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Purpose: To develop generative adversarial networks (GANs) that synthesize realistic
anterior segment optical coherence tomography (AS-OCT) images and evaluate deep
learning (DL) models that are trained on real and synthetic datasets for detecting angle
closure.

Methods: The GAN architecture was adopted and trained on the dataset with AS-OCT
images collected from the Joint Shantou International Eye Center of Shantou University
and the Chinese University of Hong Kong, synthesizing open- and closed-angle AS-OCT
images. A visual Turing test with two glaucoma specialists was performed to assess the
image quality of real and synthetic images. DLmodels, trained on either real or synthetic
datasets, were developed. Using the clinicians’ grading of the AS-OCT images as the
reference standard, we compared the diagnostic performance of open-angle vs. closed-
angle detection of DL models and the AS-OCT parameter, defined as a trabecular-iris
space area 750 μm anterior to the scleral spur (TISA750), in a small independent valida-
tion dataset.

Results: The GAN training included 28,643 AS-OCT anterior chamber angle (ACA)
images. The real and synthetic datasets for DL model training have an equal distribu-
tion of open- and closed-angle images (all with 10,000 images each). The independent
validation dataset included 238 open-angle and 243 closed-angle AS-OCT ACA images.
The image quality of real versus synthetic AS-OCT images was similar, as assessed by
the two glaucoma specialists, except for the scleral spur visibility. For the independent
validation dataset, both DL models achieved higher areas under the curve compared
with TISA750. Two DL models had areas under the curve of 0.97 (95% confidence inter-
val, 0.96–0.99) and 0.94 (95% confidence interval, 0.92–0.96).

Conclusions:TheGANsyntheticAS-OCT images appeared tobeofgoodquality, accord-
ing to the glaucoma specialists. The DLmodels, trained on all-synthetic AS-OCT images,
can achieve high diagnostic performance.

Translational Relevance: The GANs can generate realistic AS-OCT images, which can
also be used to train DL models.
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Introduction

Primary angle-closure glaucoma (PACG) is a major
cause of visual impairment in Asia, with a preva-
lence of between 1.0% and 1.4% in Asians 40 years
and older.1 In China, PACG may blind ten times
more people than primary open-angle glaucoma.2
Moreover, it is estimated that the prevalence of PACG
will reach 32.04 million in 2040.3 Anterior segment
optical coherence tomography (AS-OCT), which uses
low-coherence interferometry laser to obtain a cross-
sectional image and provide objective assessment,4
is one of the most common imaging modalities for
anterior chamber angle (ACA) assessment in current
clinical practice. With advances in deep learning (DL),
it is now possible to automatically detect angle closure
directly from AS-OCT images. Recently, Xu et al.5
demonstrated highly accurate DL classifiers for detect-
ing gonioscopic angle closure with an area under
the receiver operating characteristic curve (AUC) of
0.933 from a population-based study. However, gener-
alizable DL models require large amounts of diverse
and well-labeled data generated by experts, which is
time consuming and suffers from inherent inter-rater
variability.6 Training on 8270 ACA images using the
Visante AS-OCT (Carl ZeissMeditec, Jena, Germany),
Fu et al.7 reported a DL system that achieved an
AUC of 0.96 using iris-trabecular contact (ITC) as the
reference standard. In another study, the same author
also developed DL algorithms to detect ITC using two
different AS-OCTmodalities (Visante and Cirrus; Carl
Zeiss Meditec) with nearly 10,000 ACA images.

Generative adversarial networks (GANs),8 which
are inspired by game theory for training a model in
an adversarial process, offer a novel method to gener-
ate new medical images. Such an approach has several
advantages. First, it helps overcome the privacy issues
related to biomedical image data, which is a kind
of personally identifiable information as defined by
the National Institute of Standard and Technology.9
Second, several studies have already demonstrated that
generatedmedical images can improve the performance
of DL algorithms for medical image classification.10–12

In a previous study, we proposed a GAN approach
to generate realistic OCT images to serve as training
datasets for DL algorithms and education images for
retinal specialists.13 We showed that DL algorithms
trained with only generated images achieved perfor-
mance nearly comparable to the results obtained from
training on real images. In the present work, we first
demonstrate that a similar technique can also gener-
ate realistic AS-OCT images.We further assess whether
GAN-generated AS-OCT images can satisfactorily

serve as training datasets to develop DL algorithms for
the detection of angle closure.

Methods

This study was conducted according to the tenets
of the Declaration of Helsinki and was approved by
the institutional review board of the Joint Shantou
International Eye Center of Shantou University and
the Chinese University of Hong Kong (JSIEC) (identi-
fier, 2018RY029-E01). Written informed consent was
obtained from all the subjects.

Datasets

Chinese subjects, including patients with angle
closure and normal subjects with open angle, were
recruited from JSIEC between September 2014 and
May 2016. All subjects were asked about their
medical and ophthalmic history and underwent a
standardized ophthalmic examination including best-
corrected visual acuity, refraction, slit-lamp biomi-
croscopy, intraocular pressure (IOP) measurement by
Goldmann applanation tonometry, and fundus exami-
nation, as well as biometry (Zeiss IOLMaster; Carl
Zeiss Meditec). Gonioscopy was performed in a dark
room by a glaucoma specialist (CZ) using a Goldmann
two-mirror lens (Haag-Streit AG, Bern, Switzerland)
at 16× magnification. The modified Shaffer grading
system (grade 0 = no structures visible; grade 1 =
Schwalbe’s line visible; grade 2 = anterior trabecu-
lar meshwork visible; grade 3 = posterior trabecular
meshwork or scleral spur visible; grade 4= ciliary body
visible) was used to evaluate the angle on gonioscopy.14
To establish the presence and degree of peripheral
anterior synechiae, indentation gonioscopy was carried
out using a Sussman four-mirror lens (Ocular Instru-
ments, Inc., Bellevue, WA) under dark conditions.
During gonioscopy, the slit light was reduced to 1
mm to avoid falling on the pupil. The gonioscopy lens
could be tilted to exam the angle over the convexity
of the iris. Based on the definition from the Ameri-
can Academy of Ophthalmology Preferred Practice
Patterns,15 angle closure was classified into one of the
following subtypes: (1) Primary angle-closure suspect
is defined in eyes that have two quadrants or more
of ITC without elevated IOP or optic nerve damage.
(2) Primary angle closure is defined in eyes that
meet primary angle-closure suspect criteria and also
have the presence of peripheral anterior synechiae
and/or elevated IOP (>21 mm Hg); primary angle-
closure glaucoma (PACG) is defined as primary angle
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closure with glaucomatous optic neuropathy. (3) Acute
primary-angle closure (APAC) is defined as present-
ing two or more symptoms (ocular or periocular pain;
nausea or vomiting, or both; and an antecedent history
of intermittent blurring of vision), IOP > 28 mm Hg,
and closed angles in four quadrants found on gonio-
scopic examination. Inclusion criteria for the normal
open-angle group were (1) age > 20 years old; (2) best-
corrected visual acuity of 0.3 logMAR or better with
spherical refraction between –6.0 and 6.0 diopters; (3)
IOP ≤ 21 mm Hg; (4) no history of glaucoma, retinal
disease, diabetic mellitus, or significant senile cataract
that could affect the results of AS-OCT examinations;
or (5) normal visual field, which was defined as a mean
deviation and pattern standard deviation within 95%
confidence intervals (CIs) and a glaucoma hemifield
test result within normal limits. Exclusion criteria
included the following: (1) eyes with corneal abnormal-
ities, such as edema, pterygium, and other degenerative
changes; (2) eyes with previous laser peripheral irido-
tomy or iridoplasty; or (3) eyes with previous intraocu-
lar surgery, such as cataract surgery, retinal surgery, or
trabeculectomy.

ACA images were obtained with Casia SS-1000
AS-OCT (Tomey Corporation, Nagoya, Japan) and
collected for GAN training. The details of the Casia
AS-OCT modality have been described previously. In
brief, Casia AS-OCT has a swept laser source and a
scan speed of 30,000 A-scans per second. For image
acquisition, a seated subject was directed to an internal
fixation under dark conditions, and upper and lower
eyelids were gently retracted for imaging of superior
and inferior quadrants. A total of 128 two-dimensional
cross-sectional AS-OCT images were acquired per eye
using the Casia SS-1000 AS-OCT. All AS-OCT images
were evaluated both qualitatively and quantitatively.
For the clinicians’ qualitative evaluation, a closed angle
in AS-OCT images was defined as at least substan-
tial ITC between the peripheral iris and at least one-
third of the trabecular meshwork anterior to the scleral
spur.7 Interobserver variability among graders was
good, with an unweighted k value of more than 0.75
(50 AS-OCT images with open angle and 50 AS-
OCT images with closed angle randomly selected from
the training dataset). Customized software (Anterior
Segment Analysis Program) was used to measure
TISA750, which is an AS-OCT biometric parameter16
and defined as a trabecular-iris space area at 750 um
anterior to the scleral spur.

We also collected an independent validation dataset,
which included 238 open-angle and 243 angle-closure
AS-OCT ACA images from the same center between
March 2019 and January 2020 to evaluate the discrim-
inatory ability of the DL algorithm and AS-OCT

parameters. The inclusion and exclusion criteria were
identical for both the training and external valida-
tion datasets, except that only one horizontal AS-OCT
image of each eligible subject was considered for the
study in the testing dataset.

Development of GAN Synthetic AS-OCT
Images

We have reported the details regarding GAN
synthetic OCT imaging in our previous study. Briefly,
a progressively grown generative adversarial network
(PGGAN) is implemented by incrementally increas-
ing the size of the synthetic images (e.g., 8 × 8, 16 ×
16) until the desired output size (in this study, 256 ×
256 pixels) is met (see Fig. 2). A PGGAN is an exten-
sion to a GAN wherein a generator network (G) is
trained to initially synthesize low-resolution synthetic
images (4 × 4 pixels), which are then fed to a discrim-
inator network (D) that distinguishes these synthetic
images from real images. With adversarial training
between the G and the D, a GAN can generate realis-
tic synthetic images at a high resolution. Two separate
PGGANs (open-angle GAN and closed-angle GAN)
were developed to generate two separate synthetic
AS-OCT datasets: one for open-angle AS-OCT ACA
images and one for closed-angle AS-OCTACA images.
For implementation of the PGGAN architectures, we
followed the scheme suggested by Karras et al.17 and
added an upsampling layer and a pair of convolu-
tional layers to both the D and G networks with each
phase. An upsampling layer involves two convolutional
layers with 3 × 3 and 4 × 4 filters and a Leaky
ReLU activation function with a slope of 0.2. Average
pooling is used for downsampling. The PGGANmodel
was implemented with the TensorFlow 2.1.0 frame-
work and Keras 2.2.4 API. All training processes were
performed on an NVIDIA (Santa Clara, CA) GTX
1080 Ti 12-GB GPU with an Intel (Santa Clara, CA)
Core i7-2700K processor, 4.6-GHz central processing
unit, and 128 GB RAM.

Evaluation of GAN Synthetic AS-OCT Images

We performed a visual Turing test to qualita-
tively evaluate the image quality of synthetic AS-OCT
ACA images.18,19 Two glaucoma specialists manually
assessed the image quality of a subset of 100 AS-OCT
ACA images with 256 × 256 square pixels, comprised
of 50 real images and 50 synthetic images. Neither
glaucoma specialist was told that the subset images
were composed of a mixture of real and synthetic
images. Image quality was evaluated as follows: (1)
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good visibility of the scleral spurs (defined as the point
where there was a change in curvature of the inner
surface of the angle wall),20 (2) the presence of conti-
nuity in the anterior segment structures, and (3) the
absence of motion artifacts.21 During the Turing test,
two glaucoma specialists (both had more than 10 years
of clinical experience) were blinded to image informa-
tion (real or synthetic image) and independently graded
the image quality. To visualize the high-dimensional
properties between synthetic and real AS-OCT ACA
images, we qualitatively compared them with images
generated by the PGGAN and the real images by using
t-distributed stochastic neighbor embedding (t-SNE)
plots.22 t-SNE plots take high-dimensional datasets
and reduce them to low-dimensional graphs that retain
most of the original information.

We also assessed whether synthetic OCT images
can be used as a training dataset for DL models.
A similar method had been reported by us previ-
ously.13 Briefly, we modified a Google (Menlo Park,
CA) Inception V3 architecture with weights pretrained
on ImageNet using the transfer learning technique.23,24
DL_Model_R trained exclusively with real images (n
= 20,000, randomly selected from the GAN train-
ing dataset with all 28,643 AS-OCT ACA images),
and DL_Model_S trained only with synthetic images
(n = 20,000). The classification performance was
then compared among DL_Model_R, DL_Model_S,
and AS-OCT biometric parameters (TISA750) in the
independent validation dataset.

Statistics

The statistical analysis was done in terms of the
receiver operating characteristic curve, accuracy, sensi-
tivity, and specificity with two-sided 95%CIs. TheAUC
was used to assess the performance of the DL models
and TISA750 with regard to detecting angle closure in
AS-OCT images. Sensitivity and specificity were calcu-
lated for the optimum cutoff values obtained from
receiver operating characteristic curves. We calculated
accuracy, sensitivity, and specificity using the following
formulas:

Accuracy = TP + TN
TP + TN + FN + FP

(1)

Specifficity = TN
TN + FP

(2)

Sensitivity = TP
TP + FN

(3)

TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively. The χ2

test was used to compare categorical data.

Results

We evaluated 30,782 AS-OCT ACA images of 1439
eyes from 894 subjects who were previously enrolled
for the AS-OCT imaging at JSIEC. We excluded 2139
ACA images (92 eyes from 57 subjects) due to poor-
quality images (eyelid artifact, corrupt images, or
motion artifact) (Fig. 1). To eliminate potential sources
of bias, we further retrained the training dataset with
equal distributions of open- and closed-angle images.
The final AS-OCT training dataset for developing the
PGGAN model consisted of 20,000 AS-OCT ACA
images (1347 eyes from 837 subjects with 335 closed-
angle eyes and 503 open-angle eyes with gonioscopy
diagnosed) (Table 1). The subjects’ mean age was 63.01
± 8.46 years, and 367 subjects (43.8%) were male. The
average of TISA750 was significantly smaller in the
closed-angle group than in the open-angle group in all
datasets (all with P < .001).

Figure 2 illustrates the training progress of the
schematic model of a PGGAN. The PGGAN starts at
low resolution (4 × 4-pixel images), doubling to 8 × 8,
16× 16, and so on until the desired output resolution is
reached. A t-SNE visualization of the low-dimensional
features associated with real and synthetic AS-OCT
ACA images is shown in Figure 3. From t-SNE analy-
sis, it is possible to see that the low-dimensional features
of the synthetic images generated by the GAN archi-
tecture are different from the real images. The results
of real and synthetic AS-OCT ACA image quality
being graded by the two glaucoma specialists are shown
in Table 2. Both real and synthetic AS-OCT ACA
images have the approximately same quality based on
the input of the two glaucoma specialists, except for
scleral spur visibility. For both glaucoma specialists, the
frequency of detectable scleral spurs in real AS-OCT
images was higher than that in the synthetic AS-OCT
images (all with P < 0.01).

Figure 4 shows the AUCs of two DL models and
TISA750 testing in the validation dataset using the
clinicians’ qualitative evaluation as reference. Both DL
models achieved higher AUCs compared to TISA750.
TISA750 had an AUC of 0.88 (95% CI, 0.81–0.91)
with a cut-off value of 0.019 mm2. DL_Model_R
(trained on real AS-OCT ACA images) obtained
the best performance, with an AUC of 0.97 (95%
CI, 0.96–0.99). Although the AUC of DL_Model_S
(trained on synthetic AS-OCT ACA images) indicated
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Figure 1. Schematic of AS-OCT anterior chamber angle image grading and using synthetic AS-OCT images in closed-angle classification.

Table 1. Baseline Clinical and AS-OCT Biometric Characteristics of the JSIEC Development and Local Clinical
Validation Datasets

Characteristics Development Dataset Local Clinical Validation Dataset

Participants, n 837 481
ACA images (open- vs. closed-angle), n 13,000 vs. 13,000 238 vs. 243
Age (y), mean ± SD 63.01 ± 8.46 65.71 ± 9.03
Male, % 43.80 36.38
Right eye, % 48.50 54.83

Figure 2. Schematic for generating synthetic AS-OCT images by PGGANs. The G andDnetworks are simultaneously trained. Using random
noise as input, the G networks create synthetic AS-OCT ACA images. The real images are then fed to the D networks, which output a proba-
bility of being real or fake. The PGGAN architecture trains a single GAN in a stepwise fashion from 4 to 256 square pixels, respectively.
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Table 2. AS-OCT ACT Image Quality (Synthetic vs. Real) As Graded by Two Glaucoma Specialists

Synthetic, n (%) Real, n (%) P

Glaucoma specialist 1
Visibility of scleral spurs 32 (64) 45 (90) 0.005
Continuity in anterior segment structures 48 (96) 47 (94) 0.646
Absence of motion artifacts 46 (92) 49 (98) 0.169

Glaucoma specialist 2
Visibility of scleral spurs 35 (70) 47 (94) 0.002
Continuity in anterior segment structures 45 (90) 49 (98) 0.092
Absence of motion artifacts 50 (100) 49 (98) 0.315

Figure 3. A t-SNE visualization of the features associated with
real and synthetic AS-OCT ACA images. Red and blue dots indicate
synthetic and real features, respectively.

moderately lower performance compared with that of
DL_Model_R, the performance was still considered to
be good, with an AUC of 0.94 (95% CI, 0.92–0.96).

Discussion

In the current study, we have introduced a PGGAN
approach for generating high-resolution AS-OCT
ACA images; we evaluated image quality graded by
glaucoma specialists and trained DL models to detect
angle closure using synthetic AS-OCT ACA images.
Our results demonstrated that, although glaucoma
specialists can identify synthetic AS-OCTACA images
due to lower visibility of the scleral spurs and anterior
segment structures, excellent performance can be
achieved to detect angle closure in AS-OCT ACA
images by DL models when we used synthetic images
as data augmentation techniques.

Figure 4. The average AUCs of two DL models and AS-OCT
parameter (TISA750) testing in the independent validation dataset.
DL_Model_R is a deep learning model trained on real AS-OCT
ACA images, and DL_Model_S is a deep learning model trained on
synthetic AS-OCT ACA images.

Deep learning, such as deep neural networks, has
gained rapid success in medical imaging.25–27 GANs
are a type of deep neural network aimed at generating
new images.28 The application of GANs includes data
augmentation, image reconstruction, image segmen-
tation, and image transformation between different
modalities.29–31 Using PGGANs, Beers et al.32 demon-
strated that this approach could produce realistic
medical images in various domains, including fundus
photographs with retinopathy of prematurity. Several
other studies have also showed that it is promis-
ing to generate synthetic medical images for data
augmentation to improve classification performance
with limited data33–35 in different medical imaging
domains, such as neuronal imaging, stain-free cancer
cell imaging, or CT imaging of liver lesions. In our
previous study, we reported that GANs were able to
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synthesize realistic high-resolution OCT images and
achieve a high AUC of 0.98 for screening urgent refer-
able retinal diseases, such as choroidal neovasculariza-
tion or diabetic macular edema.13 In the current study,
our DL model that trained on synthetic OCT images
achieved a similar AUC of 0.94, which was comparable
with that of DLmodels trained in all-real OCT images,
such as those reported by Xu et al.5 (4036 AS-OCT
images) and Fu et al.7 (8270 AS-OCT ACA images).
As different reference standards were used, our study
cannot be directly compared to those of Xu et al. and
Fu et al. It should be noted that a small validation
dataset makes it challenging to interpret a small differ-
ence in model performance, and the distribution of
open- and closed-angle images was not the same in the
two training datasets, which could also introduce train-
ing bias. But, our results show the potential application
of this technique to image augmentation for DLmodel
training.

How to evaluate GAN synthetic images is still
controversial. Unlike other DL models trained with
a loss function until convergence, both the G and D
models are trained together to maintain an equilib-
rium in GANs. As such, there is no objective way to
assess the relative or absolute quality of the model
from loss alone.36 Schlegl et al.19 proposed a visual
Turing test to quantify the quality of the GANs gener-
ated retinal images by two clinical retina experts. Based
on a GAN model similar to that described in the
current study, Burlina et al.18 suggested that GAN-
synthesized macular images appeared to be realistic
to retinal specialists. In the present study, we further
evaluated synthetic image quality with stricter crite-
ria proposed by Lee et al.21 Our results demonstrate
that synthetic AS-OCT ACA image quality is compa-
rable to the real image except for lower visibility of the
scleral spurs. Scleral spur location represents a critical
anatomical landmark for imaging the anterior chamber
angle, as it is a landmark for quantitative measure-
ments of the ACA. Using the Visante AS-OCT, Sakata
et al.20 reported that scleral spur location could be
determined in 72% of the AS-OCT images. Our results
are encouraging in that GANs still generated high-
quality AS-OCT images, although the frequency of
detectable scleral spurs in realAS-OCT images is higher
than that in synthetic AS-OCT images (90% and 94%
vs. 64% and 70%, respectively; all P < 0.01). There
are two possible explanations for the lower visibil-
ity of sclera spurs in synthetic images. First, synthe-
sized AS-OCT ACA images have a lower resolution
than Casia AS-OCT images. Second, a GAN itself can
produce artifacts that eliminate details present in the
original image.37 Another possible concern is generat-
ing images too similar to the original training images,

or even just copying and pasting all training images.We
used t-SNE, a nonlinear technique for embedding high-
dimensional data in a low-dimensional space suited for
visualization to address this issue. Our results suggest
that GAN synthetic images are still distinct from origi-
nal training images.

In the current study, we focused on assessing GANs
dedicated to generating AS-OCT images with open
or closed angles rather than evaluating the diagnos-
tic performance of hand-crafted features (HCFs) such
as TISA750. Using a custom program and HCFs,
Narayanaswamy et al.38 reported that the AUCs for
TISA750 in the nasal and temporal quadrants were
0.87 and 0.88, respectively. Such methods are time
consuming, and the results may be compromised
due to interobserver variability. Our results indicate
that the DL models significantly outperformed HCFs
for the detection of angle closure from AS-OCT
images.However, the black-box behavior of DLmodels
hinders their application in clinical settings.39 Most
clinicians still prefer HCFs, as they can reflect expert
knowledge. Further study, such as determining HCFs
from GANs synthetic images and comparing the
predicted features to the real features, would help clini-
cians understand DL model decisions.

Our study has some limitations. First, we synthe-
sized onlyAS-OCTACA images with 256× 256 square
pixels, similar to that of Visante AS-OCT images (300
× 300 square pixels) but lower than that of Casia
AS-OCT images. It is possible for PGGANs to gener-
ate higher resolutions (e.g., 1024 × 1024 or above).
Future work will involve evaluations at higher resolu-
tions using similar PGGAN models to evaluate differ-
ent angle-closure mechanisms. Second, although we
assessed the generalizability of theDLmodel by testing
it within independent external datasets collected from
the same center, several studies have reported different
angle closuremechanisms in diverse populations.40 The
application of the PGGAN technique requires further
validation in multicenter and multiethnic trials. Third,
only two glaucoma specialists were enrolled to perform
the visual Turing testing in the current study. Further
study is warranted to investigate the interrater relia-
bility of multiple human graders. Finally, all AS-OCT
images were manually graded, which may lead to inter-
observer variability.

In summary, we have suggested a GAN approach
for obtaining good-quality synthetic AS-OCT images
that address the problem of a small training dataset
for detecting angle closure. Future work is needed to
extend our work to other ophthalmological domains
that can benefit from the synthesis of new images
for improved DL model training and classification
results.
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