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ABSTRACT
◥

A plethora of treatment options exist for cancer therapeutics,
but many are limited by side effects and either intrinsic or
acquired resistance. The need for more effective targeted cancer
treatment has led to the focus on forkhead box (FOX) transcrip-
tion factors as possible drug targets. Forkhead factors such as
FOXA1 and FOXM1 are involved in hormone regulation,
immune system modulation, and disease progression through

their regulation of the epithelial–mesenchymal transition. Fork-
head factors can influence cancer development, progression,
metastasis, and drug resistance. In this review, we discuss the
various roles of forkhead factors in biological processes that
support cancer as well as their function as pioneering factors
and their potential as targetable transcription factors in the fight
against cancer.

Introduction
Current options for cancer treatment include surgery, radiother-

apy, chemotherapy, and more recently developed targeted immu-
notherapies and checkpoint blockade therapies (1, 2). Both radia-
tion and chemotherapy have a plethora of limitations, including
side effects that require that clinical benefits be weighed against
toxicity and the emergence of resistance that may result from
intratumor heterogeneity (1–3). Targeted treatments also often
cause side effects, including but not limited to gastrointestinal
symptoms, and cancer frequently recurs or progresses despite
treatment (3). Cancer metastasis and recurrence account for almost
all cancer-associated deaths (4). Patients with advanced-stage can-
cer have a poor prognosis and high rates of resistance to available
treatments (4).

There has been growing interest in the forkhead box (FOX) family of
transcription factors as targets for anticancer drug development.
Members of this family have an evolutionarily conserved DNA-
binding domain and are involved in the regulation of cell growth,
differentiation, and embryogenesis (5). In various cancers, including
ovarian, breast, and prostate cancer, FOX factors are implicated in
cancer initiation, progression, and chemoresistance (6–9). In this
review, we discuss the roles of FOX factors in the epithelial–
mesenchymal transition (EMT), hormone signaling, drug resistance,
metabolism, and immune system regulation and their functions as
pioneering factors. Based on our current understanding of the inter-
twined and complex roles of FOX proteins in cancer development and
progression, these factors are important emerging therapeutic targets.

EMT, EM Plasticity, and Cancer Stem
Cell Properties

EMT is at the epicenter of cancer progression (10). The transition
from the epithelial phenotype to the mesenchymal-like phenotype is a
dynamic process necessary during normal development that is also
involved in tumor progression and the acquisition of resistance to
chemotherapy (10). EMT involves the reorganization of the epithelial
cell cytoskeleton, loss of cell–cell junctions and apical–basal polarity,
and a change in signaling programs that alter the expression of proteins
defining cell shape (Fig. 1A) (11). In addition, EMT endows cancer
cells with stem cell–like properties (12). Cancer stem cells (CSC) are a
rare subtype of cancer cells that are intrinsically resistant to chemo-
therapy that are implicated in disease recurrence. Therapeutic agents
that target transcription factors, such as the FOX proteins that regulate
EMT,may enable the inhibition ofmetastasis, eradication ofCSCs, and
reversal of drug resistance.

FOXC2 is the central mediator of EMT through the activation of
various signaling pathways, including MAPK and PI3K/AKT, or by
modulation of other transcription factors such as FOXO3 (13–15).We
have also shown that FOXC2 results in the enrichment of CSC
populations, thereby linking EMT to the induction of CSCs (12, 16).
This leads to a chemoresistant state in various cancer types (6, 17, 18).
The interconnectedness of CSCs, EMT, and drug resistance through
FOXC2 places this transcription factor at the center of cancer pro-
gression and recurrence. Thus, the specific inhibition of FOXC2 is an
attractive treatment option. Several methods of FOXC2 downregula-
tion have been studied. For example, p38 inhibition, which leads to a
decrease in FOXC2 levels, blocks the migratory and invasive capabil-
ities of cancer cells (16).

Like FOXC2, FOXC1 has been linked to the induction of
EMT (19, 20). FOXC1-mediated activation of the EMT program
occurs through the transactivation of the transcription factor Snail
and direct activation of ZEB2, both well-known EMT regula-
tors (21, 22). FOXC1 is also able to activate the PI3K/AKT path-
way (22), which, in a mechanism similar to that of FOXC2, leads to
the downregulation of FOXO3 and the emergence of a chemore-
sistant state.

Several other FOX factors also influence EMT progression. The
FOXA proteins are members of the class of transcription factors
known as pioneering factors; these are transcription factors that
associate with compacted chromatin to mediate binding of other
transcription factors. The loss of FOXA family members affects the
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accessibility of enhancer regions of epithelial genes, triggering a switch
from epithelial to mesenchymal gene expression (23, 24). The precise
effect of FOXA factors on EMT induction is tissue-specific: In prostate
cancer, the inhibition of FOXA leads to EMT inhibition, whereas loss
of FOXA1 is necessary for EMT induction in pancreatic and breast
cancer (25–27). The link between FOX factors and EMT is multifac-
eted. The varying induction of EMT through FOXA1 can be partially
attributed to the reversibility element associated with EMT and to the
intertwined programs such as EMT and metabolism and hormone
regulation. FOXA1 is also involved in the regulation of androgen
receptor (AR) and estrogen receptor (ER) signaling. This complex
system of regulation by FOXA1 is potentially the cause of its dual roles
in EMT induction.

Two FOX factors, FOXM1 and FOXO, are closely linked to drug
resistance and are also mediators of EMT. Depletion of FOXM1
inhibits the proliferative and invasive capabilities of cancer cells, and
its overexpression is linked to EMT induction (28–30). Several
FOXM1 binding sites have been identified in the promoter of Slug,
a well-characterized EMT-inducing transcription factor (31). Unlike

FOXM1, which induces EMT and leads to a chemoresistant state,
FOXO1 inhibits EMT. FOXO1 inhibits TGFb–induced EMT, nega-
tively regulates EMT transcription factors, and interacts with
ZEB2 (32). In pancreatic ductal carcinoma, FOXO depletion induces
EMT via activation of the b-catenin/transcription factor 4 (TCF4)
pathway, a known CSC-associated signaling pathway (33).

Other FOX factors are also linked to EMT induction. FOXP3
induces EMT and promotes tumor growth by activating b-catenin/
Wnt-mediated signaling by binding directly to b-catenin and by
activating NF-kb signaling, a regulatory pathway involved in inflam-
matory responses and cell survival (34–36). FOXQ1 induces signaling
mediated by TGFb to initiate EMT (37, 38) and represses the expres-
sion of E-cadherin and induces mesenchymal properties through
induction of ZEB2 (37, 39). FOXF2 induces EMT induction and
cancer progression with induction of bone metastasis seen in breast
cancer (40, 41). However, FOXF2 induction is cancer-specific (42).
Thus, various FOX factors are involved in EMT induction (Fig. 1A)
and acquisition of CSC traits and the mesenchymal phenotype. These
examples also demonstrate that the actions of FOX factors in cancer
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Figure 1.

Role of FOX factors in cancer. A, Depiction of the two extreme phenotypes of EMT with the associated physiologic changes and the FOX factors that elicit each
phenotype. FOXA1 can induce and inhibit EMT, depending on the cancer subtype. B, Summary of the functions of the FOXO3–FOXM1 axis in drug resistance. A drug-
resistant state occurs upon inhibition of FOXO3 or upregulation of FOXM1, often in combination, leading to an increase in prosurvival mechanisms and drug efflux
transporter activation. C, Schematic of how FOX factors regulate adipocyte metabolism, creating an immunosuppressive environment. FOXA1 mediates the
acquisition of lipid precursors to fuel tumor proliferation. These precursors can become cancer-associated adipocytes expressing FOXC2. The cooperation between
FOXC2 and a-MSH to promote fatty-acid oxidation creates an energy source for cancer cells. This creates a feedback loop in which cancer cells signal adipocytes to
become cancer-associated adipocytes, and the cycle continues.D,Pioneeringactivity of FOXA1, a potentialmechanismof action of other transcription factors. FOXA1
is capableof binding condensedchromatin to create anopening for easier accessibility of other transcription factors. In this case, FOXA1 allows for thebindingof ERor
AR to condensed chromatin, thereby activating an altered hormone response in cancer cells.
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initiation and progression are complex. The prevalence of FOX factors
in the induction of EMT sets the stage for their involvement in various
cancer-associated pathways due to the complex role of EMT in cancer
progression. It remains to be seen whether targeting these transcrip-
tion factors alonewill be enough to halt or reverse EMTorwhether this
process is so complex that a multifaceted approach is necessary.

Regulation of Hormone Signaling
In order to understand how FOX factors influence cancer pro-

gression, we must examine their roles in the regulation of hormone
signaling pathways. Hormone-receptive cancers are often treated
with therapies that target the relevant hormone signaling pathway.
FOX factors are intricately involved in ER, HER2, and AR signaling.
Hormone signaling is abnormal in over 60% of breast cancers (43).
Targeting of hormone-mediated signaling pathways can be an
effective treatment option; however, endocrine treatment (e.g.,
tamoxifen or aromatase inhibitors) often leads to treatment resis-
tance and recurrence (44).

A key determinant of the response to estrogen is the level of
FOXA1 expression (45). FOXA1 can activate ER-mediated signal-
ing (46), which is associated with the activation of various protein
kinase cascades and signaling pathways involved in cell prolifera-
tion and survival (47). In addition, this genome-wide reprogram-
ming drives the activation of the hypoxia-inducible factor-2a (HIF-
2a) transcription factor and its induction of a prometastatic pro-
gram in breast cancer (23).

FOXM1 and FOXP1 also function in endocrine sensitivity and
resistance in breast cancer. FOXM1 is correlated with ER and HER2
expression, and FOXM1 is able to activate ER expression by binding
to forkhead-response elements located in the proximal region of the
ER promoter (48–50). In addition, FOXP1 increases recruitment of
ERa to ER binding sites to increase cellular proliferation (51, 52).
FOXM1 can bypass the need for ER in downstream ER signaling
pathways, resulting in endocrine resistance and tumor growth in
breast cancer as well as an increase in CSC frequency (7, 53, 54). In
addition, FOXM1 expression is dependent on HER2 expression,
making it a likely downstream target of HER2 signaling (55). The
functions of FOXM1 in both ER and HER2 signaling allow for a
switch away from hormone-dependent signaling and make FOXM1
a prime target to combat acquired endocrine resistance in patients
with cancer.

FOX factors can also regulate AR signaling. Prostate cancer cell
proliferation is often dependent on AR-mediated signaling, and
androgen deprivation therapy (ADT) is the first line of therapy for
these tumors (56, 57). AR is required for normal male physiology
and is also expressed in prostate cancer cells. ADT often fails in
advanced stages of prostate cancer, which is termed castration-
resistant prostate cancer (CRPC) (25, 58). Members of the FOX
family of transcription factors are critical in AR-mediated signaling,
particularly in CRPC (59).

In addition to regulating ER-mediated signaling, FOXA1 mediates
AR expression (60). The forkhead domain of FOXA1 binds to
sequences on the AR gene and physically interacts with AR, acting
as a pioneering factor to recruit the AR protein. Thus, FOXA1
positively regulates prostate-related gene expression induced by
androgens. It is expressed at high levels in patients with metastatic
prostate cancer (60). Much like FOXA1, FOXA2 interacts with AR,
resulting in activation of the promoter of the gene encoding the
prostate-specific antigen (PSA). PSA, in turn, regulates the growth of
epididymal cells, which are required for prostate physiology (61). Both

FOXA1 and FOXA2 can upregulate AR-targeted genes in the absence
of AR (62, 63), increasing prostate cancer growth, even in the absence
of androgens, leading to the failure of ADT.

Other FOX transcription factors can also regulate AR-mediated
signaling. For example, FOXM1 influences the binding of AR to the
CDC6 promoter, increases the AR protein levels and induces PSA
gene transcription in the absence of androgen stimulation (64, 65).
FOXO3 can directly bind to AR promoter and the function of
FOXO3 is regulated by the PIK3/AKT pathway (66). In contrast to
these positive regulators of AR-mediated gene expression, FOXP1 is
able to repress AR target genes (67). FOXP1 functions as a homo-
dimer or heterodimer with FOXP2 and FOXP4 (67). When AR
enters the nucleus, it is ligand-dependently recruited to bind
FOXP1, leading to the negative regulation of AR target genes (67).
In summary, FOX factors are essential players in hormone signaling
in various cancer types with roles as both tumor promoters and
suppressors. The involvement of FOX factors in hormone signaling
links hormone regulation to drug response in cancer. Most impor-
tantly, FOX factors create hormone-independent states in which
cancer cells can bypass the typical hormone regulatory pathways
needed for normal physiologic growth, such as those seen in breast
and prostate cancer. This scenario allows for unsuppressed growth
and cancer progression.

Resistance to Therapeutics
Drug resistance remains a major hurdle in cancer treatment (2, 3).

Drug resistance can develop through acquired resistance to drug
regimens, tumor heterogeneity, or altered immune system inter-
vention (68). In hormone-receptive cancers, single-use agents to
target hormone signaling have been shown to be ineffective long
term because of acquired resistance, as these agents cause a selective
pressure that increases the frequency of CSCs (68). The drug
resistance mechanisms include the development of resistance to
apoptosis, increased DNA damage repair efficiency, elimination
of the chemotherapeutic drugs by increased efflux, and drug
inactivation.

Several of the FOX factors involved in the regulation of hormone
signaling and EMT, including FOXO3 and FOXM1, are also
implicated in drug resistance. FOXO3 depletion induces the expres-
sion of proteins important for drug efflux (such as MDR1) and
proliferation in cancer, mostly through the activation of the PI3K
signaling pathway, a well-known cancer-driving signaling path-
way (69, 70). The inactivation of FOXO3 is due to the hyper-
activation of the PI3K/AKT pathway, which results in the cyto-
plasmic translocation and degradation of FOXO protein (71). The
degradation of FOXO proteins leads to a reversal of the proapop-
totic properties of FOXO family members (13, 72, 73).

Although inactivation of FOXO3 alone can induce drug resistance,
the FOXO3–FOXM1 axis is a better marker of drug resistance
modulation (Fig. 1B; refs. 74, 75). FOXM1 and FOXO3 compete for
the same binding sites in gene promoters, and FOXO3 can negatively
regulate FOXM1 expression (76). When FOXM1 is upregulated, or
FOXO3 is downregulated, the expression of genes involved in drug
efflux, DNA repair, and cell survival are impacted (75). FOXM1
transcription is activated by an increase in reactive oxygen species
(ROS), creating a feedback loop between ROS and FOXM1 expres-
sion (77). This leads to regulation of cell-cycle transition points by
FOXM1 and increased resistance via overexpression of DNA damage
response genes and the development of resistance to DNA damaging
agents (78, 79). This acquired resistancemay be due to the expansion of
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CSCs induced by FOXM1 (80–82). By acting synergistically with
FOXO3 inactivation, FOXM1 blocks the action of trastuzumab by
increasing the proteolytic degradation of p27, an inhibitor of cell-cycle
progression (7, 78). FOXM1 creates a perfect axis for drug resistance by
increasing the number of resistant CSCs, effectively pumping out
drugs from the cell, and downregulating the expression of genes that
serve as tumor suppressors.

Recently, another member of the FOX family, FOXC2, has
been shown to be important in drug resistance and metastasis in
multiple cancer types, including those of the prostate, breast, and
ovary (83–85). High levels of FOXC2 expression are observed in
advanced metastatic cancers, and its expression is correlated with
poor prognosis (86). Inhibition of FOXC2 expression by treating
cells with an inhibitor of p38 kinase, an upstream regulator of
FOXC2, reduces resistance to chemotherapy agents (85). In accor-
dance with these data, in ovarian cancer, the inhibition of FOXC2
expression increases chemosensitivity by decreasing the concentra-
tions of phosphorylated forms of AKT and ERK protein kinases,
which are involved in multiple cellular processes tied to cell
proliferation and migration (6). In summary, FOXC2 is able to
upregulate not only cell proliferation and migration but also
chemoresistance through its modulation of EMT.

FOXQ1 is also involved in drug resistance. Elevated FOXQ1
expression is linked to poor prognosis in patients with cancer
patients (87). FOXQ1 upregulation leads to the activation of
PDGFR-a and PDGFR-b, upregulation of Twist and ZEB2, and
initiation of EMT (88, 89). All of these proteins are involved in cancer
progression and the generation of a drug-resistant state. FOXQ1 has
been shown to control the expression of MDM2, which is a negative
regulator of the expression of the tumor suppressor p53 (87). Thus,
FOXQ1 upregulates EMT-involved transcription factors and down-
regulates tumor suppressor expression, leading to drug resistance.
In summary, a large body of evidence points to multiple mechan-
isms by which various FOX transcription factors can confer che-
moresistant traits to cancer cells, with factors involved in hormone
signaling and EMT induction being closely tied to the induction of
chemoresistance.

Cancer Metabolism
In addition to chemoresistance, FOX factors influence cancer

growth through metabolic regulation. Cancer cells depend on
aerobic glycolysis, a process known as the Warburg effect (90, 91).
Normal cells utilize oxidative phosphorylation; however, in tumors,
a hypoxic environment creates an environment in which oxidative
phosphorylation is inefficient. Thus, cancer cells resort to glycolysis,
in which two ATP molecules and intermediate building blocks are
produced for every glucose consumed (92). Even though the
production of ATP from glycolysis is lower on a molar basis than
that of oxidative phosphorylation under normal conditions, the
amount of ATP produced by a cancer cell can equal or even surpass
that produced by a cell through oxidative phosphorylation (91, 93).
Through glycolysis, cancer cells can generate an adequate amount of
energy while also creating intermediates needed to promote cell
growth. Two FOX factors have been implicated in the regulation of
the Warburg effect: FOXM1 and FOXO.

FOXM1 has been shown to promote the Warburg effect and
regulate glycolysis by upregulation of the expression of the lactate
dehydrogenase (LDHA; refs. 94, 95). The resulting elevation of lactate
production and glucose consumption causes an increase in glycolytic
flux, fueling cancer cell growth. In addition, FOXM1has been shown to

upregulate the expression of the glucose transporter GLUT1 and the
kinase HK2, which catalyzes the first step in glucose metabolism,
further stimulating the Warburg effect (95). In contrast, FOXO has
been shown to inhibit glycolysis through its antagonization of
MYC (96). MYC is an oncogene that promotes a shift in metabolism
primarily to glycolysis. Elevated FOXO levels lead to a decrease in ROS
and a shift away from glycolysis (96). Thus, the FOXM1–FOXO axis,
which plays a role in drug resistance, also plays a critical role in the
metabolic shift in cancer cells.

Aerobic glycolysis leads to the production of the precursors needed
for the biosynthesis of lipids and adipocytes; both have been shown to
promote cancer metastasis (97, 98). Adipocytes store lipids and also
secrete proinflammatory and immune-suppressing molecules. When
adipocytes are close to cancer cells, they are reprogrammed to secrete
proinvasive and prometastatic signals (98). The cancer-associated
adipocytes can also provide cancer cells with energy sources through
lipolysis (98). Thus, lipids and adipocytes create an environment that
induces survival and metastasis.

FOX factors mediate adipocyte function (Fig. 1C). FOXA is
expressed in preadipocytes and regulates the expression of LIPG, an
enzyme responsible for generating lipid precursors (99, 100). Thus,
FOXA mediates the acquisition of extracellular lipids that fuel tumor
proliferation (99). FOXC2 is involved in lipid and adipocyte metab-
olism (101) and cooperates with a-MSH to promote fatty acid
oxidation, creating an energy source for cancer cells (102). FOXC2
suppresses apoptosis in preadipocytes and promotes adipogenesis,
another mechanism of synthesis of precursors that cancer cells utilize
for energy and biosynthesis (103). In addition, FOXC2 promotes
glycolysis by regulating the YAP/TAZ pathway, leading to an increase
in tumor progression (104). Thus, FOX factors regulate cancer cell
metabolism and adipogenesis, providing cancer cells with energy
sources and creating a proinflammatory, prosurvival, and prometa-
static environment. The interplay between FOX factors that regulate
EMT, chemoresistance, and cancer metabolism demonstrates the
complex and interconnected nature of signaling pathways involved
in cancer progression. Based on this, a valid concern is that inhibiting
the function of one of these FOX transcription factors, such as
targeting FOXC2-regulated metabolism, will not be sufficient to halt
cancer progression.

Evasion and Regulation of the Immune
System

In addition to a prosurvival and metastatic environment,
FOX factors can regulate the immune system to allow cancer
cells to evade immune detection. Some FOX factors inhibit the
immune response and others activate senescence. Senescence, the
arrest of the proliferation of cells, leads to a change in the microen-
vironment that can allow tumor development (105). Senescent cells
secrete numerous proinflammatory cytokines, chemokines, growth
factors, and proteases that allow cancer cells to evade the immune
system (105). Recovery from a senescent state after exposure to therapy
is called proliferative recovery, and it has been shown to contribute to
cancer recurrence (106). Senescent cells are not targetable with existing
therapies because they do not actively proliferate (106).

Several FOX factors contribute to the induction of senescence.
FOXM1 is a key regulator of senescence induction through regulation
of the G2–M transition (107). Depletion of FOXM1 leads to the
induction of a senescent state in multiple cancer cell types (107–109).
FOXM1 downregulation also causes an increase in the abundance of
ROS and the downregulation of c-MYC in cancer cells (107, 110). This,
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in turn, limits mitosis and increases the release of prosenescence
markers that ultimately halt proliferation (108).

FOXO4 also has a demonstrated function in senescence. The
activation of FOXO4 is correlated with an increase in levels of p21
protein and an increase in the population of senescent cancer
cells (111, 112). FOXO4 binds to p53 at regions of DNA damage,
enabling p53 to bind and transactivate the p21 promoter (111, 113).
p21 executes the senescence program by causing cell cycle
arrest (114). The arrest in the cell cycle leads to a survival advantage
in the presence of chemotherapeutic drugs. A better understanding
of how FOX factors initiate senescence through the upregulation of
an inflammatory environment and inhibition of cell cycle regulators
will guide the development of targeting strategies to overcome this
phenomenon.

Although FOXQ1 is not as well characterized as some other FOX
factors, it is known to induce EMT and has recently been shown to
play a role in the repression of cancer senescence (115). FOXQ1 is
responsible for the induction of proliferation through its suppres-
sion of IL6 and IL8 through the modulation of sirtulin 1 (115). IL6
and IL8 are proinflammatory chemokines responsible for senes-
cence induction, and the inflammatory environment created by IL8
and IL6 further enhances survival. Downregulation of FOXQ1
induces premature senescence in fibroblasts, and its overexpression
thwarts senescence induction (115). Thus, additional studies should
be performed on FOXQ1 to determine its relationship to immune
system modulation, as FOXQ1 may inhibit cancer growth by
reducing inflammation.

Immunomodulatory cancer therapies have been developed that
augment patients’ immune responses to cancer cells. Several FOX
factorsmodulate key immune system signaling pathways, leading to an
interest in their use as immunotherapy agents. Regulatory T (Treg)
cells are an immunosuppressive subset of CD4þT cells that account for
about 5% of the CD4þ T-cell population (116). Treg cells are prevalent
in tumor samples, and they are early responders during tumor
development that are associatedwithpoorpatient prognosis (116, 117).
Th cells are the primary line of adaptive immunity, activating B cells
and cytotoxic T cells (118). Thus, helper T cells have functions opposite
those of Treg cells in cancer progression.

FOXO3 can inhibit inflammatory transcriptional activity by block-
ing NF-kb activation, leading to inhibition of Th-cell function and
immune tolerance (119). FOXO3 expression is increased after T-cell
receptor engagement and is involved in Th-cell differentiation (120).
FOXO3 positively affects immune system activation, whereas FOXO3
inhibition has been linked to drug resistance acquisition. FOXO1
induces the production of Treg cells by binding to the FOXP3 pro-
moter and triggering robust FOXP3 expression (121). FOXP3 is
considered to be the master regulator of Treg cells (122). Sustained
FOXP3 expression is required for the proper function of Treg
cells (123). In addition, FOXP3 induces an immunosuppressive envi-
ronment by repressing cytokines such as IL4 that promote a proper
immune response (124, 125). Thus, FOXO1 and FOXP3work together
to elicit an immunosuppressive, prosurvival microenvironment, lead-
ing to the activation of Treg cells. The emergence of these immuno-
suppressive environments leads to the inhibition or resistance to
immune checkpoint blockade therapy. Targeting the FOX family of
transcription factors in combination with standard-of-care che-
motherapeutics can aid in combating chemoresistance, one of the
biggest hurdles of cancer treatment. Thus, a double targeted approach
of chemotherapeutics plus FOX factor-targeting compounds could
inhibit the bulk of the tumor, target the CSC population, and inhibit
the emergence of resistance.

Pioneering Factors
A fundamental reason for targeting FOX proteins is that many

FOX proteins function as pioneering factors. Pioneering factors
are the first to engage at target sites on chromatin and therefore
serve to initiate transcriptional programs (126). Under normal
conditions, most transcription factors do not directly access
their target sites on compacted chromatin but rather bind
after the binding of a pioneering factor (126, 127). Pioneering
factors are crucial for cellular reprogramming and are also impli-
cated in gene regulatory networks that occur during cancer pro-
gression (128). Under some conditions, pioneering factors can
activate regulatory programs that result in cancer cell propagation
without normal checks and balances that restrict proliferation. The
FOX proteins have a highly conserved winged-helix DNA-binding
domain that resembles a linker histone and allows binding to
nucleosomes (129).

FOXA1 and FOXA2 are capable of displacing histone H1, and they
maintain enhancer regions in an open conformation, allowing other
transcription factors to bind and activate gene expression (128, 130).
The FOXA factors can activate redundant pathways despite the loss of
any individual transcription factors (131). Loss of hormone produc-
tion in hormone-dependent cancers, which should halt cancer pro-
gression, is thwarted as FOXA factors turn on otherwise hormone-
dependent pathways in the absence of hormone secretion. For exam-
ple, FOXA1 has been shown to open compact chromatin to facilitate
AR recruitment to maintain the prostate epithelial phenotype and
regulate the expression of genes encoding AR and ER (Fig. 1D;
refs. 62, 132). In addition, FOXA proteins remain bound to chromatin
duringmitosis and help to activate signaling pathways that regulate cell
fate (Fig. 1D; ref. 133). More studies are needed to explore the
roles of FOXA transcription factors in cell fate determination during
cancer progression.

Another FOX factor with pioneering capabilities is FOXO1,
which opens and remodels chromatin via its conserved winged-
helix domain (134). FOXO1 and FOXA1/2 cooperate to open
condensed chromatin around insulin-regulated genes (135).
FOXO1 decondenses chromatin arrays to regulate metabolism, cell
survival, apoptosis, cell-cycle progression, and DNA repair (136).
FOXI1 associates with mitotic chromatin and remains bound
throughout mitosis (137, 138) but little is known about the role
of this factor in cancer progression. FOXM1 expression has been
shown to be required for proper chromosome segregation and
mitotic progression (139, 140).

FOXC2 regulates mitotic entry via PLK1, a kinase responsible for
G2–M regulation, and levels of FOXC2 fluctuate during cell-cycle
progression, a known characteristic of mitotic bookmarkers (141).
Mitotic bookmarkers are a subset of pioneering factors that possess
the ability to bind to chromosomes during mitosis to rapidly
activate a subset of genes following mitotic exit. Additional studies
are needed to determine whether other FOX factors are both
pioneering factors and mitotic bookmarkers. The ability of FOX
factors to impact a plethora of critical pathways and regulatory
mechanisms involved in cancer progression is likely due to their
roles as pioneering factors that regulate cell-fate determination and
acquisition of CSC properties. FOX factors are not only involved in
the regulation of cancer cell signaling but also in the activation of
these pathways through the regulation of chromosome accessibility.
Thus, FOX factors may control more than just the cancer signaling
pathways; they may also be involved in the epigenetics and cell fate
control during cancer progression.
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Future Directions
Our ability to successfully treat cancer has improved over the last

decade; yet, there is no cure for highly invasive or metastatic cancers.
Studies of FOX factors have provided unique perspectives into the
mechanisms that drive cancer progression. Often, FOX factors are
involved in more than one aspect of cancer progression (Table 1).
Clarification of the functions of FOX factors in cancer modulation and
the identification of druggable targets that alter the activities of these
transcription factors could lead to additional options for the treatment
of cancer. Inhibition of FOX factors, or the pathways theymediate, can
potentially reverse drug resistance, inhibit immune evasion, and block
metastatic progression. Inhibitors of FOX factors, the kinases involved
in FOX-mediated pathways, and the agents that mediate RNAi to
silence the expression of FOX factors are promising tools to treat
patients with various types of cancer.

However, additional studies are required to shed light on the
complexity of FOX factors. The dual natures of certain FOX factors
during EMT raise the concern that inhibition of these transcription
factors during different stages of cancer progression could lead to
undesirable outcomes (42, 142). In addition, certain FOX factors have
contradictory outcomes depending on the tissue. For example, FOXA
has inhibitory effects in pancreatic cancer but stimulatory effects in
breast and prostate cancers (25, 26). This duality in EMT and
metastatic progression may be due to the intricate nature of FOXA’s
involvement with hormone signaling.

Of particular interest will be the study of the abilities of FOX factors
to function as pioneering factors. Their highly conserved winged-helix
DNA-binding domainmimics a histone linker, and therefore, it is well-
matched to the binding of condensed chromatin structures (129). All
FOX factors may have the pioneering ability, although this remains to
be experimentally confirmed. Their abilities to serve as pioneering
factors allow FOX factors to activate compensatory mechanisms
needed for cancer growth as well as to determine cancer cell fate.
FOX transcription factors are linked to EMT, hormone signaling, drug
resistance, metabolic reprogramming, and immune system modula-
tion, and their study may be key to understanding cancer.
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Table 1. Functions of FOX factors in cancer.

FOX factors Roles in cancer

FOXA1 and Bind to sequences on AR gene (58, 61)
FOXA2 Open compact chromatin for AR and ER recruitment (45, 58, 132)

Duality in EMT activation, cancer (26, 58)
Promote lipid precursor accumulation (99)
Pioneering factors (130)

FOXM1 Increases AR levels via recruitment of AR to CDC6 in the absence of androgen stimulation (65)
Correlates with ER and HER2 expression (48, 65, 80)
Binds to forkhead response elements located in the proximal region of ER promoter (49)
Increases drug resistance via overexpression of DNA damage response genes (70, 75, 76)
Initiates EMT through binding of Slug promoter (31)
Induces senescence via regulation of cell division at G2–M (107, 109)
Promotes Warburg effects (94)

FOXO3 Binds to AR promoter (66)
Regulates cell fate via apoptosis induction (13, 73)
Upregulates drug efflux and activation of the PI3K pathway (13, 14, 72, 75)

FOXC2 Upregulates EMT, CSC population, and AKT signaling, leading to drug resistance (16, 80, 97)
Enriches the CSC population in tumors (16)
Mediates G2–M transition (141)
Promotes fatty-acid oxidation (102)

FOXP1 Represses AR-targeting genes via the formation of dimers with FOXP2 and FOXP4 (67)
FOXO4 Increases p21, a senescence marker (113)

Binds to p53 at the area of DNA damage and activates the p21 promoter (113)
FOXO1 Stimulates dendritic cells and T and B lymphocytes (121)

Binds to FOXP3 promoter and regulates the production of Treg cells (135)
Elicits an immunosuppressive environment (121)
Pioneering factor (136)

FOXP3 Binds directly to b-catenin and upregulates GSK3b (34)
Maintains proper function of Treg cells (122, 123, 125)

FOXQ1 Activates PDGFR-a and b, Twist, and ZEB2, leading to EMT induction (37, 38, 88)
Controls expression of MDM2, a regulator of p53 (87, 89)
Induces proliferation through suppression of IL6 and IL8 (115)

FOXF2 Promotes bone metastasis in breast cancer (40)
Induces EMT and cancer progression, cancer-specific (41, 42)
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