mechanisms, both dependent and independent of gap junctions,
type of lung cancer, and stage of lung cancer progression.
PRIMARY LUNG CANCER AND CXS
EXPRESSION

Broken Steady State of Cx43 During Lung
Cancer Progression
It is reported that Cx43 serves as an inhibitor of lung
tumorigenesis in the early stage; however, a recent study
revealed that Cx43 can also function as a tumor promoter (1).
This controversy could be attributed from the fate of Cx43 at
different stages of lung cancer: early stage, before metastasis to
other tissue, and in the advanced stage of primary lung cancer.
Cx43 mRNA and protein can be detected in tissues obtained
from early stage human lung cancer, although the expression
level is lower and is nucleus-localized compared with heathy lung
tissue (1). Interesting, Cx43 mRNA and protein expression are
gradually decreased in normal lung tissue adjacent to the tumor
tissue and was closely correlated with the distance from the
tumor tissue as Cx43 expression was lower in areas closer to the
tumor site (21). These data suggest that cancer cells negatively
affect Cx43 expression in the surrounding normal lung cells.
Moreover, it also implies that primary lung cancer cells appear to
“isolate themselves” by preventing the GJICs between lung
cancer cells and normal lung cells.

However, the picture is quite different in advanced lung
tumor. In the advanced stage of lung tumor, Zhao et al. found
that Cx43 expression is positive in human NSCLC tissue in the
advanced stage of lung cancer. This study suggests that Cx43 can
be an important biomarker for the progression of NSCLC from
lower grades with undetectable Cx43 levels, to higher grades
during metastasis with poor prognosis (22). Furthermore, the
other study indicates that Cx43 can be a prognostic factor to
forecast advanced NSCLC, as high Cx43 is associated with a
positive prognosis; in contrast, lower Cx43 is associated poor
prognosis (23). Higher Cx43 in A549 cells lead to cisplatin (cis-
diaminodichloroplatinum) chemotherapy resistance and
reversed the EMT (18). Alternatively, Cx43 reverses resistance
against EMT inhibition by cisplatin in A549/cisplatin cells,
and lower Cx43 expression was observed in A549/cisplatin
cells in comparison to A549 cells. These cells acquired an
Frontiers in Oncology | www.frontiersin.org 3
EMT phenotype with morphological changes, such as spindle-
like fibroblasts (21). In mCx43 heterozygous knockout mice
mCx43+/−, mCx43 loss was associated with lung cancer aggression
and a higher incidence of NSCLC-ad induced by the known
carcinogen 7,12-dimethylbenzanthracene (24). The difference in
expression levels may explain how Cx43 can play opposed roles as
a tumor inhibitor and enhancer depending upon the stages of lung
cancer development.

There are ample evidences supporting inhibitory function of
Cx43 and GJIC in lung cancer cell lines and primary lung cancer
growth. Using lung cancer cell line, an assay performed in an in
vitro by Ruch et al. showed that forced Cx43 expression in a
human cancer cell line restored GJIC and reduced cell growth
and tumorigenicity (25). More recently, the same group reported
an association between Cx43 and the neoplastic transformation
of lung cancer stem cells (CSCs). Cx43 reversed some tumor
features, and reduced the number of lung CSC in human (26). In
the cell lines and tissue of lung tumor from mouse, GJIC is
commonly defective, and the loss of GJ proteins, such as mCx43,
results in the loss of a crucial component in intercellular
communication and a vital intermediary of regulation in the
phenotype and homeostasis (27). An interesting proteomic analysis
assay was performed using themouse lung tumorigenic cell line E9-2,
to understand how GJIC regulates tumorigenesis. Altered levels of
protein disulfide isomerase, gelsolin-like protein, a-enolase, and
aldolase A, were observed upon abrogation of mCx43 by
transfection (28). In mouse models, the loss of one mCx43 allele
alone resulted in a higher incidence of lung lesions (29). However, a
study demonstrated that mCx43 loses its tumor-suppressing function
in advanced carcinogenesis, thus, mCx43 is considered as a
conditional tumor suppressor (29). Mice with one deleted allele of
the mCx43 gene (mCx43+/−), mCx43 loss was associated with lung
cancer aggression and a higher incidence of NSCLC-ad induced by
the known carcinogen 7,12-dimethylbenzanthracene (24).

In the human NSCLC-ad A549 cell line, evidence supports that
Cx is pro-tumorigenic particularly in cancer-associated fibroblasts,
which accelerate the malignant progression of NSCLCs by forming
Cx43-formed unidirectional GJIC from cancer-associated
fibroblasts to A549 cells (30). The above-mentioned studies reveal
a link between disruption of the steady state of Cx43 GJIC and lung
tumorigenesis. This also indicates that maintaining the balance of
the Cx43 steady state could be an important strategy for inhibition
of lung tumorigenesis.

Regulation of Cx43 During NSCLC
Development
It is important to consider how Cx43 is regulated during lung
cancer development and tumorigenicity advancement and
metastasis. However, there are very limited published studies
concerning the regulatory mechanism of Cx43 during lung
cancer development. Hypoxia activates the P53/MDM2 axis
and induces Cx43 internalization (31). Cx43 is moved from the
membrane to cytoplasm, where it is degraded (31), and the
lower Cx43 levels promote EMT, inducing proliferation and
tumorigenicity in human NSCLC tissue and cells (31). In
contrast, p38 MAPK activation and JNK inhibition increases
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Cx43-mediated cell-cell communication via in human lung
neoplastic cells and this activation is induced by 4-phenyl-3-
butenoic acid (32). Low Cx43 expression is also significantly
associated with CpG island hypermethylation (CIH) in NSCLC.
The level of CIH involved in poorly differentiated tumors and
those caused by heavy smoking presented a weak Cx43 staining
and ZO-1 or E-cadherin expression (33). Several studies
indicated that Cx43 and E-cadherin are useful biomarkers in
NSCLCs (22). Yeh and Hu proposed an explanation for
conflicting reports on the functions of Cx43. They claimed
that GJIC deficiency in the lung cancer A549 cells was mediated
by oxidized beta-carotene, along with phosphorylation and
abnormal positioning of Cx43 (34).

Cx26, Cx31.1, Cx32, and Cx30.3 Functions
in Lung Cancer Suppression
In addition to Cx43, other Cx subtypes are also involved in lung
cancer cell proliferation, EMT, tumorgenicity, and metastasis. In
hypoxia induced human pulmonary epithelial cells, low levels of
Cx26 promoted EMT, inducing proliferation and tumorigenicity
of cancer cells (31). In the A549 NSCLC-ad cell line expressing
Cx26, the PI3K/AKT signaling pathway is involved in EMT (18).
In human NSCLC cell lines, Cx31.1 expression was reduced and
inversely correlated with lung cancer metastasis. Notably, Cx31.1
promoted the expression of cytokeratin, a marker of epithelial
cell, and inhibited the expression of vimentin, a marker of
mesenchymal cells (35). These data indicate that Cx31.1
induced limited shift from a mesenchymal phenotype towards
an epithelial one, and that Cx31.1 in NSCLC can be anti-
tumorigenic. The interesting link between Cx31.1 degradation
by autophagy and tumor suppression in NSCLC H1299 cells (36)
should be further investigated.

mCx32-knockout (KO) mice displayed increased tissue-
specific sensitivity to radiation-induced tumorigenesis in the
lung. mCx32 suppresses mouse lung tumorigenesis by altering
the activation of the MAPK pathway in a p27 status-dependent
manner (37).

In contrast to other Cxs, mCx30.3 promoted lung tumor
growth and metastasis in a syngeneic mouse model, and its
overexpression enhanced the sphere-forming ability and
anchorage-independent growth of cancer cells (38). It is
important to examine Cx30.3 in human tissue and cell lines to
determine the utility of Cx30.3 as a diagnostic and prognostic
biomarker for human lung cancer.
ENDOTHELIAL CXS EXPRESSION AND
IMPLICATION IN LUNG CANCER CELL
EXTRAVASATION

Endothelial Cxs Promote Lung Cancer Cell
Diapedesis
Cxs are expressed in endothelial cells. GJs regulate endothelial
cell stiffness, a crucial physical characteristic related to several
vascular pathologies. Tumor necrosis factor-a (TNFa)
Frontiers in Oncology | www.frontiersin.org 4
temporarily increases the stiffness of endothelial cells and is
manipulated by the interaction of cells and rearrangement of the
cytoskeleton (39). Additionally, an important Cx43 mediated
signaling pathway (EGF-ERK1/2-FAK-RhoA-Rac1) was shown
to determine the efficiency of A549 cell diapedesis. A549 cell-
induced activation of human umbilical vein endothelial cells
correlated with an increased abundance of Cx43 plaques on a
co-culture of both cell types. Furthermore, loss of Cx43-GJIC
in treatment using 18-a-glycyrrhetinic acid and siRNA caused
a weakened activation of endothelial cells cell in the human
umbilical vein (40). Pannexin1, which only forms hemichannels,
is functionally notable; the permeability of vascular endothelial
cells is regulated by Pannexin1 (41). Additionally, in retinal
vascular endothelial cells, non-junctional Cx43 decreased the
permeability of monolayer cells, and inhibited apoptosis
mediated by high glucose (42). Cx-mediated endothelial cell
dysfunction is essential for lung cancer metastasis, and
endothelial cell dysfunction disrupts the cell integrity
by causing inflammation. Consequently, integrity and
permeability are to be protected by Cx in the endothelial cells.
Aspirin alleviates endothelial cell dysfunction by inhibiting
activation of the NLRP3 inflammasome in lipopolysaccharide-
induced vascular injury (43).

Additionally, the human endothelial cell line, EAhy 926,
treated with IL-1b/TNFa and high glucose, in Cx43
hemichannel inhibited and reduced ATP release (44).
Further, homeostasis and intracellular communication were
regulated by Cx37 and Cx40 by interaction with NOS (nitric
oxide synthase) in the endothelial cells (45, 46). Importantly,
compared to non-tumor lung samples, the higher NOS was
found in the NSCLC-ad (47). However, effective strategies for
identifying functional GJs between lung cancer cells and
endothelial Cxs during the intravasation of lung cancer cells
into blood vessels are limited.

Cx43 in the Brain Endothelial Barrier
Interacts With Lung Cancer Cells
Cx43 GJs are associated with hyperpermeability in the brain
endothelial barrier. Cx43 is incorporated into the blood–brain
barrier (BBB) junction complex, and the aberrantly increased
Cx43 GJs regulate the permeability in a tight junction-
dependent manner in the brain endothelial barrier
(48). Additionally, Cx43 regulates the homeostasis of ions,
pH, and permeability in the BBB. In a previous review,
supporting evidence was described regarding the role of
astroglial cells and Cxs in manipulating the permeability of
BBB, initiated by infectious pathogenesis (49). HIV-infected
astrocytes disrupt BBB integrity via a gap-junction-dependent
mechanism due to endothelial apoptosis (50). cAMP activates
cyclic nucleotide-gated channels, thereby inducing Ca2+

influx, leading to increased GJ coupling. Cyclic nucleotide-
gated channels act as a physiological link that integrates GJ
coupling into adenosine receptor-dependent signaling of BBB
endothelial cells (51). Opening of the Cx43 hemichannel,
polarized by acute ischemic stroke-mimicking conditions
disrupted the transport function of BBB, and intracellular
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Connexins-Lung Cancer Brain Metastasis
taurine and ATP were released in the BBB endothelial cells
rat (TR-BBB13 cells) and human (hCMEC/D3 cells)
origins (52). However, few studies have demonstrated GJ
communication between lung cancer cells and endothelial
Cxs during the extravasation of lung cancer cells and their
crossing into the BBB.

During extravasation, endothelial cell Cx37, Cx40, and Cx43
contribute to lung cancer cell diapedesis from vessels. Additionally,
brain endothelial Cx43 helps lung tumor cells to traverse to the
brain (Figure 2). Thus, we concentrated on the function of GJs
interaction between lung tumor and the endothelium, as well as
their effects on lung cancer brain metastasis.
ASTROCYTE CXS ARE INVOLVED IN
BRAIN METASTASIS OF LUNG CANCER

Astrocyte Cxs Contribute to Lung Cancer
Brain Metastasis
The interplay of the Cx43 junction channel with astrocytes and
lung tumors promotes metastasis. Lung cancer cells require a
growth-permissive microenvironment to survive, which is
provided by the astrocytes (14). However, astrocytes can kill
most infiltrated lung cancer cells (53) and thus, are emerging as
essential regulators of brain metastasis (54). Brain metastatic
cancer cells could form gap-junctional networks with the
astrocytes and transfer cGMP to astrocytes, leading to the
activation of the STING pathway, resulting in the production
of interferon-a and TNF (55). Additionally, activating the
MAPK/ERK signaling pathway promotes brain metastasis of
lung cancer cells via a microRNA-330-3p-mediated mechanism
(56). Subsequently, tumor cells and astrocytes are mutually
stimulated in the microenvironment of brain metastasis by
specific inflammatory cytokines, and this mutual relationship
promotes lung cancer metastasis and its development in the
brain (57). Brain-metastasized lung cancers show increased
expression of nuclear beta-catenin, which increases Cx43
expression (58). Similarly, overexpression of Cx30.3 has been
found to increase lung cancer metastasis (38). Furthermore,
Frontiers in Oncology | www.frontiersin.org 5
suppressors of GJs between lung A549 CSCs and astrocytes,
such as AS602801, are an anti-CSC drug candidate to suppress
brain metastasis (59).
Astrocyte Cx43 Hemichannels Are
Involved in Lung Cancer Brain Metastasis
Cx43 hemichannels, as well as GJIC in the astrocytes, may be
involved in lung cancer brain metastasis. Astrocytes express high
levels of Cx43, and the inhibition of cytokine-induced Cx43
hemichannels in astrocytes has a neuroprotective effect (60).
Additionally, astrocyte Cx43 hemichannels increase the release
of dickkopf-1 protein during HIV infection, thus contributing to
brain pathogenesis observed in HIV-infected individuals (61).
Notably, the activity of GJIC and hemichannel were differentially
blocked by general anesthetics (propofol, ketamine, and
dexmedetomidine), and had similar effects on neuronal
hemichannels (62). In Parkinson’s disease, astrocytes Cx43
hemichannel activity regulated midbrain dopamine neuron
degeneration in a glucocorticoid receptor-dependent manner.
Increased Cx43 hemichannel activity was found in vivo in
MPTP-intoxicated mice, and decreasing its activity by use of
the hemichannel blocker TAT-Gap 19 peptide, increased
dopamine neuron and microglial activation (63). Studies of
osteocytes have shown that Cx43 hemichannels suppressed
breast cancer growth and bone metastasis (12). Pro-
inflammatory cytokines reduced Cx43 levels on the cell surface
in activated microglia (64). Notably, NSCLC development was
enhanced by circ_ZNF124, which was targeted by miR-337-3p
directly to downregulate the JAK2/STAT3 signaling pathway
(65), thereby providing indirect evidence of the role of the GJ–
astroglial-STAT3 axis in lung cancer brain metastasis.

Factors Affecting Astrocyte Cx43
Expression Are Associated With Lung
Cancer Metastasis
Certain types of stress can affect Cx43 expression in astrocytes,
and may be associated with lung cancer metastasis; however,
direct evidence of this association is insufficient. Astrocytes
Cx43 GJs ultrastructure changed in an oxygen–glucose
FIGURE 2 | Endothelial Connexins (Cxs) allow lung cancer diapedesis. In blood vessels, endothelial Cx37, Cx40, and Cx43 contribute to the of lung tumor cells (40,
45, 46).
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deprivation mouse model. Oxygen–glucose deprivation-
Cx43 metastasis-associated lung adenocarcinoma transcript I
(MALAT1) may be related to lung cancer brain metastasis (66).
Notably, MALAT1, the long noncoding RNA, protected human
brain microvascular endothelial cells by inhibiting apoptosis
induced by oxygen-glucose deprivation and reoxygenation
(67). Norepinephrine is one of the most potent stimulators of
tumor cell migration, and drives metastatic development of PC-
3 human prostate cancer (68). It may be interesting to study the
norepinephrine-Cx43-lung cancer brain metastasis axis.
Notably, junctional channels between lung cancer cells and
astrocytes induce resistance to chemotherapy (69). PC-14
NSCLC brain metastases were protected from chemotherapy
by astrocytes via a mechanism of endothelin-dependent
signaling (70).

In the brain, Cx43 in astrocytes inhibits invading lung cancer
cells at an early stage, and forms GJs with surviving lung cancer
cells. In the late stage, Cx43 GJ channels between lung
cancer cells and astrocytes promote chemotherapy resistance
(Figure 3).
CONCLUDING REMARKS

A deeper understanding of the underlying mechanisms of Cx-
mediated brain metastasis, and regrowth of lung tumors will
help in improving strategies for prevention of lung cancer
metastasis. Following primary tumor removal, the goal of
systemic therapy should be to prevent relapse. However,
adjuvant therapy agents target growing lung cancer cells
rather than inhibiting metastasis. Cxs can function as both
lung cancer suppressors and promoters depending on the
isoforms, stages, and the type of lung cancer. Furthermore,
endothelial Cxs contribute to lung cancer diapedesis and
astrocyte Cxs contribute to the brain metastasis of lung
cancer cells. Thus, using endothelial Cxs to build barriers
against lung cancer diapedesis may be the best strategy for
inhibiting the metastasis of lung cancer to the brain. There is a
lack of research models and an appropriate lung cancer type to
Frontiers in Oncology | www.frontiersin.org 6
study all Cx isoforms, as well as tracking the entire process of
lung cancer–brain metastasis. Furthermore, it is important to
study lung cancer metastasis in the environmental context
with potential lung carcinogens, such as coal combustion
emissions. The findings of such investigations on the Cx
isoforms and lung cancer types should be compared to
global geographic variations, as reflected by the lung
cancer rate in Xuanwei, China, which is the highest in
the world (71, 72). Extrapolating knowledge from studies on
Cxs from other cancer types, to lung cancer and brain
metastasis may also foster the development of more effective
therapeutic approaches.

There is a lack of therapeutics for lung cancers, but mimics
peptides of Cxs currently under clinical trials for other diseases
(73) and could be used to cancer therapeutics.
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FIGURE 3 | Astrocyte Cx43 interaction with brain metastases lung tumor. (A) At the occurrence of lung cancer brain metastasis, astrocytes kill most lung cancer
cells that cross the blood–brain-barrier; few lung cancer cells survive form Cx43 gap junctions with astrocytes. (B) In the late stage of brain metastasis, Cx43 gap
junctions between astrocytes and surviving lung cancer cells confer resistance against chemotherapy (53, 58).
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