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Concurrent stimulation and reinforcement of motor and sensory pathways has been
proposed as an effective approach to restoring function after developmental or
acquired neurotrauma. This can be achieved by applying multimodal rehabilitation
regimens, such as thought-controlled exoskeletons or epidural electrical stimulation to
recover motor pattern generation in individuals with spinal cord injury (SCI). However,
the human neuromusculoskeletal (NMS) system has often been oversimplified in
designing rehabilitative and assistive devices. As a result, the neuromechanics of
the muscles is seldom considered when modeling the relationship between electrical
stimulation, mechanical assistance from exoskeletons, and final joint movement.
A powerful way to enhance current neurorehabilitation is to develop the next generation
prostheses incorporating personalized NMS models of patients. This strategy will
enable an individual voluntary interfacing with multiple electromechanical rehabilitation
devices targeting key afferent and efferent systems for functional improvement. This
narrative review discusses how real-time NMS models can be integrated with finite
element (FE) of musculoskeletal tissues and interface multiple assistive and robotic
devices with individuals with SCI to promote neural restoration. In particular, the
utility of NMS models for optimizing muscle stimulation patterns, tracking functional
improvement, monitoring safety, and providing augmented feedback during exercise-
based rehabilitation are discussed.

Keywords: spinal cord injury, neuromusculoskeletal modeling, neural restoration, functional electrical
stimulation, brain-computer interface, real-time, digital twin, rehabilitation robotics

INTRODUCTION

Spinal cord injury (SCI) partially or fully interrupts physiological connections between the brain,
the spinal cord, and the muscles. Motor commands can still be generated but may not reach the
muscles to produce movement. Similarly, sensory signals from below the injury site, such as signals
indicating gravity, motion, touch, pain and/or temperature, cannot travel back to the spinal cord
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and brain for proprioceptive input to motor pattern generators,
somatosensorimotor perception, and neocortical/conscious
interpretation. This feedback loop must be reconnected if
mobility, motor pattern generation, and sensation are to reoccur
after SCI (Jackson and Zimmermann, 2012).

Recent advances in neural prosthetics and rehabilitation
robotics have shown great promise for restoration of voluntary
movement in individuals with SCI. These techniques have
been shown to restore function in rats with a transected
spinal cord (van den Brand et al., 2012). Direct electrical
stimulation of the injured spinal cord with co-application of
pharmacological agents, such as serotonergic receptor agonists,
has also enabled individuals with SCI to regain some voluntary
movement (Gerasimenko et al., 2015; Angeli et al., 2018; Gill
et al., 2018; Sayenko et al., 2018). Researchers (Donati et al.,
2016) recently combined motor-driven exoskeleton gait training
and tactile feedback using simulated foot pressures (movement
sensation) with advanced brain-computer interfaces (BCI) and
virtual reality to restore the brain-muscle loop. Preliminary
evidence suggests that concurrently engaging the central and
peripheral nervous (e.g., propriospinal projection network,
reticulospinal serotonergic neurotransmission) and muscular
(e.g., proprioceptive receptors and neuromuscular junctions)
systems may promote restoration of the central pattern generator
of the spinal cord (i.e., neural restoration) (Ropper et al., 2017;
Teng, 2019).

The abovementioned studies have raised expectations about
the feasibility of designing non-invasive efficacious therapies
for the SCI population, a prospect heretofore considered
unattainable. However, application of these technologies often
requires guesswork from clinicians or researchers to define the
parameters associated with the amount of stimulation or support.
For example, functional electrical stimulation (FES) requires
users to specify frequency, duty cycle, current amplitude, and
timing to achieve a predefined movement pattern. Parameters
are usually predefined by the manufacturer, leaving the clinician
to adapt the therapy to the patient based on trial-and-
error approaches and clinical experience (Doucet et al., 2012).
Similarly, motorized rehabilitation robotics require users to pre-
select gait kinematics and/or kinetics, which are then used to
drive the patient during rehabilitation. These sets of parameters
need to be maintained within safe limits to prevent injury
(He et al., 2017; Angeli et al., 2018). Otherwise, applying
electrical stimulation or powered rehabilitation robotics can
result in excessive tissue strains and consequent tissue failure
given the atrophied musculoskeletal tissues and low bone density
present in individuals with SCI (He et al., 2017). However,
these approaches to assisted therapy are currently often not
personalized to the patient, which could potentially result in poor
patient engagement, and consequently, sub-optimal interaction-
enhanced neural plasticity.

A neuromusculoskeletal (NMS) model is a physics-based
functional representation of an individual’s NMS anatomy and
physiology, which can be used to estimate the internal states of
musculoskeletal tissues non-observable via instruments external
to the body. A NMS model may account for individual-
specific musculoskeletal capabilities, and be used to quantify the

difference between voluntary muscle activation and the external
assistance required to perform a specific task. NMS models
may also monitor musculoskeletal tissue stress/strain to prevent
injury, and quantify improvement following rehabilitation, such
as increases in voluntary force. Using NMS models, existing
rehabilitation methods could be further expanded and improved
upon developing a personalized therapy that reduces clinician
guesswork by automatically stimulating the patient’s muscles,
adapting to the patient’s recovering muscle activation patterns,
challenging the patient in recovery to maximize engagement, and
maintaining the amount of external assistance within safe limits.

Here we intended to focus on how NMS models can
be used to integrate different neuromechanical prostheses
to maximize potency of neurorehabilitation following SCI.
The review comprises an overview of currently available
neuromechanical prostheses and describes how real-time NMS
models can be integrated with assistive devices to improve
rehabilitation outcomes. We concluded with a summary of
current limitations of the presented approach and suggestions for
future research directions.

PubMed was searched for articles published in English
from January 1980 to October 2020. Search terms included
“FES,” “BCI,” ”neural prosthesis,” “exoskeleton,” “rehabilitation
robotics,” “NMS modeling,” “finite element (FE) modeling,” and
“digital twin.” Abstracts were reviewed, and papers with a focus
on applications in SCI were further analyzed in detail.

NEUROMECHANICAL PROSTHESES
FOR INDIVIDUALS WITH SPINAL CORD
INJURY

A neuromechanical prosthesis can be defined as any device
or combination of devices that support and/or replace any
neural or mechanical function of an individual. In the
context of SCI, neuromechanical prostheses to restore function
include BCI, peripheral and spinal electrical stimulation, and
rehabilitation robotics.

Brain-Computer Interfaces
Brain-computer interface can capture the user’s intention
to perform a movement, which can be used to control
computer simulations and/or external electromechanical devices
(Pfurtscheller et al., 2003a; Silvoni et al., 2011). The patient’s
movement or force output is captured by the afferent pathways,
which in turn affects the patient’s brain activity. Motor
imagery, the act of imagining performing a movement without
producing mechanical output, can modify the neuronal activity
of the sensorimotor cortex, similar to what occurs when
performing the real movement (Pfurtscheller and Neuper, 2001).
Electroencephalogram (EEG) recordings acquired synchronously
with motor imagery of tasks such as cycling or walking can
be used to train a machine learning classifier to discriminate
between different brain states (Lotte et al., 2018). Using this
approach, BCI can then be used in real-time to classify
different motor intentions and control assistive devices, such
as rehabilitation robotics (Barsotti et al., 2015) and FES
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(Pfurtscheller et al., 2003b). BCI has also been used in
combination with more sophisticated machine learning methods
to predict kinematic of movement (Cheron et al., 2012) and
control the gait of a virtual reality avatar in real-time (Luu
et al., 2016). Practically, this means that EEG acquired by a
BCI can be transformed into an output in the real world.
Current evidence suggests rehabilitation using a BCI can induce
neural plasticity and improve motor function in people with
neurological conditions (Grosse-Wentrup et al., 2011).

Peripheral and Spinal Electrical
Stimulation
Electrical stimulation uses electrical current to stimulate the
spine, peripheral nerves, or musculoneuronal junctions to
artificially induce muscle contraction. Stimulation results in
synchronous recruitment of motor neurons and force production
at the level of muscle fibers. Force is then transmitted via
tendons to the skeletal system producing final effector force and
movement. Electrical stimulation of muscles, often referred to
as FES, is non-invasive and can be performed transcutaneously
via pairs of electrodes applied to each muscle or muscle
group. FES during leg cycling is a popular rehabilitation
modality (Ragnarsson, 2008), as the pedaling motion is a
closed kinematic chain (i.e., constrained mechanical action) and
accessible to people with tetraplegia. Even when implemented
more than 20 years following SCI (Mohr et al., 1997), FES leg
cycling continuously showed multiple clinical benefits, such as
increased cardiorespiratory performance (Pollack et al., 1989)
and endurance (Mohr et al., 1997), prevention of muscle atrophy
(Baldi et al., 1998), and increased muscle mass (Mohr et al., 1997).

Epidural electrical stimulation of the spinal cord has been
used to evoke rhythmic electromyograms (EMGs) from muscles
of the lower limbs, resulting in individuals with complete SCI
to independently walk again (Angeli et al., 2018; Gill et al.,
2018). Less invasive transcutaneous electrical stimulation of
the spinal cord also restored movement in the lower limbs of
individuals with SCI, resulting in retention of some volitional
movement control even in the absence of electrical stimulation
(Gerasimenko et al., 2015). However, improper stimulation of
the spinal cord may interfere with afferent neural pathways
and disrupt proprioceptive information (Formento et al., 2018),
which are proposed to be essential for restoration of neural
function (Rushton, 2003). Moreover, there might be potential for
adverse events when stimulation is applied to SCI patients using
guesswork alone to define input parameters. Thus, technologies
and methods for preventing excessive tissue loading in response
to electrical stimulation are essential.

Treatments involving electrical stimulation necessitate a set
of parameters to be defined, such as on/off timing of muscle
stimulation, and stimulation frequency and amplitude. Clinically,
these parameters are commonly set by the operator based on
predefined values or via trial and error experiential approaches
(Doucet et al., 2012). Automatic parameters selection can be
achieved via closed-loop control strategies that automatically
tune amplitude and/or frequency of stimulation to track
predefined kinematics or kinetics targets (Hunt et al., 2004;

Lynch and Popovic, 2008; Li et al., 2016). However, most control
strategies presently available do not appropriately model the
underlying NMS system of an individual, overly simplifying
or ignoring the dynamics of muscle activation and contraction
and their effects on joint movement (Sartori et al., 2016).
These control strategies do not permit observation of the
internal state of the musculoskeletal system, nor allow for
planning optimal muscle coordination strategies when multiple
degrees of freedom are involved. Moreover, even most recent
approaches to controlling do not account for variations in
an individual’s anatomy, physiology, or neuromuscular system,
nor do they automatically adapt to a patient’s changing neural
capabilities on any time scale. Collectively, these technologies
have many limitations, that if addressed, could greatly enhance
rehabilitation outcomes.

Rehabilitation Robotics
Rehabilitation robotics involves any motorized
electromechanical system, either wearable or stationary,
that assists an individual to perform a target movement, such as
exoskeletons (Jezernik et al., 2003) and motorized ergometers
(Mekki et al., 2018). Robotic-assisted rehabilitation commonly
involves securing the patient to the machine and the therapist
defining what specific gait or cycling kinematics pattern the
robot should provide. In most cases involving individuals with
complete SCI, the patient is completely and passively guided by
the robot and minimally engaged in the rehabilitation process,
due to no need to deliver any kind of executive command
from the brain. During this process, intact spinal loops and
reflexes may be triggered, resulting in some amount of muscle
contraction, force and movement generation, and may also
contribute to maintaining overall musculoskeletal tissue health,
but effectiveness of these therapies on walking function remains
poor (Swinnen et al., 2010; Mehrholz et al., 2017). If these robotic
assistive devices could be designed to maximally engage the
individual’s motor imagery, this would be an improvement over
current use of this technology.

Combined Use of Multiple Assistive
Devices
Multiple assistive devices have been combined to maximize
functional outcomes (Mekki et al., 2018). In a study involving
BCI-controlled FES of wrist, continuous and sustained motor
imagery throughout FES resulted in greater cortical activity
when compared to lack of motor imagery during FES (Reynolds
et al., 2015), potentially suggesting strengthening of corticospinal
pathways (Pfurtscheller and Lopes da Silva, 1999). A similar
strategy was also used to successfully restore wrist motor function
in post-stroke individuals, wherein FES was significantly more
effective when controlled by a BCI (Biasiucci et al., 2018).
Combining FES with rehabilitation robotics has been proposed
to enhance devices’ performance (i.e., reduce the power of
exoskeletons’ motors) (Ha et al., 2012, 2016) and to prolong
the length of the rehabilitation session (del-Ama et al., 2014).
Finally, BCI has also been combined with virtual reality and/or
assistive robotic devices for rehabilitation of individuals with SCI
(Donati et al., 2016).
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The fast pace at which research involving neuromechanical
protheses is growing (Marchal-Crespo and Reinkensmeyer, 2009)
reveals an increasing need to integrate multiple assistive devices
that can collaborate with the individual to promote adaptive
and patient-centered therapy (Holanda et al., 2017). However,
current approaches based on classic control theory or machine
learning often oversimplify the complex dynamics of the human
NMS system, omitting the mechanism underlying the causal
relationship between observed input and output data (Sartori
et al., 2016). Physics-based NMS models are an alternative
approach that enables natural control of neuromechanical
prostheses and permits assessing the internal state of an
individual’s NMS system.

REAL-TIME NMS MODELING TO
INTEGRATE ASSISTIVE DEVICES

Electromyogram -informed NMS models used experimentally
measured EMG to perform forward dynamics simulations of
muscle dynamics and estimate musculoskeletal tissue states
(Lloyd and Besier, 2003; Sartori et al., 2012; Pizzolato et al.,
2015). Musculotendon units are modeled using a Hill-type
structure, where an elastic tendon is in series with a contractile
muscle fiber. Musculotendon units are connected to bones via
insertion points and follow anatomically derived paths that wrap
around bones, which are used to estimate musculotendon units’
lengths and moment arms. The skeletal system is defined by
multiple segments (i.e., bones) connected by three-dimensional
joints mobilized accordingly to their anatomical function (Seth
et al., 2018). EMG-informed NMS models have been used to
successfully estimate muscle forces, joint contact forces, and joint
stiffness in the lower and upper limbs of individuals with a
variety of neuromuscular conditions (Sartori et al., 2015; Konrath
et al., 2017; Hall et al., 2018; Hoang et al., 2018, 2019; Lenton
et al., 2018; Kian et al., 2019). NMS models are the optimal
platform for integration of multiple assistive devices, enabling
physics-based sensor fusion, where input and output quantities
are mechanistically and causally related. This is equivalent to the
modern concept of a digital twin (Glaessgen and Stargel, 2012;
Boschert and Rosen, 2016), but here applied to a person and their
assistive device(s) (Figure 1). Although not explicitly addressed
as such, digital twins based on NMS models are becoming
a core technology for human-machine interaction (Sreenivasa
et al., 2019) and personalized rehabilitation (Sartori et al., 2016;
Pizzolato et al., 2017a, 2019), promising exciting technological
advancement in prosthetic limb control (Sartori et al., 2019).

Calibration of NMS model parameters is an identification
procedure whereby an optimization algorithm finds the optimal
set of parameters that minimize the error between experimentally
observed and model-predicted quantities (e.g., joint movement,
joint moments, joint powers, and EMG). Importantly, calibration
ensures that non-observable quantities predicted by the model
(e.g., muscle forces, joint contact forces) are physiologically
plausible (Gerus et al., 2013; Hoang et al., 2018). Prediction
of muscle force has been shown to be particularly sensitive
to optimal fiber length, tendon slack length, and maximum

FIGURE 1 | Schematic representation of the interaction between real world
devices and digital twin. Data measured in the real world include physiological
measurements from the individual, such as electroencephalograms (EEG) and
electromyograms (EMG); and sensor data from assistive devices, such as
force, torque, and position. EEG are used as input for machine learning
methods to classify motor intention. Measured data and motor intention are
then provided as input to digital twin of the patient and assistive devices. The
digital twin implements a personalized NMS model of the individual that
combines the input data to estimate optimal muscle activation patterns,
localized musculoskeletal tissue stress and strains, and the amount of
mechanical support that needs to be provided via rehabilitation robotics. Data
modeled via the digital twin are then used to control assistive devices (e.g.,
electrical stimulation parameters and mechanical assistance) and provide
augmented afferent feedback via visual and/or haptic monitors. This figure
depicts a stationary ergometer and electrodes for functional electrical
stimulation (FES), but the same concept can be applied to other types of
rehabilitation robotics (e.g., exoskeletons) and electrical stimulation (e.g.,
epidural stimulation).

isometric force (Scovil and Ronsky, 2006). Furthermore,
parameters associated with muscle activation dynamics have also
been shown to require calibration (Lloyd and Besier, 2003).
Robotic devices (e.g., the motors of exoskeletons or cycling
ergometers) with no stimulation can be used to acquire the
joint moments generated by passive musculotendinous and
ligamentous tissue (Yoon and Mansour, 1982), and to limit the
range of motion of each joint within specific thresholds based
on passive moments, both of which are parameters that can
be directly input into a personalized musculoskeletal model of
an individual with SCI. Similarly, electrically stimulating one
muscle group at a time would isolate the effects of contractile
properties and activation dynamics of specific muscles and
their causal contribution to joint moments and movement.
Thus, through performing a sequence of robotic movements
and electrical stimulation of different muscle groups, it may
be possible to create an automated protocol to identify critical
neuromuscular parameters. Future research focused into these
domains is required to establish robust protocols for model
personalization in individual with SCI.

Following calibration, NMS models need to operate in real-
time to appropriately control multiple assistive devices. This
means that variables used for controlling or monitoring devices
need to be calculated with minimum delay by the NMS model.
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Recently, large scale real-time EMG-informed NMS model
involving multiple degrees of freedom and musculotendon
units have been used to estimate muscle forces and joint
contact forces for the full lower limbs using experimental
EMGs and motion capture (Pizzolato et al., 2017b,c; Durandau
et al., 2018). This was enabled by an optimized multi-threaded
software architecture, where a publisher-subscriber software
pattern was used to independently handle the multiple input
and output devices minimizing idle times (Pizzolato et al.,
2017b). Another advantage of this architecture is the ability
to modify input or output devices independently from the
underlying NMS model, in a plug-and-play fashion. This allows,
for example, the operator to easily use wearable sensors, or any
other device in place of stereophotogrammetry motion capture
systems to acquire human motion in real-time. Output devices
may include audio, visual and/or haptic monitors to provide
augmented somatosensory information, or control commands
for external devices, such as neuromechanical prostheses. The
multithreaded software architecture used in recent real-time
NMS modeling enables compete decoupling between input and
output devices whereby the NMS model acts as super-controller
and interpreter between the human and the machine (Ceseracciu
et al., 2015). This decoupling allows NMS models to be adapted
for a multitude of neurological conditions and neuromechanical
prostheses. Finally, these EMG-informed NMS models have the
potential to be applied to individuals with SCI to (i) generate
optimal muscle stimulation, (ii) improvement tracking and safety
monitoring, and (iii) augment afferent feedback.

Generating Optimal Muscle Stimulation
Successful rehabilitation for SCI patients will involve generating
an appropriate set of muscle activation patterns that account
for an individual’s capabilities. From optimal activation patterns
required to generate the desired kinematic or kinetic task, it is
then possible to calculate the required amplitude and frequency
of stimulation for FES. However, individuals with SCI have
different levels of neuromuscular dysfunction, with varying
ability to produce voluntary muscle activations (Kirshblum et al.,
2011). To further promote neural restoration, it is necessary
to engage the patient such that they actively participate in the
rehabilitation process. Examples of this approach involve EMG-
gated FES, where muscle stimulation is provided only when
concurrent voluntary contraction from the participant is present
(Burridge and Ladouceur, 2001). This approach has been shown
to produce better outcomes than standard non-EMG-gated FES
(Dutta et al., 2009), though muscle stimulation occurs only if
the patient is able to produce sufficiently large voluntary EMG,
for which some patients are unable due to the severity of their
injury. Furthermore, inter-individual anatomical differences in
musculotendon lengths, moment arms, as well as differences in
seating position and overall movement kinematics will result
in different joint forces and moments for a given FES profile
(Schutte et al., 1993). NMS models can appropriately account for
these inter-individual differences, providing causal relationships
between muscle stimulation and produced force.

A NMS model can be combined with a model of an
electromechanical device to calculate an optimal set of muscle

activation patterns required to perform a rehabilitation task. In
a closed kinematic chain, such as in cycling, the hip, knee, and
ankle joint angles are determined as a function of the crank
and pedal angles. Thus, joint moments can be easily calculated
when the desired values for average power output and cadence
are provided (Farahani et al., 2014). NMS models are readily
used in conjunction with mathematical optimization (e.g., static
optimization) to estimate the optimal set of muscle activation
pattern required to perform a predetermined movement. The
difference between the voluntary muscle activations of the
patient and the target muscle activations from the NMS
model provides an objective basis for calculation of the FES
compensation level (Yeom and Chang, 2010). Using NMS
models, it is also possible to estimate the contribution of
voluntary activation from each muscle of the patient to the final
joint moments. Consequently, the ratio between the support
provided to the patient via electrical stimulation of muscles
and the support provided via mechanical assistance can be
modulated, which introduces the possibility of creating advanced
control strategies that reward patient engagement and voluntary
muscle contractions.

A NMS model can be used as layer between a BCI and
multiple assistive devices, transforming high level efferent
neural commands into appropriate signals to control electrical
stimulation and rehabilitation robotics. EEG acquired while an
individual with SCI attempts to perform coordinated movement,
such as cycling or walking, can be classified in real-time using
machine learning approaches, and used to control a NMS
model. A primitive but currently feasible solution would involve
triggering the NMS model to perform a predetermined trajectory
(e.g., cycling). Future approaches may explore BCI to extract
basic spinal primitives that can be mapped to individual muscle
to enable intuitive control of NMS models (Ubeda et al., 2018).
This solution may be more advantageous compared to direct
control of joint angles (Fitzsimmons et al., 2009) as it better
reflects the current understanding of how the mammalian central
nervous system organizes large groups of synergistic muscles
during complex movement.

Tracking of Improvements and Safety
Monitoring
Globally, health-care system models are being redesigned to
move from volume-based healthcare to value-based healthcare,
which is organized around meeting a set of patient needs
over the full care cycle (Porter et al., 2013). Although SCI
patients consistently rate recovery of paralyzed limb function as
their main priority (Anderson, 2004), clinical assessment alone
is subjective and unable to quantify meaningful changes that
precede major clinical and functional breakthroughs. Objective
measurement of musculoskeletal states via NMS models can
monitor a patient’s state and identify required adjustments in
therapy, such as muscle-specific functional improvements. These
measurements also have an important strategic objective: to
define trajectories of rehabilitation to better inform guidelines for
best-clinical practice so therapists and service providers can tailor
patient support during the most critical stages of care.
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Critical variables that reveal patient improvement can be
tracked during NMS model-based therapies, which include
the amount of robotic assistance required to perform the
task and calibrated neuromuscular parameters assessed at each
session. The mechanisms underlying any reduction in robotic
assistance, such as increased volitional muscle activation or
force production, may also be tracked. Such improvements
may be below the detectable thresholds of standard clinical
assessments, especially if the improvement is not sufficiently
large to generate observable changes in movement. Similarly,
musculoskeletal parameters calibrated at each session, such as
maximum isometric force, could provide longitudinal measures
of neuromuscular adaptation.

Individuals with SCI experience tremendous tissue atrophy
(Giangregorio and McCartney, 2006), often losing up to 55% of
muscle cross-sectional after 6 months from initial injury (Castro
et al., 1999). If, through therapy, inappropriate loads are applied
to these weakened tissues, tissue failure may occur (Angeli et al.,
2018). Powered exoskeletons and rehabilitation robotics that
have been recently approved by the United States Food and
Drug Administration (He et al., 2017) as medical devices are
expected to be increasingly marked; however, appropriate risk
mitigation strategies to prevent injury are lacking (He et al.,
2017). Additionally, incorrectly applied magnitude and timing of
electrical stimulation to muscles can trigger pain that adversely
affects rehabilitation-induced functional recovery and quality of
life (Turtle et al., 2018). These risks may partially be mitigated
using NMS modeling approaches.

The FE method is a computational method that can be
used to predict tissue damage or rupture by modeling the
internal mechanics of tissue (i.e., localized stress and strain), as
demonstrated by ex vivo studies (Shim et al., 2014, 2018). The
geometry of FE models can be personalized to the individual
via medical imaging (e.g., magnetic resonance imaging, x-ray
computed tomography, or ultrasound) (Devaprakash et al.,
2019), while material properties are typically applied from
literature data or estimated experimentally (Hansen et al., 2017;
Shim et al., 2019). Individual-specific boundary conditions
calculated from NMS models (i.e., model pose and applied
external forces) are supplied to FE models to estimate the internal
stresses and strains of selected musculoskeletal tissues. However,
FE analysis is computationally intensive and consequently,
cannot be executed in real-time. Surrogate models of FE models
have been developed for muscles (Fernandez et al., 2018), tendons
(Shim et al., 2018), and bones (Ziaeipoor et al., 2019), enabling
rapid evaluation of stress and strain patterns. Given a FE model
of a tissue of interest, surrogate models are created in an offline
process whereby a FE model is first solved for a complete set
of physiologically plausible boundary conditions (e.g., known
joint ranges of motion and applied muscle forces). Stress and
strain data from all solutions are then used in conjunction with
machine learning methods, such as partial least square regression,
to create a surrogate model able to replicate the complete FE
model with minimal computational complexity in real-time
(Ziaeipoor et al., 2019). Surrogate FE models (Fernandez et al.,
2018; Ziaeipoor et al., 2019) are currently being combined with
real-time EMG-informed NMS models (Pizzolato et al., 2017c)

to provide instantaneously estimates of tissue stresses and strains,
as described in Pizzolato et al. (2017a, 2019). This is an exciting
development, as it is now possible to combine NMS and FE
models that are personalized to the individual to generate muscle
activation patterns that ensure musculoskeletal tissues are loaded
within safe limits. Furthermore, it is now feasible to objectively
assess the effects of a rehabilitation exercise on the tissue-level
signals that regulate the mechanobiology of musculoskeletal
tissues (i.e., stress and strain), which could be coupled with tissue
mechanobiology models (Mehdizadeh et al., 2017) to predict

FIGURE 2 | Schematic representation of closed-loop neuromechanical
prostheses and their effect on movement and tissue adaptation.
Neuromechanical prostheses interface with the central and peripheral nervous
system bypass the spinal cord injury to modulate sensorimotor spinal loops,
wherein activation of muscles and mobilization of joints result in limb
movement and generation of sensory inflow via the somatosensory
apparatus. Afferent signals synthetized by a digital twin of the person are
redirected via alternative pathways to higher brain areas. At tissue level, the
biomechanics (i.e., movement and muscle contraction) result in forces that are
applied to the structure of tissues, generating a local mechanical environment
(i.e., tissue strain) that modulates tissue biology and consequent tissue
structural adaptation.
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long term tissue adaptation following quantifiable mechanical
stimulation (Pizzolato et al., 2017a; Figure 2).

Augmented Afferent Feedback
In people with SCI, afferent signaling from somatosensory
receptors below the level of injury is hindered, abnormal or
absent. To maximize likelihood of neural restoration, afferent
signals need to be redirected to intact somatosensory areas
for neocortical and conscious interpretation (Jackson and
Zimmermann, 2012). It remains unclear what somatosensory
signals are most critical to augment technologically, the
minimum amount of afferent feedback required, or the preferred
delivery modality. It has, however, been proposed that efferent
and afferent stimulation need to be consistent and synchronized
to enable plastic remodeling of the central nervous system
(Rushton, 2003; Jackson and Zimmermann, 2012). Consistent
with what has been shown in motor learning and biofeedback
studies (Kannape and Blanke, 2013; Sigrist et al., 2013), the
delay in delivering technology-augmented afferent feedback
must be minimized in order for patients to associate their
own movement with the augmented afferent feedback. Using
this principle, a recent study employing robotically assisted
and virtual reality gait retraining measured plantar pressure
transformed into haptic feedback delivered via pads applied to the
shoulder region to provide movement sensation (Donati et al.,
2016). Further, visual feedback via virtual reality has been used
to display patient’s avatar limbs during BCI training (Donati
et al., 2016), and augmented reality has been used to provide
somatosensory feedback non-intrusively via peripheral vision
(Clemente et al., 2017).

Neuromusculoskeletal models can be used to augment afferent
somatosensory feedback and synthesize mechanoreceptors
signals that are not externally observable (Pizzolato et al.,
2017a,c). However, synthesized signals need to be integrated
into a meaningful single or multi-modal feedback that can be
easily interpreted by the patient (Sigrist et al., 2013). Peripheral
nerve stimulation has been used to induce sensory feedback
in amputees (Dhillon et al., 2004), and the same technique
could be applied to redirect NMS model-synthesized afferent
signals to intact sensorimotor areas for natural integration to
mechanosensing feedback. Cortical interfaces are an alternative
but invasive solution that could also be used to relieve burden
from the visual system (Tomlinson and Miller, 2016). Cortical
interfaces use an electrode microarray that is directly implanted
into the sensorimotor cortex to provide electrical stimulation
that mimics the natural cortex activity (Tomlinson and Miller,
2016), partially restoring proprioceptive function. Although
still in its infancy, cortical interfaces have shown promise in
animal studies, and could, in the future, be combined with
multiple assistive devices to maximize neural restoration in
individual with SCI.

LIMITATIONS AND FUTURE DIRECTIONS

A variety of assistive technologies are currently available
to aid the rehabilitation of individuals with SCI. However,

significant improvements and recovery of motor function
have been predominantly shown when these devices were
combined rather than used in isolation. In this review we
have proposed integrating these different technologies via
computational NMS models. These models can be considered
as a digital twin of the patient and their devices acting
as an interpreter between human and machine, continuously
monitoring internal tissue state, and tracking longitudinal
changes throughout the rehabilitation journey. Nonetheless,
several challenges will need to be addressed to achieve
this goal, which will require the combined effort from
multidisciplinary research engagements.

Current approaches to BCI based on motor imagery are
not sufficiently robust and require retraining neural decoders
at the beginning of each rehabilitation session (Lotte et al.,
2018). Furthermore, only a few movements can be classified
via this approach, limiting the use of BCI to simple motor
tasks (Bamdad et al., 2015). Part of the problem resides in
the poor signal to noise ratio, spatial resolution, and inter-
session variability of the EEG signals acquired at the scalp.
More robust classification methods able to adapt to the user are
currently being explored by the BCI research community, but an
optimal classification method is yet to be established (Lotte et al.,
2018). Recently developed minimally invasive implantable BCI
have been able to acquire EEG for extended time periods with
greater signal quality than superficial EEG (Oxley et al., 2016).
In the future, this technology may enable superior classification
of motor intention and seamless integration of humans with
assistive devices.

Our proposed strategy involves using NMS models
personalized to the individual; however, current personalization
methods involve time consuming semi-automatic processing of
medical imaging data (Valente et al., 2017). Machine learning
methods to automatically segment tissue from medical imaging
[e.g., neural networks (Zhou et al., 2018)] and to generate
personalized models from population databases [e.g., statistical
shape modeling (Suwarganda et al., 2019)] are emerging as
promising technologies to personalize anatomy and function of
NMS models. However, further efforts will be required to simplify
the creation of these models via seamless processing pipelines
(Zhang et al., 2014) in order to enable their routine clinical use.

The same NMS modeling-based approach described here
for individuals with SCI can be applied for neurorehabilitation
of other types of acquired neurological impairments, such
as traumatic brain injury and stroke. NMS model-based
neuromechanical prostheses are currently possible and within
reach, but these assistive technologies will need to be co-
designed with clinicians, care providers, and patients to
develop devices that are fit for purpose and aligned with
the expectations of the final users. If accepted by the clinical
community, NMS modeling approaches to neurorehabilitation
have the potential to reduce current clinical guesswork
by automatically adapt to the individualized needs of
each patient, enabling minimally supervised rehabilitation
sessions, and reducing costs of care. Clearly, efficacy of NMS
modeling-based neuromechanical prostheses will first need
to be addressed in clinical trials to understand the effect
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of exercise dosage, afferent feedback modality, and
pharmacological agents on rehabilitation outcomes. Overall,
personalized NMS models have the potential to improve
current assistive technologies and potentiate neural recovery
after SCI.
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