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ABSTRACT
Calophyllum soulattri Burm. f. (1768) is an evergreen tree native to Southeast Asia, Australia, and the
Solomon Islands. It is known for its medicinal uses and has been utilized in traditional folk medicine.
However, genomic resources for this species are still unavailable. In this study, we sequenced and
assembled the first complete chloroplast genome of C. soulattri using next-generation sequencing data.
The chloroplast genome of C. soulattri is 161,381 bp in length with a total GC content of 36.36%. The
chloroplast genome contains a large single copy (LSC) region of 88,680bp, a small single copy (SSC)
region of 17,453bp, and two inverted repeat (IR) regions of 27,624bp each. Furthermore, the chloro-
plast genome has 131 genes, which include 86 protein-coding genes, 37 tRNA genes, and 8 rRNA
genes. Phylogenetic analysis indicated that C. soulattri is clustered in the same branch with C. inophyl-
lum and is closely related to Mesua ferrea.
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Introduction

Calophyllum is a genus that belongs to the family
Calophyllaceae under the Clusioid clade of the order
Malpighiales (Angiosperm Phylogeny Group 2009).
Calophyllum species are known for their use in traditional
medicine. For example, oils extracted from Calophyllum seeds
are used to treat wounds and infections (L�eguillier et al.
2015). Furthermore, the genus Calophyllum is a potential
source of compounds for drug discovery and development
due to the presence of different secondary metabolites in
plant tissues such as terpenes (Nigam et al. 1988), xanthones
(Mah et al. 2015), coumarins (Ee et al. 2011), phenols, and fla-
vonoids (Hapsari et al. 2022). In fact, coumarins extracted
from a Calophyllum species were found to be potent against
HIV-1 virus (Spino et al. 1998). Aside from being used in trad-
itional medicine, Calophyllum species are also known for
being sources of wood for locals (Rabena and Macandog
2017). Calophyllum soulattri Burm.f. (1768) is a small tree spe-
cies with opposite leaves that are ovate to elliptical or sub-
oblong; it has black or purple fruit and a white inflorescence
(Figure 1). Its distribution is limited to mainland Southeast
Asia, the Solomon Islands, and northern Australia (Pelser
et al. 2011). However, the complete chloroplast genome
sequence of C. soulattri has not been reported. This study
reports the first complete chloroplast genome sequence of C.
soulattri that provides a reference for understanding the

phylogenetic relationship and plastome evolution in the
Calophyllaceae and the clusioid clade.

Materials

Plant Materials

Disease-free leaf samples of C. soulattri were collected from
the germplasm collection of the Metallophytes Laboratory,
Forest Biological Sciences, College of Forestry and Natural
Resources, University of the Philippines, Los Ba~nos, Laguna,
Philippines (14�901700N 121�1406.2500E). The leaf specimen was
submitted at the Jose Vera Santos Memorial Herbarium of
the Institute of Biology, University of the Philippines, Diliman
(https://biology.science.upd.edu.ph/index.php/jose-vera-san-
tos-memorial-herbarium/, Dr. Edwino S. Fernando, puh.upd.
edu@gmail.com; and compared with accession number
14288 (Figure 1). Leaves were thoroughly cleaned and flash
frozen using liquid nitrogen and were brought to the Plant
Molecular Phylogenetics Laboratory at the Institute of
Biology, University of the Philippines, Diliman, Quezon City
for DNA extraction.

Methods

The total genomic DNA of C. soulattri was extracted using
WizardVR HMW DNA Extraction Kit (Promega, USA) with slight
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modification by adding 1% (w/v) polyvinylpyrrolidone-40
(PVP-40) to the HMW lysis buffer A and submitted to
MACROGEN, Inc. (Seoul, South Korea) for next-generation
sequencing service. Paired-end reads were sequenced using
the Illumina HiSeq 2500 platform (San Diego, California).
Approximately, 2.8 Gb of raw data was generated. The quality
of raw reads was checked using FastQC v0.11.9 (Andrews
2010) and read error correction was performed using Musket
v1.1 (Liu et al. 2013). The plastome of C. soulattri was
assembled using GetOrganelle v1.7.6.1 (Jin et al. 2020).
Subsequently, the assembled chloroplast genome was anno-
tated using GeSeq (Tillich et al. 2017) and then manually
curated. The chloroplast genome map was drawn using the
CPGView program (Liu et al. 2023).

To validate the phylogenetic position of C. soulattri, the
complete chloroplast genome sequences of 22 species in the
order Malpighiales were downloaded from NCBI GenBank
and aligned using MAFFT v7.490 (Katoh and Standley 2013)
on the CIPRES Science Gateway (www.phylo.org) (Miller et al.
2015). The maximum-likelihood (ML) phylogenetic analysis
was performed using RaxML-NG v1.1.0 (Kozlov et al. 2019)
based on GTRþG nucleotide substitution model on the
CIPRES Science Gateway (www.phylo.org) (Miller et al. 2015)
with 1,000 bootstrap replicates and Bayesian inference using
MrBayes v3.2.7a (Ronquist et al. 2012). Lophira alata
(MZ274135) (Mascarello et al. 2021) from the Ochnaceae

family and Passiflora edulis (NC_034285) (Cauz-Santos et al.
2017) was used as an outgroup.

Results

General characteristic of the chloroplast genome

The complete chloroplast genome (plastome) of C. Soulattri has
a typical circular and quadripartite structure. The plastome is
161,381bp in length with a total GC content of 36.36% consist-
ing of the large single copy (LSC: 88,680bp) and small single
copy (SSC: 17,453bp) regions, which are separated by two
inverted repeat regions (IRa and IRb: 27,624bp each). The GC
contents of the LSC, SSC, and IR regions were 33.96%, 30.57%,
and 42.04%, respectively (Figure 2). The average and minimum
read mapping depth of the assembled plastome were 97.3x
and 80.3x, respectively (Figure S1). Furthermore, the plastome
of C. soulattri has 131 genes including 86 protein-coding genes,
37 tRNA genes, and 8 rRNA genes.

Phylogenetic analysis of C. soulattri in the Clusioid clade

Our ML phylogenetic analysis revealed two major clades with
high bootstrap support (BS ¼ 100%) (Figure 3). Garcinia
(Clusiaceae) formed a monophyletic clade with a highly sup-
ported bootstrap value (BS ¼ 100%). The family Hypericaceae

Figure 1. The specimen and morphology of C. soulattri. (A) The specimen of C. soulattri (accession number: 14288); (B) The fruit and (C) the inflorescence and leaves
of C. soulattri. (Photo credits: Jessica Rey).
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was related to Podostemaceae. Moreover, the family
Calophyllaceae also formed a monophyletic clade (BS ¼
100%) in which M. ferrea was related to C. soulattri and
C. inophyllum indicating that they are more closely related
than to other species.

Discussion and conclusion

The first complete chloroplast genome (plastome) of C. sou-
lattri was sequenced, assembled, and annotated in this study.
The general features of the chloroplast genome of C. soulattri
are similar to that of most land plants. Furthermore, our
results mostly concur with a recent study which elucidates a
generally conserve plastome structure (Trad et al. 2021).

Calophyllum soulattri belongs to the tribe Calophylleae of
the family Calophyllaceae. There are almost 90 genera and
approximately 2,090 species within the family Calophyllaceae.
Also, the family Calophyllaceae is monophyletic along with
Clusiaceae, Bonnetiacea, Podostemaceae, and Hypericaceae in
the order Malpighiales which forms a group typically known as
the clusiod clade (Stevens 2001 onwards; Cook and Rutishauser
2007; Angiosperm Phylogeny Group 2009; Wurdack and Davis
2009; Ruhfel et al. 2011; Koi et al. 2012; N€urk et al. 2013).
Although the group is species-rich, complete plastome informa-
tion is still unavailable for most species.

Our phylogenetic analysis using available whole chloro-
plast genomes has suggested a different topology with high
bootstrap support than those previously reported.
Nevertheless, species groupings are consistent in the clusioid

Figure 2. The chloroplast genome (plastome) map of C. soulattri. The plastome map is divided into six circles with different representations. Starting from the inner
circle, the first circle shows the dispersed repeats connected by red (forward repeat) and green (palindromic repeat) arcs. The second circle shows long tandem
repeats in short blue bars. The third circle presents simple sequence repeats (SSRs) that are color coded based on repeat unit size (RUS) (Black, complex repeat;
Green, RUS ¼ 1; Yellow, RUS ¼ 2; and Blue, RUS ¼ 4). The fourth circle displays the four regions of the plastome (LSC, SSC, IRa, and IRb) with their respective sizes.
The fifth circle provides the GC content along the genome. The sixth circle provides the genes with their codon usage bias in parentheses and are color-coded, indi-
cating their respective functional group. The functional groups can be found at the bottom left corner. Genes that are found in the inner and outer circle are tran-
scribed clockwise and counterclockwise, respectively.
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clade as has been suggested in several studies (Ruhfel et al.
2011; 2016; Trad et al. 2021). Furthermore, previous reports
support our findings on M. ferrea being closely related to
Calophyllum species using plastid, mitochondrial, and nuclear
sequences, and even the whole chloroplast genome (Ruhfel
et al. 2016; Cabral et al. 2021; Trad et al. 2021). This study
provides significant data for understanding species place-
ment in the clusioid clade which would be useful in future
analyses. Thus, the complete chloroplast genome of C. soulat-
tri provides a valuable genetic resource for future studies on
the phylogeny and population genetics of Calophyllum.
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