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Abstract: We theoretically investigated the plasmon trapping stability of a molecular-scale Au sphere
via designing Au nanotip antenna hybridized with a graphene sheet embedded Silica substrate. A
hybrid plasmonic trapping model is self-consistently built, which considers the surface plasmon
excitation in the graphene-hybridized tip-substrate system for supporting the scattering and gradient
optical forces on the optical diffraction-limit broken nanoscale. It is revealed that the plasmon
trapping properties, including plasmon optical force and potential well, can be unprecedentedly
adjusted by applying a graphene sheet at proper Fermi energy with respect to the designed tip-
substrate geometry. This shows that the plasmon potential well of 218 kBT at room temperature can
be determinately achieved for trapping of a 10 nm Au sphere by optimizing the surface medium
film layer of the designed graphene-hybridized Silica substrate. This is explained as the crucial
role of graphene hybridization participating in plasmon enhancement for generating the highly
localized electric field, in return augmenting the trapping force acting on the trapped sphere with a
deepened potential well. This study can be helpful for designing the plasmon trapping of very small
particles with new routes for molecular-scale applications for molecular-imaging, nano-sensing, and
high-sensitive single-molecule spectroscopy, etc.

Keywords: plasmon trapping; nanotip; plasmon potential well; high stability; graphene

1. Introduction

In recent years, the plasmon trapping of nanoparticles with typical size of sub-100
nm less than light diffraction-limit has attracted great attention for both scientific and
practical purposes. The plasmon trapping of molecular-scale nanoparticles can find a
broad range of potential applications like molecular-imaging, nano-sensor, and single-
molecule spectroscopy [1–5]. Physically, a special type of surface electromagnetic mode
known as surface plasmon polariton can be excited from the origin of the surface electron
resonance at designed geometrical nanostructures [6–8]. The surface plasmon polariton
can be significantly squeezed into a very small size far beyond the optical diffraction
limit, simultaneously bearing a large spatial gradient for supporting plasmon trapping.
Consequently, a variation of geometry structures like nanotip, nanocavity, nano-bowtie,
and nanopillar have been widely investigated for generating the localized surface plasmon
modes for nanoscale particle trapping purposes [9–13]. Amongst them, the hybrid nanotip
in particular exhibits great potential for flexibly controlling plasmon nanofocusing for
nanoparticle trapping applications due to the intrinsic merit of a highly directional hotspot,
as generated from the nanotip geometry [14–18].

To date, a series of investigations on the optical trapping in contact with the tip
of probe have been carried out [19,20]. A theme considering substrate with a circular
nanocavity is proposed to enhance the nanofocusing and optical trapping characteristics
of the plasmonic tip [21]. Tip-functioned plasmonic nanocavity composed of the closely
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spaced silver coated fiber tip and gold film is proposed for producing radial vector mode,
which can produce a nanosized near field with an electric-field intensity enhancement
factor over 103 through exciting the plasmon gap mode in the nanocavity [22]. To improve
the trapping ability, hybrid plasmon trapping has been actively investigated to squeeze
light into a very small region for trapping a 20 nm-size sample [23]. The use of hybrid
plasmonic trapping is motivated largely by its potential for considerably enhanced optical
forces. This greatly improves well-functioning surface plasmon nanofocusing for trapping
applications of nanotips. Despite the previous works, the tip-based trapping process is
usually unstable due to the complex modulated scattering and gradient forces in proximity
of a very small nanosphere with respect to possible apex misplacement in between tip-
sphere system. Recently, graphene, a two-dimensional (2D) form of carbon in which the
atoms are arranged in a honeycomb lattice, has been shown to possess unique properties
with tunable surface plasmon excitations in a wide-range infrared wavelength regime. The
plasmon resonance of graphene can be well manipulated by modifying the Fermi energy
of the graphene for dramatically tuning the localized electric field [24–27]. It has the great
advantage of manipulating electromagnetic gradient and scattering spectrum for plasmon
trapping of small nanoparticles at nanoscale, potentially benefiting in terms of functioning
nanoparticle trapping with possibly improved stability. So far, however, it still keeps an
open topic for stable trapping of sub-50 nm particles via the graphene-hybrid nanotip due
to the emergent Brownian motion significantly participating in the molecular-scale particles
trapping process, deteriorating the plasmon trapping stability of nanotip system.

In this paper, we perform theoretical investigations on improving the stability for
plasmon trapping of molecular-scale Au nanosphere with diameter of 10 nm by design-
ing graphene-hybridized tip-substrate system. A hybrid plasmonic trapping model is
self-consistently built for comprehensive predictions of plasmon trapping properties on
the optical diffraction-limit broken nanoscale. It is proposed that the plasmon trapping
potential around the targeted Au nanosphere can be unprecedentedly achieved to be as
high as 218 kBT at room temperature via optimizing the surface medium film layer of
the graphene-hybridized Silica substrate system. The results are well explained as the
crucial role of Au-graphene hybridization participating in generating a highly localized
electric field for supporting the high-stable trapping process. This study would be helpful
for understanding the stable plasmon trapping properties for molecular-scale targets for
advancing the potential applications in fields of molecular-imaging, nano-sensing, and
single-molecule spectroscopy, etc.

2. Modeling and Methods

A 2-D hybrid plasmonic trapping model for the comprehensive predictions of plas-
monic trapping properties is proposed, in which the nanotrapping geometry is made of
an Au tip with a graphene sheet, which is embedded in between surface medium film
and Silica substrate (see Figure 1). The Au sphere with diameter of 10 nm is put on the
surface medium film in proximity of the Au nanotip. As a plane-wave laser with wave
vector ‘k’ propagates parallelly along the surface of the substrate, the electric field of the
laser will oscillate along the direction of the z axis. In this case, the confinement of local
surface plasmon mode can exhibit radial symmetry distribution in local space around
the z axis. So, the 2-D modeling is qualified for revealing the full 3D space properties
of plasmon trapping potential well. The optical force originating from the gradient and
scattering localized electric field can be physically generated from the hybrid plasmon
system as laser wavelength matches to surface plasmon resonance frequency, which is
mainly determined by the graphene-functioned tip-substrate configurations. On the other
hand, the resonance wavelength of the plasmon can be closely affected by the graphene
plasmon dispersion relation [28,29]. The plasmon trapping forces are calculated based on
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the dipole approximation, which can be determined as follows by considering a nanosphere
of radius “a”: [30]

F =
1
4

ε0Re{α0}∇|E|2 +
nσ

2c
{E× H∗}+ σ

2
Re
{

i
ε0

k0
(E·∇)E∗

}
where ε0 is vacuum dielectric permittivity, α0 is polarizability of a point-like particle, E
is incident electric field, n is index of refraction for surrounding medium, σ is total cross-
section of the particle, c the speed of light, H the incident magnetic field, k0 the laser wave
vector in free space.
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in the far field [Figure 1]. The boundary condition at the interface between the graphene 
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Figure 1. The schematic of 2-D hybrid plasmonic trapping model. L1 represents for surface medium
film layer, L2 for graphene sheet, L3 for Silica substrate.

Here, we carefully consider the plasmonic optical forces exerting on Au sphere by
building the self-consistent Helmholtz equation model integrated with optical forces calcu-
lations from three types of contribution of gradient forces, radiation pressure force, and
polarization force. The gradient distribution of the localized electric field would play
a crucial role in generating the plasmonic trapping force for the graphene-hybridized
tip-substrate system. Namely, the gradient force facilitates spatial confinement in optical
trapping dominance compared to the other two forces. Furthermore, the plasmon polariz-
ability is a key factor that characterizes optical response due to the plasmonic interaction
between the optical field and nanostructure that determines the strength of plasmonic
optical trapping properties. The trapping potential resulting from the optical forces is a key
factor that determines the stability of the optical trap, and it can be obtained by [31]

U(r0) =
∫ r0

∞
F(r)·dr

Numerically, we firstly build hybrid geometry of the tip-substrate system, in which
three layers graphene sheets with thickness of 1 nm are embedded in the substrate. Here,
the graphene with respect to the Fermi energy modifications are modeled with the surface
optical conductivity considering the intra and inter band contributions [32,33]. Then the
hybrid tip-substrate geometry, ambient medium is divided into many small meshes. The
Helmholtz equation is discretized at every mesh point to form a large sparse matrix on
the defined geometry. A perfect matching layer (PML) is set outside of the tip-substrate
geometry. The scattered light from the tip-substrate is totally absorbed through the PML
in the far field [Figure 1]. The boundary condition at the interface between the graphene
sheet and Silica substrate is treated as a continuous one. We obtain the numerical solutions
of the Helmholtz equation and optical force modeling via Commercial soft of COMSOL
Multi-physics. Under the investigation, we will focus on the localized electric field en-
hancement behavior by introducing graphene sheet for plasmon trapping for 10 nm Au
sphere via designing the graphene-hybridized Silica substrate for high-stability trapping
purposes. In addition, this self-consistently modeling can possibly be enlarged for other
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2D nanomaterials in addition graphene sheets, like honeycomb XBi and XBi3 sheets for
advanced molecular scale plasmon trapping [34].

Figure 2 shows the localized electric field enhancement spectrum with respect to the
Fermi energy modification of a graphene sheet for the graphene-hybridized tip-substrate
system. The graphene sheet is sandwiched in between the surface Silica film layer and
Silica substrate. The trapping target is considered as a molecular-scale Au sphere with a
diameter of 10 nm. It can be observed that, as a planar wave laser is horizontally incident
on the tip-substrate system, the localized electric field enhancement defined as |E/E0| can
achieve values as high as 240 at wavelength 4.65 µm by applying Fermi energy of 0.6 eV,
as seen in Figure 2a. Also, the plasmon resonance wavelengths of the localized electric-
field enhancement spectrum fall into the mid-infrared regime for the modified graphene
Fermi energy of 0.4 eV, 0.5 eV and 0.6 eV, respectively. More interestingly, the electric-field
enhancement spectrum profile width (Spectrum width) in the testing way of full width
at half maximum (FWHM) becomes narrower by applying higher Fermi energy of the
graphene sheet at 0.6 eV, as seen in the inset of Figure 2a, which is essentially important
for high-sensitive wavelength-dependent sensor applications. We can see from Figure 2b
that, as the applied Fermi energy of the graphene sheet increases from 0.2 eV to 0.8 eV, the
localized electric field enhancement of |E/E0| can be remarkably further elevated for an
even higher Fermi energy of 0.8 eV. Simultaneously, the plasmon resonance wavelength
obtains an obvious blue-shift from 8 µm to 4 µm. The scale law of resonance wavelength
vs. Graphene Fermi energy as λRW ∝ EF

−1/2 for a given wavevector q typically appears in
the current result, originating from the intrinsic interband contributions to static graphene
screening, which can be effectively absorbed in a background dielectric constant [28]. Also,
the simulations show that the typical infrared resonance spectrum will totally disappear as
the graphene sheets are removed. The electric-field enhancement spectrum with respect to
modifying the graphene Fermi energy can be substantially helpful for a good understanding
of the tunable-spectral properties of localized electric field enhancement exerting on the
molecular-scale Au sphere target, which plays an important role in affecting the plasmon
trapping properties on the diffraction-limit broken nanoscale for the graphene-hybridized
tip-substrate system.
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Figure 2. The localized electric field enhancement spectrum with respect to Fermi energy modification
for graphene sheet of the graphene-hybridized tip-substrate system. The thickness of the surface
Silica film layer is 10 nm.

The 2-D images of localized electric-fields for the designed graphene-hybridized
tip-substrate system with respect to Fermi energy of graphene sheet and external laser
excitation are shown in Figure 3. This clearly shows that the localized electric fields around
the Au sphere with diameter of 10 nm are dominantly concentrated in the region of tip-
sphere gap. In particular, we can clearly see that, at higher Fermi energy of 0.6 eV, the
localized electric field is dramatically enhanced with large spatial gradient in proximity of
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a tip-sphere, as in Figure 3a. However, the localized electric field can be severely impaired
across the tip-sphere gap as the Fermi energy of the graphene sheet is decreased from
0.45 eV to 0.3 eV, as seen from Figure 3b,c, respectively. This indicates that the spatial
gradient element of the localized electric field becomes predominantly promoted for a
higher Fermi energy of graphene sheet for the graphene-hybridized tip-substrate system.
We can see from Figure 3d–f that the absolute value of localized electric field around
the Au nanosphere can be further elevated to 8 × 106 V/m at the applied electric field
amplitude of 5.5 × 104 V/m of the external laser excitation. Here, the external laser electric
field amplitude is properly controlled to range from 3.5 × 104 V/m to 5.5 × 104 V/m in
order to avoid laser local damage to the trapping system. It should be noticed that the
localized electric field across the tip-sphere gap exhibits obvious large gradient distribution
in cases of applying higher Fermi energy or larger electric field amplitude of external
laser excitation. This indicates that the plasmon trapping process can be optimized by
successfully designing the graphene-hybridized tip-substrate system, which can be very
important for advancing a wide range of stable-controlled plasmon trapping applications.
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Figure 3. The 2-D images of localized electric-fields for the designed graphene-hybridized tip-
substrate system with respect to Fermi energy of graphene sheet and external laser excitation. The
Fermi energy is taken as 0.6 eV, 0.5 eV and 0.4 eV for (a–c), respectively. The Fermi energy is
taken as 0.5 eV, and the electric field amplitude of external laser excitation is set as 3.5 × 104 V/m,
4.5 × 104 V/m and 5.5 × 104 V/m for (c–f), respectively. The trapping Au sphere diameter is 10 nm,
and the thickness of the surface Silica film layer is 15 nm.

The 2D images of plasmon potential well for the graphene-hybridized tip-substrate
system and the trapping force exerted on an Au sphere with respect to the electric field
amplitude of external laser excitation are shown in Figure 4. We can see from (a)~(c) that the
plasmon potential well across gap of the tip-substrate system can be significantly deepened
as the laser electric field increases from 3.5 × 104 V/m to 5.5 × 104 V/m. The maximal
potential well of 149 kBT can be achieved in proximity of tip vertex at the incident laser
electric field of 5.5 × 105 V/m. This is attributed to the strong plasmon hybridization of
Au-graphene in the tip-substrate system assisted by reinforcement of augmented excitation
of the external laser. Interestingly, as an Au sphere is put in the tip-substrate system,
the quarter-poles distribution characteristics of plasmon force around the Au sphere can
be observed, as seen from Figure 4d–f. In particular, the quarter-poles force around
the Au sphere can be significantly enhanced by increasing the laser electric field from
3.5 × 104 V/m to 5.5 × 104 V/m. It should be emphasized that the trapping wavelength
which is centered at 4.65 µm here has nothing to do with the external laser electric field. In
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fact, the quarter poles symmetry of trapping force together with the deepened plasmon
potential well would play an active role in achieving the possible high stability of plasmon
trapping for the potential applications of high-sensitive molecular-imaging, sensing, and
SERS spectroscopy, etc.
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3.5 × 104 V/m for (a,d), 4.5 × 104 V/m for (b,e), 5.5 × 104 V/m for (c,f), respectively. The Fermi
energy of graphene sheet is 0.6 eV, the thickness of the surface Silica film is 15 nm.

The plasmon trapping potential well and trapping force with respect to tip-to-sphere
gap and the Au nanosphere transverse displacement at x direction for the graphene-
hybridized tip-substrate system is shown in Figure 5. The Au sphere with diameter of
10 nm is considered as molecular-scale trapping target here. We can see from Figure 5a that
the plasmon trapping potential extracting from vertex of the Au sphere drops rapidly as
the tip-to-sphere gap increases from 6 nm to 14 nm for the graphene sheet Fermi energy
of 0.6 eV. However, it shows a comparatively slower drop in the cases of the graphene
sheet Fermi energy of 0.3 eV and 0.45 eV, respectively. Once the tip-to-sphere gap exceeds
14 nm, the plasmon trapping potential trends to achieve saturation with potential well
less than 10 kBT for graphene sheet Fermi energy of 0.3 eV and 0.45 eV. Here, T is taken
as 300 K in room temperature. This indicates that the plasmon trapping process becomes
more and more unstable as the trapping potential falls into the saturation regime for the
moderate graphene sheet Fermi energy of 0.3 eV and 0.45 eV, respectively. The result can
be attributed to the unique role of graphene-functioned surface plasmon hybridization
of the tip-substrate system, in which the surface plasmon resonance of the tip-substrate
system can be significantly modified by varying the graphene sheet Fermi energy via a
possible method of static electric doping [35]. The plasmon trapping force as a function of
the transverse displacement of Au nanosphere along surface of Silica substrate is shown in
Figure 5b. We can see that the plasmon trapping force exerted on the Au nanosphere with
diameter of 10 nm can becomes as high as 80 pN at zero x displacement of the nanosphere
from the tip apex. However, the plasmon trapping force can be badly impaired as the
Au nanosphere displaces far from the tip apex. The localized electric field enhancement
for supporting the plasmon trapping force exhibits a similar tendency with respect to the
transverse displacement of Au nanosphere, which provides a basic understanding of the
plasmon trapping force adjustment with respect to the localized electric field modifications
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for successfully designing and optimizing the displacement process of plasmon trapping
for a molecular scale nanosphere with high stability.
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Figure 5. The plasmon trapping potential well and trapping force with respect to tip-to-sphere gap
and the transverse displacement of Au nanosphere for the graphene-hybridized tip-substrate system.
The trapping sphere is taken as 10 nm in diameter. We can see from (a) that the plasmon trapping
potential extracting from vertex of the Au sphere drops rapidly as the tip-to-sphere gap increases
from 6 nm to 14 nm for the graphene sheet Fer-mi energy of 0.6 eV. The plasmon trapping force as a
function of the transverse displacement of Au nanosphere along surface of Silica substrate is shown
in (b).

Figure 6 shows the plasmon trapping potential for the graphene-hybridized tip-
substrate system with respect to modifications of the surface medium film layer, which
is coated on a graphene-covered Silica substrate. Here, the plasmon potential well is ex-
tracted from the vertex of the trapping sphere for the graphene-hybridized tip-substrate
system, as seen in the inset of Figure 6a. The plasmon trapping potential exhibits a rapid
drop as the thickness of surface medium film layer is less than 60 nm. Nevertheless, it
tends to achieve saturation once the thickness of the surface medium film layer exceeds
60 nm. This can be explained as the crucial role of graphene hybridization functioning
in the Au-tip/Silica-substrate system, in which a thinner surface medium film layer can
be substantially beneficial for boosting the hybridized surface plasmon interaction. The
reinforcement of surface plasmon interaction leads to a significant electric field gradient for
dominantly supporting the plasmon trapping force in together with deepening of the plas-
mon trapping potential as well. We can see from that Figure 6b that the plasmon trapping
wavelength exhibits a near-linear rise as the index of refraction for the surface medium
film layer increases from 1.3 to 2.0. More importantly, the plasmon trapping potential
can be markedly amplified as increasing the index of refraction for the medium film layer.
Generally, it is accepted that a stable trapping process can be expected as the plasmon
trapping potential is far larger than kBT defined by the Brownian motion energy. Here, the
maximal plasmon potential well can be elevated from 132 to 218 kBT via optimizing the
index of refraction the surface medium film layer at a large value of 2.0 (see Figure 6b).
The result indicates that extremely high trapping stability can be achieved via successfully
optimizing the graphene-hybridized tip-substrate system, which would be helpful for
advancing potential applications of single molecular-imaging, sensing, and single-molecule
spectroscopy, etc.
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3. Conclusions

We have theoretically investigated the achievable high-stability for plasmon trapping
of Au nanosphere with a diameter of 10 nm by designing a graphene-hybridized Au-
tip/Silica-substrate system. The localized electric field enhancement can achieve 240 by
modifying the Fermi energy of the graphene sheet for the designed tip-substrate geometry.
The maximal potential well of 149 kBT can be achieved in proximity of the tip vertex at
the incident laser electric field of 5.5 × 105 V/m. This is attributed to the strong plasmon
hybridization of Au-graphene in the tip-substrate system assisted by the reinforcement
of augmented excitation of the external laser. This shows that the plasmon potential well
can be predominantly achieved in a range of 132 to 218 kBT by optimizing the index of
refraction for the surface medium film layer on graphene covered Silica-substrate. This
result can be critically important for understanding the high-stable plasmon trapping ability
based on the graphene-functioned tip-substrate system for advancing the molecular-scale
applications of nanoimaging, nanosensing, and SERS spectroscopy, etc.
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