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Abstract

Deciding how long to keep waiting for future rewards is a nontrivial problem, especially when the 

timing of rewards is uncertain. We report an experiment in which human decision makers waited 

for rewards in two environments, in which reward-timing statistics favored either a greater or 

lesser degree of behavioral persistence. We found that decision makers adaptively calibrated their 

level of persistence for each environment. Functional neuroimaging revealed signals that evolved 

differently during physically identical delays in the two environments, consistent with a dynamic 

and context-sensitive reappraisal of subjective value. This effect was observed in a region of 

ventromedial prefrontal cortex that is sensitive to subjective value in other contexts, demonstrating 

continuity between valuation mechanisms involved in discrete choice and in temporally extended 

decisions analogous to foraging. Our findings support a model in which voluntary persistence 

emerges from dynamic cost/benefit evaluation rather than from a control process that overrides 

valuation mechanisms.

Pursuing long-run rewards often requires persistence in the face of delay and short-run costs. 

The capacity to delay gratification is central to the notion of self-control in human decision 

making, and failures of persistence can appear to reflect impulsivity, inconsistency, or self-

control failure1, 2. Here we used fMRI to examine brain activity associated with sustaining 

or curtailing persistence toward delayed rewards.

Much is known about neural systems involved in value-based decision making3–6, but it is 

unknown what role these mechanisms play in temporally extended persistence. Most 

intertemporal choice research focuses on discrete choices among outcomes that differ in 

delay7–9. Delay-of-gratification scenarios, in contrast, involve a prolonged delay period with 

a continuously available opportunity to give up1. These two types of future-oriented 

behavior are widely thought to involve different mental processes. Mischel and colleagues10 
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have argued that the initial selection of a delayed reward depends on a rational cost/benefit 

assessment, but that the subsequent ability to wait for it depends on self-regulatory dynamics 

(competition between hot and cool motivational systems11).

We previously hypothesized that both successes and apparent failures of persistence emerge 

from dynamic value maximization12, 13. Because the exact timing of future events is usually 

uncertain, there is no guarantee that a decision maker who was willing to begin waiting for a 

delayed reward should necessarily be willing to keep waiting indefinitely. In some 

situations, including many that seem to challenge self-control, a long delay so far is 

predictive of a longer-than-expected delay yet to come12–15. One way to navigate such 

situations would be to reassess the subjective value of the awaited reward as time passes, 

based on a continuously updated estimate of the remaining delay time12. Such a 

reassessment might be encoded in the same neural valuation system, comprised of 

ventromedial prefrontal cortex (VMPFC), ventral striatum (VS) and posterior cingulate 

cortex (PCC), that encodes subjective value in a highly general manner across many other 

kinds of decisions3–6. The subjective value representations encoded in VMPFC are known 

to be sensitive to both immediate and delayed outcomes7, 8, primary and secondary forms of 

reward3, 16, goal-related and temptation-related factors9, 17, and high-level task 

contingencies18, 19.

Other theoretical perspectives make different predictions. One alternative possibility is that 

successful persistence depends principally on cognitive control mechanisms external to the 

valuation system. Although some accounts hold that the VMPFC valuation system mediates 

cognitive control9, 17, 20, other accounts posit a form of control that overrides or competes 

with valuation2, 11, 20–23. If the latter control mechanism is paramount, successful 

persistence might be better understood as rule-adherence than as value-maximization, and 

curtailing persistence might reflect a lapse in control-related brain activity (e.g., in lateral 

PFC).

A second alternative possibility is based on the structural parallel between delay of 

gratification and certain kinds of foraging scenarios13, 15, 24–27. It has recently been 

hypothesized that single-alternative foraging decisions—e.g., whether to exploit one’s 

current food patch or depart to forage elsewhere—might depend, not on the VMPFC 

valuation system, but on a representation in dorsal anterior cingulate cortex (dACC) of the 

value of departing26, 28.

To examine valuation signals during temporally extended persistence we conducted an fMRI 

experiment in which participants repeatedly decided how long to keep waiting for future 

monetary rewards (Fig. 1a). On each trial the participant viewed a token, which had no 

initial value but matured to a value of 30¢ after a random delay. The participant could sell 

the token anytime and initiate a new trial, aiming to maximize total earnings in a fixed time 

period. Unlike some previous studies1, 13, no small reward was delivered if the participant 

quit early; instead, the main incentive to quit was the possibility that the next trial might 

mature with a shorter delay.
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The ideal strategy depended on the distribution of delay times, which differed between two 

environments (Fig. 1b,c). In a high-persistence (HP) environment the most productive 

strategy was to wait for every reward (up to 40s). In a limited-persistence (LP) environment 

the best strategy was to wait 20s and then quit if the reward had not arrived. Participants 

learned about the timing statistics through direct experience during preliminary training. The 

environments were presented in alternating 10-min runs, marked by different-colored 

tokens.

We predicted that participants would quit earlier in the LP environment than in the HP 

environment13. In addition, our theoretical model predicted that participants’ subjective 

valuation of the awaited token would evolve differently in the two environments, increasing 

more rapidly with elapsed time in the HP environment than the LP environment. Our 

neuroimaging experiment tested whether canonically value-responsive brain regions would 

reflect this dynamic reassessment. Our experiment could also detect alternative possibilities 

such as representations of subjective value elsewhere in the brain, a lapse in control-related 

activity associated with quitting, or a representation of the value of quitting in dACC.

Results

Behavioral results

Participants (n=20) quit before receiving the reward more often in the LP environment 

(median=50.0% of trials; IQR 46.6 to 57.6%) than the HP environment (median=3.1%; IQR 

0 to 15.6%). In the LP environment the time waited before quitting (median of medians) was 

29.3s (IQR 17.6 to 36.6). Within-subject (across-trial) variability in quit timing was 

comparatively small: the median size of the within-subject interquartile range was 9.1s.

Participants were willing to wait longer in the HP environment than the LP environment. We 

used survival analysis to estimate each participant’s probability of “surviving” various 

lengths of time without quitting13. Fig. 2a shows averaged subject-wise empirical survival 

curves against ideal performance. The area under the curve (AUC) estimates how much of 

the first 40s a participant was willing to wait on average (Fig. 2b). Median AUC was 38.9s 

in the HP environment (IQR 35.4 to 40; ideal=40s) and 30.2s in the LP environment (IQR 

22.3 to 34.9; ideal=20s). All 20 participants persisted longer in the HP environment (median 

difference=7.6s, IQR 3.0 to 14.2, signed-rank p<0.001). Persistence in the two environments 

was modestly correlated (Spearman ρn=20=0.37, p=0.11; Fig. 2b), and behavior was stable 

across the fMRI experiment (Supplementary Fig. 1).

Reaction time (RT) to sell rewarded tokens tracked time-varying reward expectancy. When 

an event’s latency is uniformly distributed, expectancy theoretically increases with elapsed 

time28 (Fig. 2c). Accordingly, subject-wise Spearman correlations between delay and RT 

were reliably negative in the HP environment (median single-subject ρ=−0.27, IQR −0.36 to 

−0.16, signed-rank p<0.001), indicating faster responses to rewards that were preceded by 

longer delays (Fig. 2d) and implying that participants successfully encoded the task’s timing 

statistics.
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Theoretical modeling

The passage of time can drive a dynamic reassessment of awaited rewards by furnishing 

information about the remaining delay12, 29. Intuitively, rewards in the HP environment 

grew nearer and more subjectively valuable as time passed, but rewards in the LP 

environment became progressively less likely to be delivered before the participant quit.

We formalized this intuition in a theoretical model of subjective valuation. The model 

estimated the awaited token’s subjective value at each point in the delay interval, accounting 

for the changing probability distribution over remaining delay durations. Our model 

extended a formalism from the optimal foraging literature known as the potential function25. 

The expected remaining delay was multiplied by the opportunity cost of time and subtracted 

from the expected reward. Subjective value at a given elapsed time equaled the expected net 

return in the remainder of the current trial, maximized over all possible giving-up times. Its 

minimum was zero since the agent could always quit immediately. If subjective value 

exceeded zero, this signified that the decision maker could do better by waiting than by 

quitting immediately. The level of subjective value at each time reflected the margin of 

preference for waiting over quitting (see Methods for details).

In the HP environment the token’s theoretical subjective value increased with elapsed time, 

reflecting the progressive shortening of the expected remaining delay (Fig. 3a). In the LP 

environment the token’s subjective value remained positive until 20s but then fell to zero, 

reflecting that the best strategy was to quit if the reward had not arrived by then. Differences 

between the subjective value trajectories in the two environments were primarily driven by 

the evolving probability that the reward would arrive before the optimal giving-up time 

(Supplementary Fig. 2).

We modeled the empirical behavioral data as a stochastic function of theoretical subjective 

value using logistic regression (Fig. 3b; see Methods for details). Greater subjective value 

was associated with higher odds of waiting (median coefficient=0.26, IQR 0.05 to 0.78, 

signed-rank p<0.001). The subjective value model significantly outperformed an intercept-

only model (subject-wise likelihood-ratio tests: median z=4.26, IQR 1.79 to 7.97, signed-

rank p<0.001) and an alternative model that directly fit different overall rates of quitting in 

the HP and LP conditions (subject-wise difference of model deviances: median=6.45, IQR 

−1.85 to 32.02, signed-rank p=0.033).

Neuroimaging results

Our fMRI analyses tested for brain signals that evolved differently during physically 

identical delay intervals in the two environments. Trial-onset-locked BOLD timecourses 

were flexibly estimated in each environment using a finite impulse response (FIR) model; 

i.e., a series of single-timepoint basis functions in a general linear model (GLM). Each trial 

was modeled from onset up to 1s before the outcome (reward cue or quit response). Because 

trials had different durations, earlier timepoints were observed on more trials than later 

timepoints (Supplementary Fig. 3). Group analyses focused on the interval from 2.5–30s, for 

which 19 of 20 participants contributed complete data. Because the HP and LP conditions 

were presented in separate scanning runs with independent baselines our analyses focused 

McGuire and Kable Page 4

Nat Neurosci. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on differential change over time, not the overall offset between the two conditions. 

Significance was assessed using whole-brain permutation tests to control for multiple 

comparisons (see Methods).

A model-based fMRI contrast tested directly for effects of theoretical subjective value on 

BOLD activity. For each subject and voxel, the empirical difference timecourse (HP minus 

LP) was regressed on the predicted difference (Fig. 3c,d; see Methods) and a constant 

intercept. The resulting contrast coefficient reflected the degree to which BOLD signal 

increased more steeply with elapsed time in the HP environment than the LP environment. 

Coefficients were submitted to a whole-brain, two-tailed, group-level test (n=20). This 

identified a single significant cluster, located in VMPFC (Fig. 4a and Table 1a), in which 

BOLD signal was positively related to theoretical subjective value. No negative effects of 

subjective value on BOLD were identified, even in follow-up analyses tailored to detect 

signals reflecting the difficulty of persistence (Supplementary Fig. 4).

The observed effect in VMPFC echoes effects of subjective value that are seen in a broad 

range of other contexts3–6. We formally juxtaposed our results with previous findings by 

quantifying the spatial overlap between our empirical results and canonically valuation-

related brain regions derived from a 206-study meta-analysis3 (Fig. 4a). The meta-analysis 

had identified clusters showing preferentially positive effects of value in VMPFC (9.67cm3), 

striatum (21.41cm3), and PCC (2.62cm3). There was a 100-voxel (2.70cm3) region of 

overlap in VMPFC (27.9% of the canonical region and 32.2% of the empirical cluster).

As an alternative test of the same question, the three canonical valuation areas were tested as 

regions of interest (ROIs). Model-based contrast coefficients were spatially averaged in each 

ROI for each participant. The effect of subjective value was significant in VMPFC (signed-

rank p=0.002) but non-significant, albeit with a positive trend, in striatum (p=0.079) and 

PCC (p=0.062; Fig. 4b). Paired-samples comparisons identified a greater effect in VMPFC 

than striatum (signed-rank p=0.012) and no significant differences between the other two 

pairs of ROIs (ps>0.11).

In summary, results suggested that the region of VMPFC previously found to encode 

subjective value during discrete choices and outcomes also reflected a dynamic reassessment 

of subjective value during voluntary persistence. This was true to a greater degree for 

VMPFC than striatum.

We additionally conducted a less-constrained analysis that could detect BOLD timecourse 

differences predicted either by our model or alternative frameworks. Trial-onset-locked 

timecourses were analyzed at the group level in a whole-brain voxelwise repeated-measures 

ANOVA (n=19), with factors for condition (HP vs. LP) and timepoint. We focused on the 

condition-by-timepoint interaction, seeking to identify signals that exhibited different 

patterns of change over time in the two environments. This analysis avoids a priori 

assumptions about either the form of the difference or the location of effects in the brain. A 

significant interaction was observed in left and right VMPFC, left posterior parietal cortex, 

and a small region of left superior temporal gyrus (Table 1b and Fig. 5a). Timecourse plots 

(Fig. 5b – e) suggested that in VMPFC and parietal regions the effect took the form of a 
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greater signal increase with elapsed time in the HP environment, consistent with theoretical 

subjective value.

Further analyses tested for evidence of reward prediction error (RPE) signals30. When a 

reward occurs, RPE is the difference between the obtained and expected outcome. Because 

reward expectancy theoretically rose over time in the HP environment (Fig. 2c; see also RT 

data above and heart rate data below), rewards at short delays should have been more 

surprising and evoked larger RPEs than rewards at longer delays. We tested whether the 

amplitude of the phasic BOLD response to reward was modulated by the delay duration that 

preceded it. A negative effect would reflect an RPE-like pattern (smaller reward responses 

after longer delays, a pattern seen previously in the firing rates of dopaminergic midbrain 

neurons31). To focus on phasic reward responses while controlling for nonspecific effects of 

elapsed time, we compared the modulatory effect in the post-reward epoch against the same 

effect in a pre-reward epoch.

We observed no significant negative modulatory effect of elapsed time on the reward-related 

BOLD response in any location. We did, however, identify an occipitoparietal cluster with 

an effect in the opposite direction: a higher-amplitude BOLD response to rewards at longer 

delays, which theoretically were more strongly anticipated (Supplementary Fig. 5). 

Expectancy-driven amplification of brain responses has been seen before32, including in 

visual cortex33; these effects bear a family resemblance to the facilitatory effects of spatial 

attention34.

Numerous brain areas responded differentially to reward and quit keypresses, including 

some that exhibited a ramp-up in activity prior to quit responses. We used a GLM to 

estimate subject-wise perievent timecourses for the two event types separately (using all 

keypresses across all four runs), and submitted the difference between reward-related and 

quit-related timecourses to a group-level ANOVA. Significant effects occurred diffusely 

across DMFC, lateral PFC, anterior insula, precentral sulcus, and occipital and posterior 

parietal cortex (Fig. 6a – f). In DMFC, anterior insula, posterior parietal cortex, and anterior 

PFC the difference consisted of an earlier elevated response for quit responses than reward 

responses. Other regions, including occipital cortex and left inferior frontal gyrus (IFG), 

responded more strongly to rewards. Broadly, these effects reflect that rewards involved a 

visual cue whereas quitting was freely timed and volitional.

To test directly for signal changes that preceded decisions to quit, we performed a group-

level ANOVA on only the first 5 points in the quit-related timecourse (−12.5 to −2.5s). A 

significant effect of timepoint within this anticipatory interval was observed in posterior 

parietal cortex, DMFC, anterior insula, and anterior PFC (Fig. 6a – f and Table 1c). VMPFC 

showed no effects in either of the above analyses; that is, there was no evidence that 

subjective value effects in VMPFC could be alternatively explained in terms of a role in 

response preparation.

Somatic arousal

To test whether subjective value effects in BOLD activity were accompanied by changes in 

general physiological arousal, we performed exploratory analyses of heart rate (inter-beat 
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interval measured via pulse oximetry; n=17) as a function of task events. Heart rate 

transiently accelerated after keypresses, but did not differ between the two conditions as a 

function of delay time (Fig. 7a). In the HP condition there was greater transient cardiac 

acceleration for rewards preceded by longer delays (Fig. 7b), bolstering our conclusion—

also supported by RTs and occipitoparietal BOLD effects—that subjective reward 

expectancy increased with elapsed time in the HP condition. Comparing heart-rate 

timecourses for reward and quit events revealed cardiac deceleration, a well-known correlate 

of motor preparation35, prior to quit responses (Fig. 7c). In summary, pre- and post-keypress 

brain responses (Fig. 6a – f) co-occurred with changes in general somatic arousal, but there 

was no evidence that arousal effects (as indexed by heart rate) accompanied the trial-onset-

locked BOLD effects of theoretical subjective value (Figs. 4 and 5).

Discussion

Decision makers faced with uncertain delay should reappraise awaited rewards as time 

passes. Depending on the statistics of the environment, the passage of time may either 

decrease or increase one’s estimate of how long a delay remains. This type of dynamic 

reassessment offers a rationale for sustaining or curtailing persistence.

We elicited either greater or lesser willingness to persist in laboratory environments by 

manipulating the timing statistics that governed reward delivery. Decision makers calibrated 

their level of persistence adaptively; this extends previous demonstrations of environment-

specific calibration of intertemporal choice behavior13, 36. Convergent RT, BOLD and heart-

rate data suggested participants encoded the relevant timing statistics, responding more 

vigorously to more strongly expected rewards28. Behavior still fell short of optimality, and 

an important goal for future work is to determine whether this was due to inexact statistical 

learning, strong prior expectations, stochastic noise, unmodeled sources of value (e.g., 

anticipation37) or other causes. Future work should also test whether performance would 

differ if immediate or viscerally tempting rewards were at stake (e.g., appetizing foods 

instead of money)1.

The success of the behavioral manipulation enabled us to examine time-dependent brain 

signals associated with either high or limited behavioral persistence. We observed signals in 

VMPFC consistent with a dynamic and context-sensitive reassessment of the awaited 

outcome’s subjective value. This effect was identified using both model-guided and 

exploratory fMRI timecourse analyses, both at the whole-brain level and in ROIs previously 

implicated in subjective evaluation.

VMPFC and persistence

Persistence toward future rewards has been classically understood to depend on self-

regulatory psychological processes that compete with and override more impulsive, reward-

sensitive processes1, 2, 11. Dual-system psychological models have given rise to the 

neuroscientific hypothesis that competitive dynamics exist between brain regions subserving 

cognitive control and reward processing21–23.
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In contrast to this standard view, we have proposed that delay-of-gratification decisions 

depend on a dynamic reappraisal of the awaited future reward12, 13. This account attributes 

differences in waiting behavior across individuals and situations to factors such as temporal 

beliefs, perceived outcome values and the perceived cost of time, not merely to differences 

in the capacity to exert self-control12. Here we elicited differences in waiting by 

manipulating temporal beliefs and obtained evidence for a time-varying representation of 

subjective value. The hypothesized signal is context dependent, evolving over time in a 

manner that depends on the timing statistics of the current environment. A corresponding 

BOLD trajectory was identified in VMPFC, a cortical region regarded as part of a final 

common pathway in the prospective evaluation of choice alternatives6. These results are 

consistent with the view that persistence depends on the same neural and cognitive processes 

that guide other forms of reward evaluation and economic choice. This view implies that 

adaptive persistence depends on accurately representing the value of waiting, and need not 

depend on the engagement of effortful inhibitory control processes38. Our results add to the 

large body of evidence that VMPFC valuation processes utilize a detailed representation of 

higher-order task structure18, 19. Our findings also extend current conceptions of VMPFC 

function; while VMPFC activity is known to encode phasic subjective value during discrete 

choices3–8, we found that it also tracked subjective value in a temporally extended manner 

(see Jimura et al.39 for a related finding).

Our neuroimaging results suggest there is no need to posit antagonistic dynamics between 

neural reward systems and control systems to explain voluntary persistence (though we 

cannot, of course, rule out such dynamics in other situations). Our analyses could have 

detected patterns suggestive of dual-system competition. For example, the analyses in Figs. 

4 and 5 and Supplementary Fig. 4 could have detected activity scaling with the difficulty of 

persistence, but no such effects were found. The analyses in Fig. 6 could have detected a 

lapse in control-related activity before decisions to quit, but instead the opposite occurred: 

an ensemble of regions previously implicated in cognitive control—lateral PFC, DMFC, 

insula, and parietal cortex—increased activity prior to quits, consistent with brain responses 

found to precede shifts of strategy in other task paradigms26, 40.

Our findings are more compatible with the hypothesis that cognitive control operates via 

value modulation9, 17, 20. The value modulation hypothesis stipulates that control 

mechanisms in lateral PFC operate by modulating subjective value representations in 

VMPFC. The hypothesis therefore posits a VMPFC signal that incorporates all relevant 

information and suffices as a final common pathway to guide decisions, consistent with the 

present findings. It additionally posits that this signal depends on lateral PFC inputs. On this 

point our data are mostly silent. We found no evidence for condition-dependent activation 

trajectories in lateral PFC; nevertheless we assume value computation involves interactions 

among multiple brain regions, and we cannot exclude the possibility that lateral PFC plays a 

role.

Value representation during foraging

The problem of calibrating persistence in our willingness-to-wait task is closely analogous 

to the patch departure problem in foraging24–26. It has recently been hypothesized that 
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foraging, which typically involves a succession of accept/reject decisions, imposes 

fundamentally different information-processing demands from standard multi-alternative 

economic choice41. Recent work has implicated dACC in signaling the value of exiting 

foraging patches26 or of shifting away from default alternatives41, although other findings 

have questioned this idea42.

We did not find evidence for continuous, prospective encoding of the value of quitting 

(analogous to patch departure) in dACC. Such a signal would theoretically have followed an 

inverted version of the value of waiting (Fig. 3c,d), and could have been detected in either 

our model-based analysis (as a negative effect) or our exploratory timecourse analyses. We 

did, however, observe a response in dACC and other frontal and parietal regions in 

anticipation of quit decisions. This pattern is consistent with general motor preparation as 

well as with the possibility that decision-related signals in dACC manifest predominantly 

during overt choice execution26, 43.

The present results point to a role for VMPFC valuation signals even in a foraging-like 

situation where decision makers encountered one opportunity at a time and sought to 

maximize their overall rate of return. VMPFC activity correlated with the value of the 

current opportunity (waiting for the current token). This finding agrees with the idea that 

VMPFC encodes a “best minus next-best” comparative value signal41 even when the “next-

best” is the constant background option of moving on to a new opportunity. This parallels 

previous demonstrations that VMPFC reflects the subjective value of individual options that 

are evaluated in turn against a fixed reference alternative7. Our findings suggest continuity 

between the valuation mechanisms involved in temporally extended foraging scenarios and 

multi-option economic choice.

Reward prediction error

The willingness-to-wait task theoretically involves both positive and negative RPE. Positive 

RPE should accompany reward delivery since, given temporal uncertainty, rewards are not 

fully predicted at the specific time they are delivered31. Conversely, the pre-reward interval 

(when the reward could have occurred but does not) presumably involves negative 

RPE44, 45. Long delays in the HP environment highlight the dissociability of value and RPE 

signals. Reward expectancy ramps up over time (Fig. 2c), so nonreward should be 

associated with progressively larger negative RPE even as the awaited reward’s subjective 

value steadily increases (Fig. 3a). Even though decision makers may be increasingly 

surprised that the reward did not come now, they are also increasingly confident that it will 

arrive soon. One potential explanation for the lack of clear RPE signals in our neuroimaging 

data might be that, at least at the resolution of fMRI, RPE and subjective value signals were 

superimposed.

Subjective value is canonically associated with BOLD activity in VMPFC, PCC, and 

striatum3–5, and a broad standing question is how these regions might differ in their 

computational contributions to decision behavior. One possibility is that striatum 

preferentially encodes RPE46, 47 whereas VMPFC preferentially encodes prospective 

decision values6, 47. The present findings appear compatible with such a distinction: a 

dynamic signal of prospective subjective value was observed in VMPFC, but was 
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significantly less evident in striatum. However, these results will need to be integrated with 

insights gained using other neuroscientific techniques; recent evidence from direct dopamine 

recordings suggests striatum may indeed exhibit a ramping pre-reward signal48, and other 

work points to an important role for serotonergic neuromodulation in behavioral 

persistence49. It will also be important for future research to assess the fidelity with which 

VMPFC encodes the individual components of subjective value (Supplementary Fig. 2), to 

isolate valuation from related factors such as moment-by-moment reward probability33, 50, 

and to test the generality of these effects across different magnitudes and types of rewards. 

Research on these topics will yield an enriched picture of how the brain's valuation 

mechanisms contend with the complexity of real-world decision environments.

Methods

Participants

The participants were 20 members of the University of Pennsylvania community (age 18–

30, mean=22, 11 female). Two additional participants were excluded for head movement 

(shifts of at least 0.5mm between >5% of adjacent timepoints). Participants were paid a 

show-up fee ($15/hr) plus rewards earned in the task (median=$19.80). All participants 

provided informed consent. The procedures were approved by the University of 

Pennsylvania Internal Review Board. No statistical methods were used to predetermine 

sample size but our sample size was similar to those reported in previous 

publications16, 18, 19, 32, 42, 47.

Task

The task was programmed using Matlab (The MathWorks, Natick, MA) with Psychophysics 

Toolbox extensions51, 52. A circular token, colored green or purple, appeared in the center of 

the screen, labeled “0¢.” After a random delay the token turned blue and its value changed 

to 30¢. Participants could sell the token anytime by pressing a key with their right hand. The 

word “SOLD” appeared in red over the token for 1 s. After a 1 s blank screen, a new token 

appeared. The previous token’s value was added to the participant’s total earnings, which 

were displayed only at the end of each scanning run. Setting the token’s initial value to 0¢ 

meant that, unlike earlier work using this paradigm13, participants received no immediate 

reward upon quitting. This served to simplify the task without significantly altering either its 

incentive structure or the resulting pattern of behavior.

A white progress bar marked the amount of time the current token had been on the screen. 

The bar’s full length corresponded to 100 s. It grew continuously from the left and reset 

when a new token appeared. The progress bar was included to reduce interval-timing 

demands and discourage a strategy of covertly counting time.

The scanning session was divided into four 10-min runs. New tokens were presented until 

time was up. Each run presented one timing environment (i.e., token color). The two 

environments alternated in successive runs. The order of environments and the mapping of 

token color to environment were counterbalanced across participants.
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Each participant completed a preliminary behavioral training session consisting of 4 10-min 

runs alternating between the HP and LP environments. Participants were explicitly 

instructed that the green and purple tokens might differ in their timing, but that they had to 

learn the nature of the differences from direct experience and were free to adopt any 

behavioral strategy they preferred. During behavioral training (but not during scanning) the 

screen displayed the time left in the 10-min run and the amount earned so far, to help ensure 

that participants understood the structure of the task. Each token during behavioral training 

was worth 10¢. Participants explored the task environments during training, waiting through 

full 90s delays in the LP condition on a median of 3.5 trials (IQR 1 to 5.5; >0 for 18/20 

subjects). Participants completed two additional 5-min runs (one per condition) outside the 

scanner just before the fMRI session. Waiting behavior over time across training, practice, 

and fMRI sessions is plotted in Supplementary Fig. 1.

Participants would have faced fundamentally the same trial-by-trial decision problem if they 

had received explicit information about the probabilistic contingencies in lieu of experience-

based training (cf. Luhmann et al.53). However, there is evidence that probabilistic 

information is encoded differently when learned from description vs. direct experience54–56; 

our training procedure was designed to involve the type of experience-based, implicit 

statistical learning that is thought to guide beliefs and expectations in real-world domains29, 

including ecological foraging environments. Future work might introduce explicit 

information to help assess whether deviations from optimal behavior were due to inexact 

encoding of the relevant probabilities.

The delay duration on each trial was randomly drawn from a discrete probability distribution 

(Fig 1b). In the HP environment delays were drawn uniformly from the values 5, 10, 15, 20, 

25, 30, 35, and 40s. In the LP environment delays were set to 90s with probability 0.5, and 

otherwise drawn uniformly from the values 5, 10, 15, and 20s. By design, reward 

probabilities were identical between the two environments for the first 20s of the delay, the 

period of greatest interest in our neuroimaging analyses. We imposed longer delays here 

than in our previous work13 in order to obtain fluctuations in subjective value across a time 

period on the order of 30s, which is well suited for detecting BOLD effects (this corresponds 

to the time scale of a blocked design with ~15 s blocks; see further discussion and 

simulation results below).

Delays were sampled in a pseudorandom manner that approximately balanced the first-order 

transition statistics between delays in successive trials. This helped ensure that the scheduled 

delays were representative of the ground-truth distribution, while avoiding the negative 

autocorrelation that would result from strictly balanced frequencies.

The HP environment was richer by design, with all participants receiving more rewards in 

the HP environment (median=44, IQR 41 to 46.5) than in the LP environment (median=25, 

IQR 21 to 26). The difference in overall richness was not the factor that determined the ideal 

behavioral strategy (one could design richer LP environments and poorer HP 

environments13), but emerged here as a side-effect of our decision to match the sizes of 

individual rewards and the reward probabilities over the first 20s. These design choices 
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maximized the comparability of the two conditions for purposes of our neuroimaging 

contrasts.

We quantified behavioral persistence using Kaplan-Meier survival curves57, which 

estimated the probability of “surviving” various lengths of time without quitting. This 

technique accommodated the fact that reward delivery censored observed waiting times13.

Modeling ideal performance

The rate-maximizing strategy was to wait through all delays in the HP environment (up to 

40 s), but to give up after 20 s in the LP environment. We determined this by calculating the 

expected rate of return for various giving-up times (Fig. 1c). This calculation follows 

previous work13, and has precedent in stochastic foraging models25.

The reward’s arrival time treward is a random variable. For a policy of quitting at time T, let 

pT equal the probability of receiving the reward, pT = Pr(treward ≤ T), and let τT equal the 

expected delay if the reward is received, τT = E(treward | treward ≤ T). Each trial’s expected 

rate of return, in ¢/s, is:

(1)

The numerator is a trial’s expected gain in cents and the denominator is a trial’s expected 

cost in seconds, assuming a 30¢ reward and a 2 s inter-trial interval. The goal is to find the 

value of T that maximizes RT. We use R* to denote the best available rate of return. Fig. 1c 

plots RT as a function of T. The best policy in the HP environment was to wait 40s (R* = 

1.22¢/s), whereas the best policy in the LP environment was to wait 20s (R* = 0.82¢/s).

Modeling subjective value as a function of elapsed time

At each point in a trial, the token's subjective value depended on three factors: (1) the 

expected earnings from that token, (2) the expected additional time to be spent on that token, 

and (3) the monetary value of time, which corresponds to R* from above. We denote the 

expected earnings as aT(t) and the expected time as bT(t). Each of these depends jointly on 

the current elapsed time t and the intended future quitting time T. For given values of t and 

T, the expected return is:

(2)

The current trial’s subjective value (denoted “potential” in the model’s original 

formulation25) equals the maximum value of gT across all possible quitting times:

(3)

Put differently, g(t) is the expected net return in the remainder of the current trial, 

accounting for the cost of time, under the best available waiting policy. Its minimum is zero 
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because there is always an option to quit immediately (we treat the ITI as part of the 

subsequent trial). The decision maker should continue waiting if g(t) > 0.

Fig. 3a shows g(t) as a function of t in each environment (see Supplementary Fig. 2 for 

decomposition of g(t) into its components). The function approaches 30¢ at the last possible 

reward time, when a 30¢ reward is expected with no further delay. The best strategy is to 

wait up to 40 s in the HP environment but quit at 20 s in the LP environment. If a decision 

maker in the LP environment were to have waited 53.5 s already it would be better at that 

point to continue waiting for the reward that was sure to arrive at 90 s. We obtained very 

similar results if we used each participant’s actual environment-specific reward rate in place 

of the theoretical maximum, R* (Supplementary Fig. 6).

Behavior could be well characterized as a stochastic function of theoretical subjective value. 

To evaluate this we represented each subject’s behavior as a series of pseudo-choices 

between waiting and quitting, placed every 1s throughout all delay intervals in the 

experiment. We then modeled pseudo-choice outcomes (1=wait, 0=quit) as a function of 

subjective value and a constant intercept in subject-wise logistic regressions. Subject-wise 

maximum-likelihood coefficients were tested at the group level using a Wilcoxon signed-

rank test. We additionally used likelihood-ratio tests at the single-subject level to compare 

the full model to the (nested) intercept-only model, and tested the resulting z statistics at the 

group level. Finally, we tested an alternative model that, in place of subjective value, coded 

the HP and LP conditions categorically. This model had the same number of parameters as 

the subjective value model and could represent the possibility that participants merely quit 

more often in the LP than HP environment. Subject-wise differences in model deviance 

were tested against zero using a group-level Wilcoxon signed-ranks test.

Allowing for endogenous temporal uncertainty did not substantially alter the theoretical 

results described above. Fig. 2c displays hypothetical continuous hazard functions allowing 

for subjective uncertainty in time-interval perception58. For an interval of true duration t, 

subjective uncertainty is typically well characterized by a Gaussian distribution with mean µ 

= t and standard deviation σ = t × CV, where CV is a fixed coefficient of variation. We 

modeled temporal uncertainty by converting each discrete distribution in Fig. 1b to a 

Gaussian mixture distribution. A Gaussian component was placed at each possible reward 

time t, with µ = t, σ = t × CV, and weight equal to Pr(treward=t). We set CV=0.16 on the 

basis of human behavioral findings (the median CV from Table 2 of Rakitin et al.59 after 

converting the unit of variability from full-width-at-half-maximum to SD). The continuous 

functions in Fig. 2c are scaled by a factor of 5 for comparability with the corresponding 

discrete functions.

Blurring the ground-truth timing distributions to allow for subjective uncertainty did not 

change any of our model-based theoretical predictions. If rates of return (Fig. 1c) were 

calculated using the Gaussian mixture distribution, the best policy was to wait 40 s in the HP 

environment and 22.1 s in the LP environment. Endogenous uncertainty smoothed the 

theoretical subjective value functions (Fig. 3a) without altering their general shape.
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MRI data acquisition and preprocessing

MRI data were acquired on a 3T Siemens Trio with a 32-channel head coil. Functional data 

were acquired using a gradient-echo echoplanar imaging (EPI) sequence (3mm isotropic 

voxels, 64×64 matrix, 44 axial slices tilted 30° from the AC-PC plane, TR=2500 ms, TE=25 

ms, flip angle=75°). There were 4 runs, each with 246 images (10 min, 15 s). At the end of 

the session we acquired matched fieldmap images (TR=1000 ms, TE=2.69 and 5.27 ms, flip 

angle=60°) and a T1-weighted MPRAGE structural image (0.9375×0.9375×1 mm voxels, 

192×256 matrix, 160 axial slices, TI=1100 ms, TR=1630 ms, TE=3.11 ms, flip angle=15°).

Data were preprocessed using FSL60–63 and AFNI64, 65 software. Functional data were 

temporally aligned to midpoint of each acquisition (AFNI's 3dTshift), motion corrected 

(FSL's MCFLIRT), undistorted and warped to MNI space (see below), outlier-attenuated 

(AFNI's 3dDespike), smoothed with a 6 mm FWHM Gaussian kernel (FSL's fslmaths), and 

intensity-scaled by a single grand-mean value per run. To warp the data to MNI space, 

functional data were aligned to the structural image (FSL's FLIRT) using boundary-based 

registration66, simultaneously incorporating fieldmap-based geometric undistortion. 

Separately, the structural image was nonlinearly coregistered to the MNI template (FSL's 

FLIRT and FNIRT). The two transformations were concatenated and applied to the 

functional data.

fMRI analysis

Voxelwise general linear models (GLMs) were fit using ordinary least squares (AFNI's 

3dDeconvolve). GLMs were estimated for each subject individually using data concatenated 

across the 4 runs. There were 12 baseline terms per run: a constant, 5 low-frequency drift 

terms (first-through-fifth-order Legendre polynomials), and 6 motion parameters.

Event-related BOLD signal timecourses were flexibly estimated by fitting piecewise linear 

splines (“tent” basis functions). For trial-onset-locked timecourses, basis functions were 

centered every 2.5 s beginning at 2.5 s and ending 1 s before the end of each trial (for 

example, the basis function regressor corresponding to “10 s” had a peak 10 s after trial 

onset for every trial that lasted at least 11 s). For reward-related and quit-related 

timecourses, basis functions were centered every 2.5 s from 12.5 s before to 12.5 s after the 

event.

We conducted simulations to confirm the validity of our analysis procedures. We calculated 

theoretical subjective value over the course of each subject’s entire experimental session 

using the actual timing of task events together with the ideal model in Fig. 3a. These full-

session timecourses were convolved with a hemodynamic response function (HRF) to 

generate subject-specific synthetic BOLD timecourses representing idealized theoretical 

predictions. In order to verify that the theoretical signal had a suitable time scale and could 

be distinguished from baseline drift, we fit these synthetic BOLD timecourses in a GLM that 

contained only the constant and drift terms. For each subject, the residuals were highly 

correlated with a merely de-meaned version of the original synthetic BOLD timecourses 

(median r2=0.90, IQR 0.88 to 0.93), indicating that the theoretical signal could indeed be 

clearly distinguished from baseline fluctuations. Next we used the synthetic BOLD 
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timecourses as inputs to the analysis procedure described above for estimating trial-onset-

locked timecourses. The resulting timecourses, shown in averaged form in Fig. 3d, 

constituted our subject-by-subject theoretical predictions.

The model-based analysis was performed voxelwise on all 20 subjects across 2.5–30 s from 

trial onset. Each subject’s empirically estimated difference timecourse (HP minus LP) was 

regressed on the theoretical difference timecourse (Fig. 3d) together with a constant 

intercept. Using the simplified HRF-convolved theoretical timecourses in Fig. 3c yielded 

equivalent results. Timepoints lacking data in either environment for a given subject were 

omitted (this resulted in the omission of 3 timepoints for one subject; see Supplementary 

Fig. 3). We adopted a two-step approach (first estimating the timecourses and then 

submitting them to the model-based contrast) so that included timepoints were weighted 

uniformly. Otherwise, early timepoints, which were sampled more frequently 

(Supplementary Fig. 3), would have received greater weight, and the pattern of timepoint 

weighting could have differed between environments for individual subjects. Contrast 

coefficients were tested against zero at the group level in 2-tailed voxelwise t-tests.

An additional open-ended analysis tested for condition-by-timepoint interactions in the trial-

onset-locked BOLD timecourses (using n=19 participants with complete data; 

Supplementary Fig. 3). The main effect of timepoint is of limited interest because it captures 

nonspecific effects of time-from-keypress; similarly, the main effect of condition is 

uninformative because the two conditions were presented in separate runs with independent 

baselines. The condition-by-timepoint interaction tests for a difference in BOLD trajectories 

between the two environments without constraining the form of the difference. In a 

repeated-measures framework this is equivalent to testing the main effect of timepoint on the 

difference in signal between the two environments. Accordingly, we performed a voxelwise 

one-way repeated-measures ANOVA on the difference timecourses (HP minus LP) at the 

group level. An equivalent procedure was used to compare BOLD timecourses aligned to 

reward-related and quit-related keypresses.

The RPE analysis was limited to the HP environment, in which the sustained rise in reward 

expectancy supported clear predictions. Within a GLM we estimated FIR coefficients for the 

peri-reward timecourse (from 7.5 s before to 10 s after each reward). Eight terms modeled 

the mean timecourse, and another 8 terms modeled amplitude modulation at each timepoint 

as a function of the preceding delay duration. We then computed a contrast of the 

modulatory effect for 3 post-reward timepoints (2.5 to 7.5 s) minus 3 earlier timepoints (–5 

to 0 s). The value of this contrast reflected modulation of the phasic reward response as a 

function of preceding delay time, over and above any nonspecific effect of elapsed time on 

the pre-reward baseline.

All whole-brain, group-level analyses assessed statistical significance on the basis of cluster 

mass, with the cluster-defining threshold set to the nominal p<0.01 level. Corrected p-values 

were determined using permutation testing67 (FSL's randomise; 5000 iterations), and results 

were thresholded at corrected p<0.05. For F tests, each random iteration shuffled timepoints 

within subject. For one-sample t-tests, each iteration randomly sign-flipped individual 

subjects’ coefficient maps.
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Heart rate data acquisition and analysis

Pulse oximetry data were recorded at 50 Hz using the MRI system’s built-in oximeter, 

which also performed automatic heartbeat detection. Timestamped data were successfully 

recorded for 17 of the 20 participants. Heartbeat times were converted to inter-beat interval 

(IBI). IBI values farther than 30% above or below the grand median were treated as missing 

(median = 1.6% of points removed; IQR 0.5 to 3.6%). Since IBI varied across individuals 

(median=820 ms; IQR 760 to 950 ms), IBI values were converted to a percentage of the 

individual’s grand median. Mean perievent timecourses were calculated on a 0.25 s grid for 

each subject and event type. For comparisons, timecourses for two event types were 

subtracted to yield single-subject difference timecourses, which were then tested at the 

group level for significant excursions from zero. Entire timecourses were tested using 

cluster-based control for multiple comparisons. Cluster size was defined as the number of 

adjacent timepoints with nominal p<0.05 in single-timepoint Wilcoxon signed-rank tests. A 

cluster was assigned a corrected p-value based on its percentile in the empirical null 

distribution for cluster size, which was obtained via permutation testing (10,000 iterations 

with randomized sign-flipping of individual subjects’ difference timecourses).

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental task and timing conditions. A: Schematic of the willingness-to-wait task. B: 

Discrete probability distributions governing the scheduled delay times in each environment. 

C: Expected monetary rates of return under various waiting policies, where each policy is 

defined by a giving-up time. The reward-maximizing policy was to wait up to 40s in the HP 

environment (i.e., never to quit), but only up to 20s in the LP environment. These rates of 

return are contingent on the fixed 2s inter-trial interval (ITI).
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Figure 2. 
Behavioral results. A: Survival curves reflecting the probability that a participant was still 

waiting at each elapsed time, provided that the reward had not yet been delivered. Empirical 

survival curves were averaged across subjects at 1 s intervals (+/− SEM). Ideal performance 

is plotted for reference (dashed lines). B: Area under the curve (AUC) values calculated 

from individual participants’ survival curves. The maximum possible value was 40s. Red 

point marks ideal performance. All 20 participants persisted more in the HP environment. C: 

Stem plots show the ground-truth hazard rate for reward in each environment: i.e., the 

probability of the reward arriving at each time, conditional on not having arrived already. 

Faded lines illustrate hypothetical continuous hazard functions incorporating endogenous 

temporal uncertainty (see Methods). D: Reward RT at each delay (median and IQR of 

subject-wise medians). RTs are expressed as deviations from each subject’s grand-median 
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RT (median=475ms, IQR 450 to 506ms) to display within-subject effects. RTs for 5–20s 

delays did not differ between the environments (HP median=472ms, IQR 454 to 538; LP 

median=494ms, IQR 443 to 522).
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Figure 3. 
Theoretical subjective value of the awaited token as a function of elapsed time in each 

environment. A: A token's subjective value increased over time in the HP environment but 

not in the LP environment. These timecourses are based on the discrete ground-truth timing 

distributions and would be smoothed by subjective temporal uncertainty. B: Simulated 

behavior from a model in which subjective value linearly influenced the log-odds of 

continuing to wait (mean +/− SEM of subject-wise model fits). Data from Fig. 2a are 

overlaid for reference. C: Subjective value timecourses convolved with a canonical 

hemodynamic response function (HRF). D: Predicted BOLD timecourses obtained by 

applying our fMRI analysis to idealized synthetic data (mean +/− SEM of individual subject 

results). Visual differences from Panel C reflect that (1) the HP and LP environments had 

independent baselines, and (2) there was a small degree of carryover across trials. In spite of 

these differences the theoretical difference timecourses (HP minus LP) were highly 

correlated between Panels C and D (median r2=0.88, IQR 0.84 to 0.89).
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Figure 4. 
Model-based contrast results. A: Whole-brain analysis. Displayed in red is the VMPFC 

cluster that showed a significant relationship with the theoretical subjective value 

timecourses in Fig. 3d. In yellow, for reference, are regions identified in a previous meta-

analysis of valuation effects (the regions reported in Fig. 3D of Bartra et al.3). Overlap was 

observed in VMPFC, though not in PCC or striatum. B: Model-based contrast values for 

each participant, spatially averaged within meta-analytic ROIs. Subjective value effects 

were significantly positive in VMPFC, and significantly greater in VMPFC than striatum.
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Figure 5. 
Model-free analysis of trial-onset-locked BOLD timecourses. A: Clusters showing a 

significant timepoint-by-environment interaction (Table 1b). B–E: Spatially averaged signal 

timecourses for significant clusters (mean +/− SEM), illustrating the form of the observed 

interactions. Although voxel selection effects would distort follow-up inferential tests of 

these timecourses, we descriptively summarized their resemblance to our theoretical 

predictions in terms of the correlation between the average theoretical (Fig. 3d) and 
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observed HP-minus-LP difference timecourses. The resulting Pearson r values were 0.91, 

0.89, 0.90, and −0.68 for the results in Panels B–E, respectively.
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Figure 6. 
Regions in which BOLD signal differentiated reward-related and quit-related keypresses, 

assessed on the basis of the event type (reward vs. quit) by timepoint interaction. Warm 

colors represent F statistics for the analysis of full timecourses, and crosshairs mark local 

peaks. Blue outlines mark regions significant in the analysis of pre-quit timepoints only. 

Timecourses (mean +/− SEM) are plotted for a 6mm-radius (33-voxel) sphere centered at 

each depicted focus point. Black dashed lines mark the keypress time; blue dashed lines 

mark the median reward cue time (for reward-related keypresses).
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Figure 7. 
Effects of task events on mean cardiac inter-beat interval (IBI; lower values correspond to 

faster heart rate). Error bands show SEM; red bands mark significant differences. A: Mean 

trial-onset-locked IBI timecourse in each condition. Vertical red dashed line marks trial 

onset; gray dashed line marks the preceding keypress. Each trial contributed data until 1 s 

before the trial ended (later timepoints therefore have fewer observations than earlier 

timepoints). No significant differences were observed. B: Comparison between rewards 

arriving at shorter (5–20s) vs. longer (25–40s) delays in the HP condition. The amplitude of 

post-keypress heart-rate acceleration was greater for rewards that followed longer delays 

(lag +1s to +2.75s; permutation-based p=0.018). C: Comparison between reward events in 

the HP condition and quit events in the LP condition, each restricted to trials with duration 

>10s. Vertical red dashed line marks the time of the reward cue or quit keypress. Results 

suggested transient cardiac deceleration prior to quit responses (lag −1s to −3s; permutation-

based p=0.045).
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