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Background: Studies have revealed that inflammatory response is relevant to the tetralogy of Fallot (TOF). 
However, there are no studies to systematically explore the role of the inflammation-related genes (IRGs) 
in TOF. Therefore, based on bioinformatics, we explored the biomarkers related to inflammation in TOF, 
laying a theoretical foundation for its in-depth study. 
Methods: TOF-related datasets (GSE36761 and GSE35776) were downloaded from the Gene Expression 
Omnibus (GEO) database. The differentially expressed genes (DEGs) between TOF and control groups 
were identified in GSE36761. And DEGs between TOF and control groups were intersected with IRGs 
to obtain differentially expressed IRGs (DE-IRGs). Afterwards, the least absolute shrinkage and selection 
operator (LASSO) and random forest (RF) were utilized to identify the biomarkers. Next, immune analysis 
was carried out. The transcription factor (TF)-mRNA, lncRNA-miRNA-mRNA, and miRNA-single 
nucleotide polymorphism (SNP)-mRNA networks were created. Finally, the potential drugs targeting the 
biomarkers were predicted.
Results: There were 971 DEGs between TOF and control groups, and 29 DE-IRGs were gained through 
the intersection between DEGs and IRGs. Next, a total of five biomarkers (MARCO, CXCL6, F3, SLC7A2, 
and SLC7A1) were acquired via two machine learning algorithms. Infiltrating abundance of 18 immune cells 
was significantly different between TOF and control groups, such as activated B cells, neutrophil, CD56dim 
natural killer cells, etc. The TF-mRNA network contained 4 mRNAs, 31 TFs, and 33 edges, for instance, 
ELF1-CXCL6, CBX8-SLC7A2, ZNF423-SLC7A1, ZNF71-F3. The lncRNA-miRNA-mRNA network 
was created, containing 4 mRNAs, 4 miRNAs, and 228 lncRNAs. Afterwards, nine SNPs locations were 
identified in the miRNA-SNP-mRNA network. A total of 21 drugs were predicted, such as ornithine, lysine, 
arginine, etc.
Conclusions: Our findings detected five inflammation-related biomarkers (MARCO, CXCL6, F3, 
SLC7A2, and SLC7A1) for TOF, providing a scientific reference for further studies of TOF. 
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Introduction

Tetralogy of Fallot (TOF) is the most common cyanotic 
congenital heart disease (CHD) diagnosed in liveborn 
children (1). TOF accounts for approximately 7% to 10% 
of all CHD cases and has a prevalence of approximately 
3 in 10,000 neonates (2). The development of TOF 
is characterized by four main cardiac morphological 
defects: pulmonary stenosis, ventricular septal defect, 
right ventricular hypertrophy, and overriding aorta and 
is often accompanied by right ventricular outflow tract 
obstruction (3). TOF can be caused by both genetic and 
environmental factors (4). The genetic factors include 
single or multiple mutations (e.g., GATA4, JAG1, TBX5, 
etc.), chromosome number or structure abnormalities 
(e.g., 1p21.1 copy number variation, 22q11 microdeletion, 
15q11.2 microdeletion, etc.), and epigenetic modifications 
based on gene methylation (e.g., methylation of LINE1, 
NKX2-5, ZFPM2, etc.) (5-9). The environmental factors 
include physical factors (such as ionizing radiation and noise 
pollution), chemical factors (such as long-term exposure to 
organic solvents, cocaine, etc.), biological factors (such as 
viral infection in early pregnancy), and psychosocial factors 
(such as stress and anxiety of pregnant women) (10,11). 
Besides, maternal diabetes may also be an important factor 
in inducing TOF. However, so far, the specific pathogenesis 
of TOF has not been fully clarified.

Systemic chronic inflammation and immune activation 
are closely associated with the progression and development 
of various cardiovascular diseases (12).  CHD is a 

cardiovascular malformation resulting from abnormal 
cardiovascular development during the fetal period. A range 
of hemodynamic factors can trigger the immune system 
in patients with severe CHD. This activation can result 
in cardiac damage, hypoxia, edema, and hypoperfusion. 
Subsequently, these conditions can lead to the development 
of chronic inflammation as well as complications associated 
with CHD. Conversely, systemic inflammation with a 
remote injury can induce a local myocarditis response 
mediated by cardiac macrophages (13). Previous study has 
shown that in cyanotic children with CHD, myocarditis 
triggers the activation of inflammation-related pathways, 
such as IL-6-JAK-STAT and NF-κB pathways and the 
increase of IL-6, C-myc, and SOCS3 expression levels (14). 
Pro-inflammatory cytokines (TNF-α, IL-1-β, IL-6, IL-10)  
are synthesized in the myocardium of TOF patients, 
associated with the activation of NF-κB and p38-MAPK 
pathways (15). Therefore, inflammation-related genes may 
play an important role in the development of TOF, but its 
specific inflammation-related biomarkers and mechanisms 
of action still need to be further explored.

In this study, based on the Gene Expression Omnibus 
(GEO) database, a comprehensive bioinformatics analysis 
approach was used to identified inflammation-related genes 
in TOF. Moreover, a lncRNA-miRNA-mRNA regulatory 
network was established. The differences in the abundance 
of immune cell infiltration between TOF and controls 
were analyzed, and the correlation between biomarkers and 
infiltrating immune cells was also explored. This research 
contributes to a further understanding of TOF, providing a 
theoretical basis for the in-depth study of TOF. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tp.amegroups.com/article/
view/10.21037/tp-24-8/rc).

Methods

Data extraction

TOF-related datasets (GSE36761 and GSE35776) were 
downloaded from the GEO database (https://www.ncbi.
nlm.nih.gov/). The GSE36761 was applied as the training 
set, including 22 TOF samples and 8 control samples (16), 
and they were from Germany. The GSE35776 contained 
16 TOF samples and 8 control samples, which was used 
as a validation set and were from USA (17). In total, 200 
inflammation-related genes (IRGs) were downloaded from 
the ‘Hallnark-inflammatory response’ gene set from the 
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Molecular Signatures Database (MSigDB, http://www.
gsea-msigdb.org/gsea/msigdb/). The study was conducted 
in accordance with the Declaration of Helsinki (as revised  
in 2013). 

Identification and function enrichment analysis of 
differential expressed IRGs (DE-IRGs) between TOF and 
control groups

Firstly, the differentially expressed genes (DEGs) between 
TOF and control groups in the training set were identified 
via the “DESeq2” package (version 1.26.0) with adj P<0.05 
and |log2 fold change (FC)| >1.5 (18). The DE-IRGs 
were gained through taking the intersection of the DEGs 
between TOF and control groups and IRGs via Venn tool. 
Afterwards, the biological functional enrichment analysis 
of DE-IRGs was carried out via the “clusterProfiler” R 
package (version 4.0.2), based on Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (adj 
P<0.05 and count >1) (19). 

Screening of the biomarkers

Based on the DE-IRGs, we performed the least absolute 
shrinkage and selection operator (LASSO) and random 
forest (RF) to further identified the characteristic genes, 
respectively. Then, the biomarkers related to IRGs in TOF 
were identified by taking the intersection of characteristic 
genes screened by the two machine learning algorithms, 
which the diagnostic value for TOF was further assessed 
using receiver operating characteristic (ROC) curves in the 
GSE36761 and GSE35776. Additionally, the nomogram 
containing the biomarkers was established via lrm function 
of “RMS” R package (version 6.2-0) to predict TOF patient 
survival. The corresponding calibration curves were plotted 
to assess the reliability of the nomogram. 

Immune analysis

To explore the relationship between biomarkers and 
immune microenvironment. The single sample gene set 
enrichment analysis (ssGSEA) algorithm was utilized to 
assess the infiltrating abundance of 28 immune cells in TOF 
and control groups (20). The differences between TOF 
and control groups were compared by Wilcox. test. The 
relevance between biomarkers and differential immune cells 
was evaluated via Spearman algorithm.

Gene set enrichment analysis (GSEA) of the biomarkers

To explore enrichment pathways of the biomarkers in 
TOF, we performed GSEA via “ClusterProfiler” R package 
(version 4.0.2) (adj P<0.05) (19). The correlation between 
the biomarkers and all genes of all samples (TOF samples 
and control samples) was calculated via Pearson correlation 
analysis, and ranked according to the correlation. 

Construction of competing endogenous RNA (ceRNA) 
network

To better understand the mechanisms for the biomarkers in 
TOF, we created the ceRNA network. The ceRNAs are a 
class of RNA molecules that can competitively regulate each 
other’s expression by sharing miRNA regulatory elements. 
The miRNAs regulating the biomarkers were predicted via 
miRWalk database (http://mirwalk.umm.uni-heidelberg.de/) 
and starbase (https://starbase.sysu.edu.cn/). The predicted 
miRNAs of the two databases were intersected to obtain 
the final miRNAs. The mirnet database (https://www.
mirnet.ca/miRNet/home.xhtml) and starbase database were 
utilized to predict the lncRNAs with regulatory interactions 
with miRNAs. The lncRNAs finally were got via taking the 
intersection of predicted lncRNAs of the two databases. 
Finally, the Cytoscape software (version 3.8.2) was utilized 
to visualize the lncRNA-miRNA-mRNA network (21).

Construction of transcription factor (TF)-mRNA network 

TFs play a crucial role in organisms as another substance 
that can regulate gene expression. TFs control chromatin 
and transcription by recognising specific DNA sequences 
to form a complex system that directs the expression of 
genomic. We created a TF-mRNA network to better 
understand the mechanism underlying the biomarkers in 
TOF. The TFs of the biomarkers were predicted through 
NetworkAnalyst (http://www.networkanalyst.ca/faces/
home.xhtml). The filter conditions were intensity signal 
<500 and score <1. 

Single nucleotide polymorphism (SNP) analysis

The miRNASNP database (bioinfo.life.hust.edu.cn/
miRNASNP/#!) was adopted to predicted the SNPs in 
the seed regions of the miRNAs, and the SNP locations in 
the seed region of the miRNAs affected biomarkers were 
screened (22). Afterwards, the miRNA-SNP-biomarker 
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network was visualized via Cytoscape software (version 
3.8.2) (21).

Drug prediction of the biomarkers

Each biomarker was used as the key word to search drugs 
interacting with biomarkers in the Genecards database 
(http://www.genecards.org). Then, Cytoscape software 
(version 3.8.2) was utilized to visualize the biomarker-drug 
network.

Expression analysis of the biomarkers 

To further demonstrate the responsibility of our results, 
the expression levels of the biomarkers between TOF and 
control groups were compared in the GSE36761 and the 
GSE35776 via Wilcox test (P<0.05).

Statistical analysis

Statistical analysis was carried out through R software 
(version 4.1.1, https://www.r-project.org/). Differences 
between groups were analyzed via the Wilcox test. P<0.05 
represented a significant difference.

Results

Acquisition and enrichment analysis of DE-IRGs 

There were 971 DEGs between TOF and control groups, 
containing 358 up-regulated genes and 613 down-regulated 
genes (Figure 1A,1B). The DEGs were significantly enriched 
to produce 428 GO entries [321 biological progress (BP), 
38 cellular component (CC), 69 molecular function (MF)] 
and 11 KEGG pathways, among which the signaling 
pathways related to inflammatory included complement 
and coagulation cascades, neuroactive ligand-receptor 
interaction, staphylococcus aureus infection, etc. (table 
available at https://cdn.amegroups.cn/static/public/tp-24-
8-1.xlsx, Tables S1,S2). Then, 29 DE-IRGs were obtained, 
including 5 up-regulated genes (F3, NMUR1, CCL17, 
ICAM4, and RGS1) and 24 down-regulated genes (AQP9, 
CCL2, CCR7, CD14, CSF3R, CXCL6, ADGRE1, FFAR2, 
FPR1, HAS2, IL10, IL15RA, LIF, MARCO, MEFV, OSMR, 
PROK2, PTGER2, SELE, SERPINE1, SLAMF1, SLC7A1, 
SLC7A2, and TIMP1) (Figure 1C-1E). Subsequently, the 
DE-IRGs were significantly enriched 225 GO entries 
(table available at https://cdn.amegroups.cn/static/public/

tp-24-8-2.xlsx), including leukocyte migration, cell 
chemotaxis, leukocyte chemotaxis, and so on (Figure 1F).  
Meanwhile, a total of 13 KEGG signaling pathways were 
obtained (Table S3), including iral protein interaction with 
cytokine and cytokine receptor, cytokine-cytokine receptor 
interaction, JAK-STAT signaling pathway, etc. (Figure 1G).

Acquisition of the biomarkers

In the LASSO algorithm, five characteristic genes were 
obtained, namely MARCO, CXCL6, F3, SLC7A2, and 
SLC7A1 (Figure 2A). For the RF algorithm, the accuracy of 
the model was optimal when the number of characteristic 
genes was 8 (Figure 2B). Therefore, we obtained eight 
characteristic genes through RF algorithm, namely 
CXCL6, SLC7A1, F3, MARCO, IL15RA, SLC7A2, FRP1, 
and CD14 (Figure 2C). Subsequently, five biomarkers 
were gained, namely MARCO, CXCL6, F3, SLC7A2, 
and SLC7A1 (Figure 2D). The area under curve (AUC) 
values of diagnostic model based on the training set and 
validation set were 1 and 0.97, respectively (Figure 2E,2F). 
These results suggested that the diagnostic model had good 
efficacy for TOF. Additionally, the nomogram containing 
the five biomarkers was generated to predict the probability 
of TOF disease occurrence (Figure 2G). The corresponding 
calibration curves suggested that the predicted performance 
for nomogram was close to the ideal model, indicating that 
the nomogram had wonderful predictive accuracy for the 
TOF (Figure 2H). 

Immune analysis between TOF and control groups

The immune scores of 28 immune cells in TOF and control 
groups were demonstrated via the heatmap (Figure 3A). 
There were 18 immune cells with a significantly different 
level between TOF and control groups, such as activated 
B cells, neutrophil, type1 T helper cell, etc. (Figure 3B). 
The result of correlation analysis suggested that CXCL6 
was significantly positively correlated with all differential 
immune cells (Figure 3C). The MARCO, SLC7A2, and 
SLC7A1 were markedly positively correlated with most 
differential immune cells, such as activated dendritic cells, 
central memory CD4 T cell, type1 T helper cell, etc., 
while F3 was significantly negatively correlated with most 
differential immune cells, such as activated dendritic cells, 
central memory CD4 T cell, type1 T helper cell, etc.  
(Figure 3C).
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Figure 1 Identification and potential biological significances of DE-IRGs between TOF and control groups. (A) Volcano plot and (B) 
Heatmap of 971 DEGs between TOF and control groups in GSE36761. The screening criteria are set to adj P<0.05 and |log2FC| >1.5. (C) 
Venn diagrams for 29 DE-IRGs in TOF. (D) Volcano plot and (E) Heatmap for the expressions of 29 DE-IRGs in GSE36761. (F) Network 
for the DE-IRGs and targeted GO enrichment terms. (G) The most enriched KEGG terms of 29 DE-IRGs (P value <0.05, count >1). FC, 
fold change; FDR, false discovery rate; TOF, tetralogy of Fallot; DEGs, differentially expressed genes; DE-IRGs, differential expressed 
inflammation related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 2 Five biomarkers was selected and construction of the nomogram in TOF. (A) Cross-validation for tuning parameter selection in 
the LASSO model and five characteristic genes were identified. (B) Cross-validation for tuning parameter selection in the RF model. (C) RF 
model was conducted to screen eight characteristic genes based on the importance ranks of features. (D) Venn diagrams for five biomarkers 
in TOF. (E) ROC curves for predictive performance of five biomarkers in GSE36761. (F) ROC curves for predictive performance of five 
biomarkers in the GSE35776 cohorts. (G) Nomogram was constructed based on five biomarkers. (H) Calibration curve of nomogram. TOF, 
tetralogy of Fallot; RF, random forest; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve; ROC, receiver 
operating characteristic.
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Figure 3 Immune correlation analysis of five biomarkers in TOF. (A) Heatmap of 28 immune cells proportions in the TOF and control 
samples of GSE36761. (B) Violin plot for differences in 28 immune cells proportions in the TOF and control samples (Wilcoxon test). (C) 
Correlation heatmap of biomarkers and significantly differential immune cells in TOF. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; 
ns, no significance. TOF, tetralogy of Fallot; MDSC, myeloid-derived suppressor cell. 

Enrichment analysis of the biomarkers

To further understand the impact of the biomarkers on TOF, 
we performed GSEA enrichment analysis. The top 10 GO 
items and KEGG pathways enriched were demonstrated. Of 
the GO results, MARCO, CXCL6, SLC7A1, and SLC7A2 
were negatively related to RNA splicing, via transesterification 
reactions, mRNA splicing, via spliceosome, and RNA splicing, 
via transesterification reactions with bulged adenosine as 
nucleophile (Figure 4A-4D). And these genes were positively 
related to response to molecule of bacterial origin, 
activation of immune response, and adaptive immune 

response (Figure 4A-4D). However, the correlation of F3 
with these pathways was the opposite (Figure 4E).

Of the KEGG results, MARCO, CXCL6, SLC7A1, 
and SLC7A2 were positively relevant to pathogenic 
Escherichia coli infection and tuberculosis (Figure 5A-5D), 
while the correlation of F3 with two pathways was the 
opposite (Figure 5E). MARCO, CXCL6, F3, and SLC7A1 
were related to phagosome, complement and coagulation 
cascades, osteoclast differentiation, herpes simplex virus 
1 infection, and salmonella infection (Figure 5A-5C,5E). 
Additionally,  MARCO, CXCL6, F3, and SLC7A2 
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Figure 4 GSEA of five biomarkers (top 10 GO items). (A) MARCO, (B) CXCL6, (C) SLC7A1, (D) SLC7A2, (E) F3. GSEA, gene set 
enrichment analysis; GO, Gene Ontology.
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Figure 5 GSEA results of five biomarkers (top 10 KEGG pathways). (A) MARCO, (B) CXCL6, (C) SLC7A1, (D) SLC7A2, (E) F3. GSEA, 
gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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were related to cytokine-cytokine receptor interaction  
(Figure 5A,5B,5D,5E).

The lncRNA-miRNA-mRNA networks

Based on the miRWalk and starbase databases, a total of  
5 miRNAs were predicted at the same time (Figure 6A). 
Based on the mirnet and starbase databases, 622 and 228 
lncRNAs were predicted, respectively. Afterwards, the 
lncRNAs predicted via the two databases were intersected 
to gain 228 lncRNAs (Figure 6B). Finally, the lncRNA-
miRNA-mRNA network was created, containing 4 mRNAs, 
4 miRNAs, 228 lncRNAs, and 300 lncRNA-miRNA-
mRNA pairs (Figure 6C). For instance, the regulatory 
relationships included ERICH3-AS1-hsa-miR-381-3p-F3, 
NPPA-AS1-hsa-miR-520d-3p-CXCL6, LINC01128-hsa-
miR-214-3p-F3, LINC01128-hsa-miR-195-5p-SLC7A2, 
TNFRSF14-AS1-hsa-miR-195-5p-SLC7A2 etc.

TFs-mRNA network

In this study, 10 TFs related to TFs were predicted, such 
as SMC3, NR2F2, MXD3, etc. (Figure 7). Besides, 9 TFs 
were predicted for SLC7A1, such as CHD1, EED, MXD4, 
etc. (Figure 7). The TF ARID4B could regulate F3 and 
SLC7A1. SP3 was a common TF for both SLC7A2 and 
CXCL6 (Figure 7). Finally, the TF-mRNA network was 
established, containing 4 mRNAs, 31 TFs, and 33 edges, 
for instance, ELF1-CXCL6, CBX8-SLC7A2, ZNF423-
SLC7A1, ZNF71-F3 (Figure 7).

The miRNA-SNP-mRNA network

Potential miRNAs targeting biomarkers were analyzed via 
using miRNASNP to determine how SNP variants in the 
miRNA seed region affect the binding of the 3' untranslated 
regions (UTR) region of biomarker genes. Figure 8 shows 
the miRNA-SNP-mRNA network. A total of nine SNP 
locations were identified, which might play an important 
role in binding to biomarkers (Table 1).

Drug prediction

We constructed a biomarker-drug interaction network by 
the GeneCards. The results showed that a total of 3 drugs 
were predicted for CXCL6, namely serine, calcium, and 
oxygen (Figure 9). And 8 drugs were predicted for F3, such 

as simvastatin, tisotumab vedotin, dabigatran, etc. The 
silicon dioxide and titanium dioxide were the target drugs 
for MARCO. We found that the ornithine, lysine, arginine, 
and nitric oxide were the common target drugs for SLC7A1 
and SLC7A2. 

The expression levels of the biomarkers

We further analyzed the expression of the biomarkers 
between TOF and control groups in GSE36761 and 
GSE35776 via Wilcox test (Figure 10A,10B). The results 
demonstrated that the expression of all biomarkers between 
TOF and control groups was markedly different in 
GSE36761 (Figure 10A). In the GSE35776, the expression 
of CXCL6, MARCO, and SLC7A1 between TOF and 
control groups was significantly different (Figure 10B). 
Therefore, in both datasets, the expression trends of 
CXCL6, MARCO, SLC7A1, and SLC7A2 were the same, 
with low expression in the TOF group. These results 
indicated that all biomarkers have good diagnostic value  
for TOF.

Discussion

To date, surgery has been the primary treatment option 
for TOF. However, there is an increasing trend of patients 
requiring subsequent surgeries (23). Therefore, it is 
important to explore effective biomarkers that can help 
explore better treatment options for TOF, which may 
ultimately provide additional treatment options for heart 
failure in TOF, thereby delaying re-intervention. However, 
this does not mean that initial repair is not required. 
Inflammation might be a factor that correlates heart failure 
in CHD with its complications. However, it has not yet 
received sufficient attention in clinical diagnosis or routine 
treatment.

With both LASSO and RF machine learning algorithms, 
five biomarkers associated with inflammation (CXCL6, F3, 
MARCO, SLC7A1, and SLC7A2) were obtained for TOF. 
CXCL6, also known as granulocyte chemotactic protein-2, 
is primarily expressed in the lungs, heart, liver, pancreas, 
brain, kidneys, and placenta, and initiates chemotaxis by 
binding to chemokine receptors C-X-C motif chemokine 
receptor 1 (CXCR1) and CXCR2 (24). Waehre et al. 
performed Affymetrix analysis of the right ventricle in mice 
with right ventricular pressure overload. The results showed 
upregulated expression of chemokines CXCL10, CXCL6, 
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CX3CL1, CCL5, CXCL16, and CCL2, while CXCL16, 
CX3CL1, and CCL5 regulated SLRP expression in cardiac 
fibroblasts and post-translational modifications, suggesting 
that inflammatory mechanisms are associated with the 
development of right ventricular dysfunction (25). Wang 
et al. showed that CXCL6 and Sirt3 were downstream 
of HIF-1α and that CXCL6 regulates Sirt3 expression 
through AKT/FOXO3a activation, which in turn regulates 

permeability, proliferation, and apoptosis in human 
brain microvascular endothelial cells (HBMEC) after 
ischemia-reperfusion injury (26). F3, as the gene encoding 
coagulation factor iii, is a cell surface glycoprotein. Patients 
infected with severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) showed elevated levels of F3 transcripts 
and raised circulating extracellular vesicles, which may 
contribute to disease-associated coagulation, thrombosis, 

Figure 6 Prediction of the miRNA and lncRNA targeting biomarker. Venn diagrams of the predicted (A) miRNAs and (B) lncRNAs 
common to miRWalk and starbase databases. (C) The ceRNA network targeting key genes. Red represents biomarker, green represents 
miRNA, blue represents lncRNA. ceRNA, competitive endogenous RNA. 
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Figure 8 The miRNA-SNP-mRNA network targeting biomarkers. Red represents biomarker, green represents miRNA, yellow represents 
SNP location. SNP, single nucleotide polymorphism. 
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and increased mortality (27). MARCO, a macrophage 
receptor with collagenous structure is found on the surface 
of mucosal plasma membranes. Its function involves the 
incorporation of various extracellular substances into 
cells through macro-pinocytosis and endocytic pathways 
(28). It is closely associated with the prognosis of several 
tumors, such as bladder cancer, breast cancer, and lung 
squamous cell carcinoma (29). The cationic amino acid 
transporter proteins SLC7A1 (CAT1) and SLC7A2 
(CAT2) are important arginine transporter proteins for 
T cells. They are members of the SLC7 family, which, 
together with members of the SLC1 family that are 

glutamate transporters, function in a variety of situations 
involving immune and inflammatory responses (such as 
viral infections, chronic intestinal inflammation, and tumor 
immunotherapy) by regulating astrocyte, macrophage, and 
T cell functions (30). In our study, we found for the first 
time that CXCL6, F3, MARCO, SLC7A1, and SLC7A2 
are associated with associated with TOF and may lay the 
foundation for studies on the mechanisms of heart failure  
in TOF.

GSEA enrichment analysis showed that biomarkers were 
enriched to immune-related pathways, such as ‘activation of 
immune response’, ‘adaptive immune response’, ‘cytokine-
cytokine receptor interaction’, etc. Chemokines can be 
categorized into four subfamilies, CXC, CC, XC, and 
CX3C, based on the arrangement of their cysteine residues 
near the amino terminus. The receptors corresponding 
to these chemokines are designated as CXCR, C-C 
motif chemokine receptor (CCR), XCR1, and CX3CR1, 
respectively. Sauce et al. showed that in pediatric patients 
with CHD, the level of serum CCL5 (RANTES) and 
macrophage migration inhibitory factor (MIF) were 
elevated, while the concentrations of angiogenic chemokine 
GROα, which is associated with impaired lung function, 
were decreased. Moreover, the plasma of adult patients with 
CHD exhibited higher levels of IL-1β, IL-8, and eotaxin, 
an eosinophilic protein of the CC chemokine subfamily (31). 
Wienecke et al. suggested that since CXCR4 or fractalkine 
and its receptor CX3CR1 regulate monocyte recruitment, 
platelet activation, and inflammation in cardiovascular 
disease, their study could be further developed in CHD 
regarding inflammation (12). However, overall, the current 
research in CHD regarding chemokines and their receptors 
is still not widely studied.

The current study showed that activated dendritic 
cells, immature dendritic cells, central memory CD4 T 
cells, central memory CD8 T cells, neutrophil, monocyte, 
natural killer T cells, mast cells, regulatory T cells (type 1),  
and bone marrow-derived suppressor cells (MDSCs) 
showed significant differences in the abundance of immune 
infiltration between TOF and controls. These differences 
also showed a significant correlation with biomarkers. 
Neutrophils are the first responders to the inflammatory 
signals released by cell and tissue injury, and the interaction 
between neutrophils and cardiomyocytes results in an 
elevated neutrophil-lymphocyte ratio (NLR) in patients with 
CHD before surgery (15,32-35). A study by Manuel et al.  
showed that for pediatric patients with CHD undergoing 

Table 1 The regulating miRNAs and SNPs of miRNAs

Target gene miRNA SNP

F3 hsa-miR-214-3p rs754055278

SLC7A1 hsa-miR-381-3p rs1242677465

F3 hsa-miR-381-3p rs1242677465

SLC7A1 hsa-miR-195-5p rs1230392050

SLC7A1 hsa-miR-195-5p rs1257736738

SLC7A1 hsa-miR-195-5p rs1483556117

SLC7A1 hsa-miR-195-5p rs1311315368

SLC7A2 hsa-miR-195-5p rs1230392050

SLC7A2 hsa-miR-195-5p rs1257736738

SLC7A2 hsa-miR-195-5p rs1483556117

SLC7A2 hsa-miR-195-5p rs1311315368

CXCL6 hsa-miR-520d-3p rs779020662

CXCL6 hsa-miR-520d-3p rs201279305

CXCL6 hsa-miR-520d-3p rs201279305

CXCL6 hsa-miR-520d-3p rs1487266658

SLC7A2 hsa-miR-520d-3p rs779020662

SLC7A2 hsa-miR-520d-3p rs201279305

SLC7A2 hsa-miR-520d-3p rs201279305

SLC7A2 hsa-miR-520d-3p rs1487266658

F3 hsa-miR-520d-3p rs779020662

F3 hsa-miR-520d-3p rs201279305

F3 hsa-miR-520d-3p rs201279305

F3 hsa-miR-520d-3p rs1487266658

SNPs, single nucleotide polymorphisms.
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Figure 9 The gene-drug network targeting biomarkers through Genecards database. Red represents biomarker, green represents drug.

extracorporeal circulation, patients with cyanotic CHD 
had higher preoperative NLR levels (36). For patients with 
TOF undergoing postoperative repair, higher preoperative 
NLR is associated with longer intensive care unit (ICU) 
and hospital stays (37). Human monocytes are divided into 
three subpopulations, CD14++CD16− (Mon1, classical), 
CD14+CD16+ (Mon2, intermediate), and CD14+CD16++ 
(Mon3, non-classical), among which Mon2 and Mon3 are 
considered closely associated with inflammation. Their 
levels were found to be elevated in adult patients with CHD, 
and they increase in response to escalating severity of heart 
failure (38). Hamada et al. showed that increased expression 
of mast cell chymotrypsin was associated with early 
pulmonary vascular disease in the lung tissue of patients 
with CHD. However, the exact biological mechanism is still 
unknown (39). There are fewer studies on TOF and CHD 
from an immunological perspective, and there is a need for 
further research to enhance our understanding in this area.

In addition, it was predicted that lncRNAs, miRNAs, and 
TFs have regulatory roles with biomarkers through online 

databases. Zhang et al. showed that FGD5-AS1 is a pivotal 
lncRNA in the TOF cardiac ceRNA network and might 
play a repressive role in cardiac development by regulating 
the transcription of genes associated with CHD (40). Liang 
et al. showed that reducing miRNA-940 expression affects 
the proliferation and migration of progenitor cells in the 
secondary heart field by targeting JARID2, leading to the 
development of TOF (41). Yu et al. showed that hsa-miR-16 
and hsa-miR-124 are key miRNAs for TOF and mainly 
regulate the expression of NT5DC1, ECHDC1, HSDL2, 
FCHO2, and ACAA2, which are involved in the rate of ATP 
conversion and fatty acid metabolism in mitochondria (42). 
However, to learn more about how the lncRNA-miRNA-
mRNA and TF-mRNA connection pairs with regulatory 
effects discovered in our work are regulated by one another, 
further research is required. Previous study has shown that 
miRNA-related SNPs may affect disease susceptibility 
and phenotype in an SNP genotype-dependent manner 
by altering the regulation of miRNAs (43). In the present 
study, a miRNA-SNP-mRNA network was established. The 
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Figure 10 Boxplots for the expression levels of five biomarkers in two TOF-related datasets. (A) GSE36761, (B) GSE35776. *, P<0.05; ***, 
P<0.001; ****, P<0.0001; ns, no significance. TOF, tetralogy of Fallot. 
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findings propose that nine SNPs could potentially function 
as intermediaries between miRNAs and mRNAs. However, 
the exact mechanisms through which they operate require a 
more comprehensive study. Moreover, potential drugs were 
identified using biomarkers as targets, but there are fewer 
studies on the correlation between the predicted drugs and 
TOF, and further in-depth studies are needed.

However, this study has several limitations. First, further 
experimental studies should be conducted to elaborate the 
molecular mechanism of TOF, focusing on inflammation. 
Second, more TOF samples need to be collected and 
studied to elaborate the role of biomarkers and their 
associated pathways in the mechanism of TOF. Additionally, 
the sample sizes in the database were small and information 
on the clinical status of subjects in these datasets was 

not provided. Moreover, there were also limitations 
bioinformatics tools. In LASSO analyses, multiple 
comparisons are required to control the false discovery rate 
when choosing appropriate regularisation parameter values 
to avoid false positive results due to too many variables. 
While in RF, for data with differently valued attributes, 
attributes with more value divisions will have a greater 
impact on RFs. And RFs have been shown to overfit some 
noisy classification or regression problems.

Conclusions

In summary, this research identified five inflammation-
related genes in TOF bases on bioinformatics techniques, 
which may help us to think about the potential adaptive 
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and maladaptive responses to TOF in patients and may 
provide a theoretical basis for the study of future prognostic 
indicators or treatment targets of TOF.
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