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INTRODUCTION

Prostate cancer (PC) remains the second-most frequently diagnosed cancer among men worldwide
and the fifth leading cause of cancer deaths (1). Despite great efforts to optimize radiotherapy,
androgen deprivation, and chemotherapy, no curative treatment exists for advanced PC to date.
This is due to the fact that during tumor progression and treatment, many changes occur in
signaling pathways that lead to therapy resistance and treatment failure (2). Therefore, the search
has to concentrate on signaling pathways that can be influenced even in advanced stages.

THE INTRINSIC APOPTOTIC PATHWAY IN PROSTATE CANCER

Cells have the ability to commit suicide initiated by a finely tuned signal network after the influence
of stimuli that require the cell to die. This is why we are talking about “programmed” cell death
or apoptosis. In multicellular organisms apoptosis serves to eliminate surplus or damaged cells to
preserve tissue and organ homeostasis (3).

Apoptosis can be triggered by two different pathways. The “extrinsic” apoptotic pathway is
initiated through the stimulation of transmembrane death receptors. The “intrinsic” apoptotic
pathway is initiated after internal cell damage and marked by the release of cytochrome C from
mitochondria (3). Key regulators of the intrinsic apoptotic pathway are pro- and anti-apoptotic
Bcl-2 (B-cell lymphoma 2) family proteins (4). In non-apoptotic cells the main anti-apoptotic
members, Bcl-2, Bcl-xl, andMcl-1, bind the pro-apoptotic effectors Bax and Bak. Upon induction of
apoptosis, the pro-apoptotic activators (BID, BIM, and PUMA) and sensitizers (BAD and NOXA)
are transcriptionally or post-transcriptionally activated and bind via their so called BH3 domain
to the anti-apoptotic proteins to free Bax and Bak. Bax and Bak can oligomerize and form pores
in the outer membrane of mitochondria. This event is termed mitochondrial outer membrane
permeabilization (MOMP) and marks the point of no return in apoptosis. MOMP is followed by
cytochrome c release from the mitochondria, activation of caspases, and finally cell death (3).

PC therapies like radiation, androgen deprivation, and chemotherapy aim to activate the
intrinsic apoptotic pathway by causing cellular stress (5–7). This cellular stress generally leads
to an activation of different signaling pathways and expression of activators to free Bax and
Bak for the induction of cell death (8–11). However, two essential conditions must be met for
the therapies to be effective. First, the signaling pathways that induce apoptosis must be intact;
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second, Bax and Bak must not be inhibited by an excess
of anti-apoptotic proteins for successful release. In fact, a
deregulation of signaling pathways can be observed in PC during
tumor progression and therapy, so that the threshold for the
induction of apoptosis cannot be reached (2, 12, 13). Moreover,
an upregulation of Bcl-2, Bcl-xl, and Mcl-1 was associated
with resistance to apoptosis, radiation, androgen deprivation,
and chemotherapy (14–19). Immunohistological studies have
shown that the anti-apoptotic proteins Bcl-xl and Mcl-1 are
continuously present at a high percentage in PC cells (81–100%)
independently of grade or metastasis (Table 1). The number of
Bcl-2-positive cells varied from study to study between 24 and
70% (17, 20–26). Interestingly, the pro-apoptotic effectors Bax
and Bak were also detected at high percentages in all tumors
(77.5–100%) andmutations of the Bak and Bax genes were shown
to be rare events in PC (17, 20, 26). This means that PC cells may
be characterized by a high apoptosis resistance due to their high
expression of anti-apoptotic Bcl-2 proteins, but that they are at
the same time capable for an induction of apoptosis due to their
ubiquitous expression of the pro-apoptotic effector proteins.

DIRECT ACTIVATION OF THE INTRINSIC
APOPTOTIC PATHWAY IN PROSTATE
CANCER

The fact that the activation of the effectors Bax and Bak is
prevented by Bcl-2, Bcl-xl, and Mcl-1 leads to an alternative
therapeutic strategy to induce the programmed cell death by
direct inhibition of the anti-apoptotic proteins. In principle,
this can be done without previous cell damage and without
consideration of upstream signaling pathway elements, which
could be altered in advanced stages of the disease.

DNA-antisense and RNA interference methods were used
to down-regulate the anti-apoptotic proteins in PC cells.
In combination with chemotherapeutic agents or irradiation,
synergistic cytotoxicity, and increased antitumor activity in in
vivo tumor models were seen (27–30). However, in a phase
II study combination of docetaxel with the Bcl-2 antisense
oligonucleotide oblimersen did not enhance the clinical outcome
of patients with castration-resistant PC (CRPC). Major toxic
events were >grade 3 fatigue, mucositis, and thrombocytopenia
and primary endpoints (PSA response > 30% and major toxicity
event rate < 45%) were not reached (31).

A second focus for the direct activation of the intrinsic
apoptotic pathway was on the development of Bcl-2 antagonists,
such as BH3 mimetics. Similar to the Bcl-2 activator proteins,

Abbreviations: AR, androgen receptor; BAD, Bcl-2 antagonist of cell death; Bak,

Bcl-2 antagonist/killer; Bax, Bcl-2 associated X protein; Bcl-2, B-cell lymphoma

2; Bcl-xl, B-cell lymphoma extra-large; BID, BH3 interacting domain death

agonist; BIM, Bcl-2 interacting mediator of cell death; BMA, butyl methacrylate;

CRPC, castration-resistant PC; DEAEMA, diethylaminoethyl methacrylate; eEF-2,

eukaryotic elongation factor 2; Her2, human epidermal growth factor receptor 2;

Mcl-1, myeloid cell leukemia sequence; MOMP, mitochondrial outer membrane

permeabilization; NOXA, phorbol-12-myristate-13-acetate-induced protein 1;

PEA, Pseudomonas Exotoxin A; PC, prostate cancer; PSMA, prostate specific

membrane antigen; PUMA, p53 upregulated modulator of apoptosis; RTK,

receptor tyrosine kinase.

these small molecules can bind to the anti-apoptotic proteins
Bcl-2, Bcl-xl, or Mcl-1 followed by a release of Bax and Bak (32).

First generation BH3 mimetics included small
molecule inhibitors such as TW37, (-)-Gossypol (AT-101),
Apogossypolone (ApoG2), BI-97C1 (Sabutoclax), or GX15-070
(Obatoclax Mesylate). They are known as pan-BH3 mimetics,
because they can bind Bcl-2, Bcl-xl, and Mcl1. In preclinical
experiments, they successfully induced apoptosis in PC cells
(33–35). Due to the different structure of the Mcl-1 molecule
compared to Bcl-2 and Bcl-xl, however, the pan-BH3 mimetics
only show moderate affinity and low specificity against all these
proteins and elicit apoptosis-independent off-target effects
(36). AT-101 failed in a Phase I/II clinical trial, in which only
two of 23 patients with PC experienced a decrease in PSA
without objective responses. The main adverse side effect was
gastrointestinal toxicity, which was dose-limiting (37). Moreover,
combination therapy with AT-101 plus docetaxel/prednisone
of patients with metastatic CRPC cancer did not extend overall
survival (38).

Second generation BH3 mimetics were therefore created
by structural-based design to bind with high affinity and
specificity to individual members of the anti-apoptotic proteins
(39, 40). The specific BH3 mimetic ABT-737 and its orally
administrable analog ABT-263 (Navitoclax) can specifically
inhibit Bcl-2 and Bcl-xl, but not Mcl-1. In preclinical studies,
they were successfully combined with agents targeting Mcl-1
(e.g., chemotherapeutic agents or kinase inhibitors) to exceed
the threshold for the induction of apoptosis in PC cells (35). A
phase II study with Navitoclax and abiraterone acetate with or
without hydroxychloroquine in patients with metastatic CRPC
has been terminated, but outcome has not been published yet
(ClinicalTrials.gov, Identifier: NCT01828476).

MAKING THE INDUCTION OF APOPTOSIS
TUMOR-SPECIFIC

Despite the recognition that a combination of specific BH3
mimetics with other drugs is necessary to achieve complete
inhibition of the anti-apoptotic proteins Bcl-2, Bcl-xl, and Mcl-
1 for the induction of apoptosis, these combinations have
only hardly been used in clinical trials against PC to date.
The main reason for this is that the combinations tested so
far are not tumor-specific, but also can affect healthy cells.
Second, most drugs, which showed synergistic effects with BH3
mimetics, target signaling pathways, e.g., androgen receptor (AR)
or receptor tyrosine kinase (RTK) pathways, that are altered in
advanced tumor stages (2, 13). It is therefore to be feared that
the expected side effects of such combination therapies could
outweigh the clinical benefits.

In recent years, new strategies were therefore developed
to make the targeting of apoptosis more tumor-specific for
enhanced efficacy and reduction of adverse side-effects. One such
approach is the “BH3 profiling” of tumor cells, in which BH3
peptides interacting with Bcl-2, Bcl-xl, or Mcl-1 are used to
identify the dependence of tumor cells on the respective anti-
apoptotic Bcl-2 proteins. As a consequence, specific inhibitors
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TABLE 1 | Percentage of Bcl-2 protein positive cells in prostate cancer, as determined by immunohistology in different studies.

Gleason Metastases

Bcl-2 proteins 2–4 5–7 8–10 Bone Lymph node Total BH3 mimetics (inhibition)

Anti-apoptotic Bcl-2 20–25 14–42 33–41 13–65 14–38 24–70

Bcl-xl 100 100 100 100 100 100
TW37, AT-101, ApoG2,  

GX15-070, BI-97C1 

ABT-737/263 

Mcl-1 70 71 94 75 100 81

Pro-apoptotic Bax 100 100 100 100 100 95–100

Bak nd nd nd nd nd 78–100

BH3 mimetics for inhibition of the anti-apoptotic proteins. nd, not determined.

could be selectively used to inhibit these proteins in the
context of a personalized therapy. Specific Bcl-2 signatures for
hematological tumors could be identified [reviewed in (41)]. It
remains, however, questionable whether such profiling will also
be successful in future for PC patients, because prostate tumors
are known to be very heterogeneous and because it is difficult to
isolate tumor cells for profiling in advanced stages.

A tumor specific therapy can generally be performed by using
antibodies, peptides, or inhibitors against markers on the surface
of tumor cells. With regard to a targeted induction of apoptosis, a
direct coupling of Bcl-2 antagonists to tumor specific antibodies
or a combination of Bcl-2 antagonists with immunotoxins
represent promising, new therapeutic approaches. Berguig
and colleagues generated an antibody-peptide drug conjugate
consisting of an anti-CD22 antibody and a BIM peptide,
targeting all anti-apoptotic proteins, to treat B cell lymphoma.
The conjugate was applied via a multifunctional polymeric
delivery system containing ethylene glycol segments to optimize
safety and tumor biodistribution and butyl methacrylate (BMA)
and diethylaminoethyl methacrylate (DEAEMA) for enhanced
endosomal release. An inhibition of tumor growth marked by
an increased apoptosis rate and an enhanced overall survival
was reached with this construct in a B cell lymphoma mouse
xenograft model (42). In another study combination of low dose
EU-5346, a BH3 mimetic targeting Mcl-1, with trastuzumab
induced significant cytotoxicity in Her-2 positive breast cancer
cells (43).

In various tumor entities it was shown that the toxicity of
Pseudomonas Exotoxin A (PEA) based immunotoxins can be
significantly increased by the combination with the BH3mimetic
ABT-737/ABT-263 (44–46). PEA is a virulence factor of the
bacterium Pseudomonas aeruginosa with ADP-ribosyltransferase
activity. It ADP-ribosylates diphtamide, a modified histidine
residue of the eukaryotic elongation factor 2 (eEF-2), in
human ribosome complexes followed by inhibition of protein
biosynthesis and induction of apoptosis (47). Initially, the
inhibition of protein biosynthesis affects proteins with a short

half-life due to rapid degradation, such as Mcl-1 (half-life <

1 h) (48). For the production of recombinant immunotoxins,
the enzymatic domain of PEA is fused to a tumor-specific,
internalizing antibody fragment and thus PEA is directed
into tumor cells where it triggers apoptosis (49). In our
group, we produced a PEA-based immunotoxin using an
antibody fragment that specifically binds to the prostate specific
membrane antigen (PSMA) on the surface of PC cells. With
the anti-PSMA immunotoxin a downregulation of Mcl-1 was
detected. When low doses of the immunotoxin and ABT-737
were combined, a synergistic cytotoxicity could be reached
in PC cells, representing advanced androgen-dependent and
independent stages (50). To our knowledge, this represents the
first approach to make the induction of apoptosis specific for
PC cells.

CONCLUSIONS

The direct induction of the intrinsic apoptotic pathway is a
promising new therapeutic option for advanced PC. In recent
years, various drugs have been developed that can directly
inhibit anti-apoptotic Bcl-2 proteins and induce apoptosis,
independently of potentially altered upstream signaling
pathways. Since these drugs could also affect healthy cells and
lead to severe adverse side effects, future research must focus
on strategies to make the induction of the intrinsic apoptotic
pathway tumor-specific.
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